SOME PROPERTIES OF THE q-HERMITE POLYNOMIALS

WM. R. ALLAWAY

1. Introduction. Heine [7, p. 93] gave the following representation for the Legendre Polynomial $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$

$$
P_{n}(\cos \theta)=\frac{4}{\pi} \frac{2.4 \ldots 2 n}{3.5 \ldots(2 n+1)} \sum_{k=0}^{\infty} f_{k, n} \sin (n+2 k+1) \theta,
$$

where $f_{0, n}=1$ and

$$
f_{k, n}=\frac{1.3 \ldots(2 k-1)}{2.4 \ldots 2 k} \frac{(n+1) \ldots(n+k)}{\left(n+\frac{3}{2}\right)\left(n+\frac{5}{2}\right) \ldots\left(n+k+\frac{1}{2}\right)} .
$$

Szegö [7, p. 96] generalized this result to the Ultraspherical Polynomial set $\left\{C_{n}^{\lambda}(x)\right\}_{n=0}^{\infty}$ and obtained

$$
\begin{equation*}
(\sin \theta)^{2 \lambda-1} C_{n}^{\lambda}(\cos \theta)=\sum_{k=0}^{\infty} f_{k, n}{ }^{\lambda} \sin (n+2 k+1) \theta, \tag{1.1}
\end{equation*}
$$

where

$$
f_{k, n}{ }^{\lambda}=\frac{2^{2-2 \lambda} \Gamma(n+2 \lambda)(1-\lambda)_{k}(n+1)_{k}}{\Gamma(\lambda) \Gamma(n+\lambda+1) k!(n+\lambda+1)_{k}},
$$

$\lambda>0, \Gamma(\lambda)$ is the ordinary Gamma function and $(a)_{n}$ is defined by

$$
(a)_{n}= \begin{cases}a(a+1) \ldots(a+n-1) & \text { if } n=1,2 \ldots \tag{1.2}\\ 1 & \text { if } n=0 .\end{cases}
$$

Equation (1.1) is the Fourier sine series expansion of $(\sin \theta)^{2 \lambda-1} C_{n}{ }^{\lambda}$ $(\cos \theta)$. Because for each non-negative integer $n, f_{k, n}{ }^{\lambda}$ is eventually monotonic in k and $\lim _{k \rightarrow \infty} f_{k, n}{ }^{\lambda}=0$, it follows from classical Fourier analysis that (1.1) converges pointwise in $(0, \pi)$ and uniformly on $[\epsilon, \pi-\epsilon]$ for $0<\epsilon<\pi / 2$.
It is well known [5, p. 281] that $\left\{C_{n}{ }^{\lambda}(\cos \theta)\right\}_{n=0}^{\infty}$ is orthogonal on $[0, \pi]$ with weight function $(\sin \theta)^{2 \lambda-1}$. In $[\mathbf{1}]$ we identified a large class of orthogonal polynomial sets that satisfy an equation of the form (1.1).

One of these polynomial sets turned out to be $\left\{R_{n}(x ; q)\right\}_{n=0}^{\infty}$ defined by the three term recursion relation

$$
\left\{\begin{array}{l}
R_{0}(x ; q)=1 \quad R_{1}(x ; q)=2 x \tag{1.3}\\
R_{n+1}(x ; q)=2 x R_{n}(x ; q)-\left(1-q^{n}\right) R_{n-1}(x ; q) \quad(n \geqq 1)
\end{array}\right.
$$

[^0]where $|q|<1$. From this three term recursion formula it is easy to show that
$$
\lim _{q \rightarrow 1} \frac{R_{n}\left(((1-q) / 2)^{1 / 2} x ; q\right)}{((1-q) / 2)^{n / 2}}=H_{n}(x)
$$
where $\left\{H_{n}(x)\right\}_{n=0}^{\infty}$ is the Hermite polynomial set [5, p. 188]. It is for this reason that $\left\{R_{n}(x ; q)\right\}_{n=0}^{\infty}$ is called the q-Hermite polynomial set. This polynomial set was first introduced by Roger [6, p. 319] in 1894.

