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Abstract

Let Bk,`(n) denote the number of (k, `)-regular bipartitions of n. Employing both the theory of modular
forms and some elementary methods, we systematically study the arithmetic properties of B3,`(n) and
B5,`(n). In particular, we confirm all the conjectures proposed by Dou [‘Congruences for (3,11)-regular
bipartitions modulo 11’, Ramanujan J. 40, 535–540].
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1. Introduction

A partition of n is a nonincreasing sequence of positive integers whose sum equals n.
For any positive integer `, a partition is called `-regular if none of its parts are divisible
by `. For example, 4 + 4 + 2 + 1 is a 5-regular partition of 11 but 5 + 4 + 1 + 1 is not
5-regular. We denote by b`(n) the number of `-regular partitions of n and agree that
b`(0) = 1. The generating function of b`(n) satisfies the identity

∞∑
n=0

b`(n)qn =
(q`; q`)∞
(q; q)∞

, (1.1)

where

(a; q)∞ :=
∞∏

k=1

(1 − aqk−1), |q| < 1.

Arithmetic properties of b`(n) have been extensively investigated (see [2, 4–6, 8, 10],
[11, 14–18, 21–24]).

A bipartition (λ1, λ2) of n is an ordered pair of partitions (λ1, λ2) such that the sum
of all the parts equals n. We say that (λ1, λ2) is (k, `)-regular if λ1 is k-regular and
λ2 is `-regular and we denote by Bk,`(n) the number of (k, `)-regular bipartitions of n.
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If k = `, Bk,k(n) is also sometimes denoted by Bk(n). From (1.1) it is easy to see that
the generating function of Bk,`(n) satisfies

∞∑
n=0

Bk,`(n)qn =
(qk; qk)∞(q`; q`)∞

(q; q)2
∞

.

In 2015, by using Ramanujan’s two modular equations of degree seven, Lin [12]
found an infinite family of congruences for B7(n) modulo three: for α ≥ 2 and n ≥ 0,

B7

(
3αn +

5 · 3α−1 − 1
2

)
≡ 0 (mod 3).

Lin [13] also proved an analogous result for B13(n): for α ≥ 2 and n ≥ 0,

B13(3αn + 2 · 3α−1 − 1) ≡ 0 (mod 3).

Recently, Wang [22] established numerous congruences for B5(n) modulo powers of 5.
For instance, he proved that, for any integers α ≥ 1 and n ≥ 0,

B5

(
52α−1n +

2 · 52α−1 − 1
3

)
≡ 0 (mod 5α).

Fewer results for Bk,`(n) are known when k , `. Dou [7] showed that

B3,11

(
3αn +

5 · 3α−1 − 1
2

)
≡ 0 (mod 11)

for all α ≥ 2 and n ≥