In this paper we study some of the properties of $\left\{R_{n}(x ; q)\right\}$. We show that $\left\{R_{n}(x ; q)\right\}_{n=0}^{\infty}$ is characterized by a Fourier sine series similar to (1.1) in which the coefficients satisfy a very simple recursion formula. From this fact we are able to deduce that $\left\{R_{n}(\cos \theta ; q)\right\}_{n=0}^{\infty}$ is orthogonal on $[0, \pi]$ with respect to the weight function $\theta_{1}\left(z ; q^{1 / 2}\right)$, where $\theta_{1}(z ; q)$ is one of the Theta Functions [5, p. 314], defined by

$$
\begin{equation*}
\theta_{1}(z, q)=2 \sum_{n=0}^{\infty}(-1)^{n} q^{(n+1 / 2)^{2}} \sin (2 n+1) z \tag{1.4}
\end{equation*}
$$

Finally it is interesting to note that

$$
\begin{equation*}
R_{n}(x ; q)=v^{n} H_{n}(u / v ; q)=u^{n} H_{n}(v / u ; q), \tag{1.5}
\end{equation*}
$$

where $u=x-\sqrt{x^{2}-1}, v=x+\sqrt{2-1}$ and $H_{n}(x, q)$ is the polynomial set first introduced by Szegö [8]. $H_{n}(x, q)$ is defined by

$$
H_{n}(x ; q)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{1.6}\\
k
\end{array}\right]_{q} x^{k}
$$

where

$$
\left[\begin{array}{l}
n \tag{1.7}\\
k
\end{array}\right]_{q}=\frac{\left(1-q^{n}\right)\left(1-q^{n-1}\right) \ldots\left(1-q^{n-k+1}\right)}{(1-q)(1-q) \ldots\left(1-q^{k}\right)}
$$

and

$$
\left[\begin{array}{l}
n \\
0
\end{array}\right]_{q}=1
$$

Carlitz [3] has made a detailed study of $\left\{H_{n}(x ; q)\right\}_{n=0}^{\infty}$. By using his results, similar results can be obtained for $\left\{R_{n}(x ; q)\right\}_{n=0}^{\infty}$. Also, Al-Salam and Chihara [2] have studied generalizations of $\left\{R_{n}(x ; q)\right\}_{n=0}^{\infty}$.
2. Orthogonality of $\left\{R_{n}(x ; q)\right\}_{n=0}^{\infty}$. For q a real number such that $|q|<1$,

$$
\sum_{n=1}^{\infty}\left|q^{n(n+1) / 2}\right|^{2}<\infty
$$

Thus by the Riesz-Fischer Theorem there exists $w(\cos \theta ; q) \in L^{2}[0, \pi]$
such that for all non-negative integers n

$$
\int_{0}^{\pi} w(\cos \theta ; q) \sin ((n+1) \theta) d \theta=\left\{\begin{array}{cl}
(-1)^{k} q^{k(k+1) / 2} & n=2 k \tag{2.1}\\
0 & n=2 k+1
\end{array}\right.
$$

From a well known Theorem (see [4], p. 196), it follows that $w(\cos \theta ; q) \in$ $L^{1}[0, \pi]$. We will show that $\left\{R_{n}(z ; q)\right\}_{n=0}^{\infty}$ is orthogonal on $[-1,1]$ with respect to the weight function $w(x ; q)$.

In (2.1) let us make the substitution $x=\cos \theta$ to obtain

$$
\int_{-1}^{1} w(x ; q) U_{n}(x) d x=\left\{\begin{array}{cl}
(-1)^{k} q^{k(k+1) / 2} & n=2 k \tag{2.2}\\
0 & n=2 k+1
\end{array}\right.
$$

where $\left\{U_{n}(x)\right\}_{n=0}^{\infty}$ is the Chebychev polynomial of the second kind (see [5], p. 301), defined by

$$
U_{n}(\cos \theta)=\sin (n+1) \theta / \sin \theta(n \geqq 0)
$$

We will extend this definition of $\left\{U_{n}(x)\right\}_{n=0}^{\infty}$ to all integers n by defining

$$
\begin{align*}
& U_{-1}(x)=0 \tag{2.3}\\
& U_{n}(x)=-U_{-n-2}(x)
\end{align*}
$$

It is easy to show that these extended Chebychev polynomials of the second kind satisfy a three term recursion relation of the form

$$
\left\{\begin{array}{l}
U_{0}(x)=1 \quad U_{1}(x)=2 x \tag{2.4}\\
U_{n}(x)=2 x U_{n-1}(x)-U_{n-2}(x)
\end{array}\right.
$$

Both $\left\{R_{n}(x)\right\}_{n=0}^{\infty}$ and $\left\{U_{n}(x)\right\}_{n=-\infty}^{\infty}$ are examples of symmetric orthogonal polynomial sets and thus for all $n \geqq 0$ and $0 \leqq n+2 k$ we have

$$
R_{n}(x ; q) U_{n+2 k+1}(x)=\sum_{i=0}^{n+k} a_{n+k, i} U_{2 i+1}(x)
$$

By using this equation and Equation (2.2) we obtain for $n \geqq 0$ and $n+2 k \geqq 0$

$$
\begin{equation*}
\int_{-1}^{1} w(x ; q) R_{n}(x ; q) U_{n+2 k+1}(x) d x=0 \tag{2.5}
\end{equation*}
$$

Let us define for $n \geqq-1$ and all integers k

$$
f_{k, n}=\left\{\begin{array}{l}
\int_{-1}^{1} w(x ; q) R_{n}(x ; q) U_{n+2 k}(x) d x, \quad \text { if } n+2 k \geqq 0 \text { and } n \neq-1 \tag{2.6}\\
0, \quad \text { if } n+2 k<0 \text { or } n=-1 .
\end{array}\right.
$$

It follows directly from this definition and the three term recursion formulas for $\left\{R_{n}(x ; q)\right\}_{n=0}^{\infty}$ and $\left\{U_{n}(x)\right\}_{n=-\infty}^{\infty}$ that, for all integer values k

$$
\begin{equation*}
f_{k, n+1}=f_{k+1, n}+f_{k, n}-\left(1-q^{n}\right) f_{k+1, n-1} \tag{2.7}
\end{equation*}
$$

for $n \geqq 0$.

We will now prove by mathematical induction on n that for all nonnegative integers k

$$
\begin{equation*}
f_{k, n}=\frac{(-1)^{k} q^{k(k+1) / 2}[q]_{n+k}}{[q]_{k}}, \tag{2.8}
\end{equation*}
$$

where

$$
[a]_{k}=\left\{\begin{array}{cl}
(1-a)(1-a q) \ldots\left(1-a q^{k-1}\right) & k=1,2,3 \ldots \tag{2.9}\\
1 & k=0 .
\end{array}\right.
$$

For $n=0$ we obtain from Definition (2.6) and Equation (2.2)

$$
f_{k, 0}=\int_{-1}^{1} w(x) U_{2 k}(x) d x=(-1)^{k} q^{k(k+1) / 2},
$$

and for $n=1$ we obtain in the same manner

$$
\begin{aligned}
f_{k, 1} & =\int_{-1}^{1} w(x ; q) R_{1}(x ; q) U_{1+2 k}(x) d x \\
& =\int_{-1}^{1} w(x)\left(U_{2+2 k}(x)+U_{2 k}(x)\right) d x \\
& =\left((-1)^{k+1} q^{(k+1)(k+2) / 2}+(-1)^{k} q^{k(k+1) / 2}\right) \\
& =(-1)^{k} q^{k(k+1) / 2}\left(1-q^{k+1}\right) .
\end{aligned}
$$

Thus Equation (2.8) is true for all non-negative integers k, and $n=0$ or 1 . Now let us make the induction hypothesis that Equation (2.8) is true for all non-negative integers k, and $n=0,1,2 \ldots m$. By Equation (2.7) and the induction hypothesis we obtain for all non-negative integers k

$$
\begin{aligned}
f_{k, m+1} & =\frac{(-1)^{k+1} q^{(k+1)(k+2) / 2}[q]_{m+k+1}}{[q]_{k+1}}+\frac{(-1)^{k} q^{k(k+1) / 2}[q]_{m+k}}{[q]_{k}} \\
- & -\frac{\left(1-q^{m}\right)(-1)^{k+1} q^{(k+1)(k+2) / 2}[q]_{m+k}}{[q]_{k+1}}=\frac{(-1)^{k} q^{k(k+1) / 2}[q]_{m+1+k}}{[q]_{k}} .
\end{aligned}
$$

Now we have developed everything that is required in order to show that $\left\{R_{n}(x ; q)\right\}_{n=0}^{\infty}$ is orthogonal on $[-1,1]$ with respect to the weight function $w(x, q)$ which is defined by Equation (2.1). We will show that for m and n non-negative integers

$$
\begin{equation*}
\int_{-1}^{1} R_{n}(x ; q) R_{m}(x ; q) w(x ; q) d x=\delta_{n, m}[q]_{n}, \tag{2.10}
\end{equation*}
$$

where $\delta_{n, m}$ is the Kronecher delta. It is an easy exercise to show that Equation (2.8) is equivalent to

$$
\int_{-1}^{1} R_{n}(x ; q) U_{m}(x) w(x ; q) d x= \begin{cases}0 & 0 \leqq m<n \tag{2.11}\\ {[q]_{n}} & m=n .\end{cases}
$$

From Equation (2.5) we know that for $n \geqq 0$ and $n+2 k \geqq 0$,

$$
\int_{-1}^{1} R_{n}(x ; q) U_{n+2 k+1}(x) w(x ; q) d x=0
$$

and from Equations (2.8) and (2.6) we have that for $n \geqq 0$,

$$
\int_{-1}^{1} R_{n}(x ; q) U_{n}(x) w(x ; q) d x=[q]_{n} .
$$

Thus in order to show that (2.10) is true we need only show that for all non-negative integers $n, f_{k, n}=0$, for $-n \leqq 2 k<0$. We use mathematical induction on n to show that for all negative integers k

$$
f_{k, n}=0 .
$$

By the definition of $f_{k, n}$ as given by Equation (2.6)

$$
(2.12) \quad f_{k, 0}=0,
$$

for k a negative integer. Also for the case $n=1$ we have from the definition of $f_{k, n}$ that $f_{-1,1}=0$, and from Equations (2.7) and (2.12) that

$$
f_{k, 1}=0
$$

for k a negative integer. Now let us make the induction hypothesis that for all negative integers k

$$
f_{k, n}=0,
$$

for $n=0,1,2 \ldots m$. By Equation (2.7) we have

$$
\begin{equation*}
f_{k, m+1}=f_{k+1, m}+f_{k, m}-\left(1-q^{m}\right) f_{k+1, m-1} . \tag{2.13}
\end{equation*}
$$

Thus from the induction hypothesis $f_{k, m+1}=0$ for $k=-2,-3 \ldots$. For $k=-1$ we obtain from Equations (2.13) and (2.8), and the induction hypothesis

$$
\begin{aligned}
f_{-1, m+1} & =f_{0, m}-\left(1-q^{m}\right) f_{0, m-1} \\
& =[q]_{m}-\left(1-q^{m}\right)[q]_{m-1} \\
& =0 .
\end{aligned}
$$

Therefore for all negative integers k and non-negative integers n, $n, f_{k, n}=0$. Therefore $\left\{R_{n}(x ; q)\right\}_{n=0}^{\infty}$ is orthogonal on $[-1,1]$ with respect to the weight function

$$
\begin{equation*}
w(x ; q)=\frac{2}{\pi} \sqrt{1-x^{2}} \sum_{k=0}^{\infty}(-1)^{k} q^{k(k+1) / 2} U_{2 k}(x) . \tag{2.14}
\end{equation*}
$$

3. A characterization of $\left\{R_{n}(x ; q)\right\}_{n=0}^{\infty}$. In this section we wish to find a characterization of $\left\{R_{n}(x ; q)\right\}_{n=0}^{\infty}$.
Let the polynomial set $\left\{E_{n}^{\lambda}(x)\right\}_{n=0}^{\infty}$ be defined by

$$
E_{n}^{\lambda}(x)=\frac{n!}{(1+\lambda)_{n}} C_{n}^{\lambda}(x) \quad(n \geqq 0),
$$

where $\left\{C_{n}{ }^{\lambda}(x)\right\}_{n=0}^{\infty}$ is the Ultraspherical Polynomial set and $(1+\lambda)_{n}$ is
defined by (1.2). It follows directly from Equation (1.1) that

$$
\begin{equation*}
\left(1-x^{2}\right)^{\lambda-1 / 2} E_{n}^{\lambda}(x)=\frac{2^{2-2 \lambda} \Gamma(n+2 \lambda)}{\Gamma(\lambda) \Gamma(n+\lambda+1)} \sqrt{1-x^{2}} \sum_{k=0}^{\infty} g_{k, n}{ }^{\lambda} U_{n+2 k}(x) \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{k, n}^{\lambda}=\frac{k-\lambda}{k} g_{k-1, n+1}^{\lambda} \tag{3.2}
\end{equation*}
$$

Equations (3.1) and (3.2) suggest studying the polynomial sets $\left\{A_{n}(x)\right\}_{n=0}^{\infty}$ such that there exists a function $w(x)$ and a sequence of real numbers $\left\{\alpha_{k}\right\}_{n=0}^{\infty}$ having the property that the Fourier Chebychev expansion of $w(x) A_{n}(x)$ is

$$
\begin{equation*}
w(x) A_{n}(x) \sim \frac{2}{\pi} \sum_{k=0}^{\infty} h_{k, n} U_{n+2 k}(x) \tag{3.3}
\end{equation*}
$$

where

$$
h_{0, n} \neq 0
$$

and

$$
\begin{equation*}
h_{k, n}=\alpha_{k} h_{k-1, n+1} \quad(k \geqq 1, n \geqq 0) \tag{3.4}
\end{equation*}
$$

In [1] we find the three term recursion relation of all these polynomial sets and study some of their properties.

It is easy to show (see [1]) that all polynomial sets $\left\{A_{n}(x)\right\}_{n=0}^{\infty}$ that satisfy Equation (3.3) are symmetric and orthogonal on $[-1,1]$ with respect to the weight function $w(x)$. It is well known (see [1]) that such symmetric orthogonal polynomial sets satisfy a three term recursion formula of the form

$$
\left\{\begin{array}{l}
A_{0}(x)=1 \quad A_{1}(x)=2 b_{1} x \tag{3.5}\\
A_{n}(x)=2 b_{n} x A_{n-1}(x)-\lambda_{n} A_{n-2}(x) \quad(n \geqq 2)
\end{array}\right.
$$

where $\left\{b_{n}\right\}_{n=0}^{\infty}$ and $\left\{\lambda_{n}\right\}_{n=0}^{\infty}$ are real non-zero sequences.
We note from Equation (1.3) that in order for Equation (3.5) to be the three term recursion relation for $\left\{R_{n}(x)\right\}_{n=0}^{\infty}$ we require $b_{1}=b_{2}$ and $2 b_{1} b_{2}>\lambda_{2}$. Now we wish to prove the following theorem.

Theorem 3.1. Let $\left\{A_{n}(x)\right\}_{n=0}^{\infty}$ be any polynomial set satisfying Equations (3.3), (3.4) and (3.5). Also let $\left\{R_{n}(x)\right\}_{n=0}^{\infty}$ be defined by Equation (1.3).

$$
R_{n}(x ; q)=A_{n}(x) / b_{1}^{n}
$$

if and only if $b_{1}=b_{2}$ and $2 b_{1} b_{2}>\lambda_{2}>0$.

Proof. Because $\left\{A_{n}(x)\right\}_{n=0}^{\infty}$ satisfies (3.3) and (3.5) we have for $n \geqq 2$

$$
\begin{aligned}
& 0=\int_{-1}^{1} w(x) A_{n}(x) U_{n-2}(x) d x=\int_{-1}^{1} w(x)\left[b _ { n } A _ { n - 1 } (x) \left(U_{n-1}(x)\right.\right. \\
& \left.\left.\quad+U_{n-3}(x)\right)-\lambda_{n} A_{n-2}(x) U_{n-2}(x)\right] d x=b_{n} h_{0, n-1}-\lambda_{n} h_{0, n-2}
\end{aligned}
$$

Thus if we let $\gamma_{n}=\lambda_{n} / b_{n}$ we obtain

$$
\begin{equation*}
h_{0, n}=\gamma_{n+1} f_{0, n-1}=\left(\prod_{i=2}^{n+1} \gamma_{i}\right) h_{0,0} . \tag{3.6}
\end{equation*}
$$

By combining this equation with Equation (3.4) we obtain

$$
\begin{equation*}
h_{k, n}=\prod_{i=1}^{k} \alpha_{i} \prod_{j=2}^{n+k+1} \gamma_{j} h_{0,0} \tag{3.7}
\end{equation*}
$$

By definition

$$
h_{k, n}=\int_{-1}^{1} w(x) A_{n}(x) U_{n+2 k}(x) d x .
$$

Thus by using this fact and the three term recursion formula for $\left\{A_{n}(x)\right\}_{n=0}^{\infty}$ and $\left\{U_{n+2 k}(x)\right\}_{n=0}^{\infty}$ we obtain

$$
\begin{equation*}
h_{k, n}=b_{n}\left(h_{k, n-1}+h_{k+1, n-1}\right)-\lambda_{n} h_{k+1, n-2} \tag{3.8}
\end{equation*}
$$

Now by combining Equation (3.7) and (3.8) we obtain

$$
\begin{equation*}
\gamma_{n+k}\left(b_{n}^{-1}-\alpha_{k}\right)+\alpha_{k} \gamma_{n}-1=0 \tag{3.9}
\end{equation*}
$$

for $n=1,2,3 \ldots$ and $1 \leqq k \leqq m$, where $\gamma_{1}=0$ and m is defined to be the smallest integer such that $\alpha_{m}=0$. If all the α_{i} 's are not equal to zero then $m=\infty$.

In Equation (3.9) let $n=2$ and 1, to obtain

$$
\begin{equation*}
\gamma_{k+2}\left(b_{2}^{-1}-\alpha_{k}\right)+\gamma_{2} \alpha_{k}-1=0 \quad(1 \leqq k \leqq m) \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{k}=b_{1}^{-1}-\gamma_{k+1}^{-1} \quad(1 \leqq k \leqq m) \tag{3.11}
\end{equation*}
$$

respectively. By using Equation (3.11) to eliminate α_{k} from (3.10) and by using the fact that $b_{1}=b_{2}$ and $\gamma_{1}=0$ we obtain

$$
\begin{equation*}
\gamma_{k+2}+\gamma_{k+1}\left(\gamma_{2} b_{1}^{-1}-1\right)=\gamma_{2} \quad(0 \leqq k \leqq m) \tag{3.12}
\end{equation*}
$$

This is a first order non-homogeneous finite difference equation with constant coefficients. By using standard methods it is easy to show that its solution is

$$
\begin{equation*}
\gamma_{k}=b_{1}\left[1-\left(1-\gamma_{2} b_{1}^{-1}\right)^{k-1}\right] \quad(1 \leqq k \leqq m) \tag{3.13}
\end{equation*}
$$

By using Equation (3.13) to substitute for γ_{k} in Equation (3.11) we obtain

$$
\begin{equation*}
\left.\alpha_{n}=\left(1-\gamma_{2} b_{1}^{-1}\right)^{n}\left\{b_{1}\left[1=\gamma_{2} b_{1}^{-1}\right)^{n}-1\right]\right\}^{-1} . \tag{3.14}
\end{equation*}
$$

Thus we see that $m=0$ or $m=\infty$. By letting $k=1$ in Equation (3.9) and then using Equation (3.11) and (3.13) we obtain
(3.15) $\quad b_{n}=b_{1}$.

Finally we note that if we let $q=1-\gamma_{2} b_{1}{ }^{-1}$ and use the fact that $2 b_{1} b_{2}>\lambda_{2}>0$ we obtain

$$
|q|<1 .
$$

From Equations (1.3), (3.5), (3.13) and (3.15) we obtain

$$
R_{n}(x ; q)=A_{n}(x) / b_{1}^{n}
$$

and from Equation (3.14)

$$
\begin{equation*}
\alpha_{n}=\frac{q^{n}}{q^{n}} \frac{1}{-1} . \tag{3.16}
\end{equation*}
$$

The converse follows directly from the three term recursion relation (1.3) and the fact that $|q|<1$.
4. The weight function $w(x ; q)$. We now wish to study the weight function $w(x ; q)$ of $\left\{R_{n}(x ; q)\right\}_{n=0}^{\infty}$.
From Equation (2.13) we see that the Fourier sine series expansion of $w(\cos \theta ; q)$ is given by

$$
\begin{aligned}
& w(\cos \theta ; q)=\frac{2}{\pi} \sum_{k=0}^{\infty}(-1)^{k} q^{k(k+1) / 2} \sin (2 k+1) \theta \\
&=\frac{2}{\pi} q^{-1 / 8} \sum_{k=0}^{\infty}(-1)^{k}\left(q^{1 / 2}\right)^{k^{2}+k+1 / 4} \sin (2 k+1) \theta
\end{aligned}
$$

By comparing this with the Theta Function $\theta_{1}(z, q)$ as defined in [5, p. 314] by

$$
\begin{equation*}
\theta_{1}(z, q)=2 \sum_{n=0}^{\infty}(-1)^{n} q^{(n+1 / 2)^{2}} \sin (2 n+1) z, \tag{4.1}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
w(\cos z ; q)=\frac{q^{-1 / 8}}{\pi} \theta_{1}\left(z ; q^{1 / 2}\right) . \tag{4.2}
\end{equation*}
$$

$\theta_{1}(z, q)$ has an infinite product representation (see [5], p. 334);

$$
\theta_{1}(z, q)=2 q^{1 / 4} \sin z \prod_{n=1}^{\infty}\left(1-q^{2 n}\right)\left(1-2 q^{2 n} \cos 2 z+q^{4 n}\right)
$$

Therefore,

$$
\begin{equation*}
w(\cos z ; q)=\frac{2}{\pi} \sin z \prod_{n=1}^{\infty}\left(1-q^{n}\right)\left(1-2 q^{n} \cos 2 z+q^{2 n}\right) \tag{4.3}
\end{equation*}
$$

Equation (4.3) agrees with results obtained by Al-Salam and Chihara [2, p. 28].

References

1. Wm. R. Allaway, The identification of a class of orthogonal polynomial sets, Ph.D. Thesis, University of Alberta (1972).
2. W. A. Al-Salam and T. S. Chihara, Convolution of orthogonal polynomials, SIAM J. on Math. Anal. 7 (1976), 16-28.
3. L. Carlitz, Some polynomials related to the theta functions, Ann. Mat. Pura Appl. 41 (1955), 359-373.
4. E. Hewitt and K. Stromberg, Real and abstract analysis (Springer-Verlag, New York, 1969).
5. E. D. Rainville, Special functions (Macmillan, New York, 1965).
6. L. J. Rogers, Second memoir on the expansion of certain infinite products, Proc. London Math. Soc. 25 (1894), 318-343.
7. G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloquium Publication 23 (Amer. Math. Soc., Providence, 1975).
8. -Ein Beitrag zur Theorie der Thetafunktionen, Sitzangsberichte der Preussischen Akademie der Wissenschaften, Phys.-Math. Klasse (1926). 242-251.

Lakehead University,
Thunder Bay, Ontario

[^0]: Received August 29, 1978 and in revised form June 7, 1979.

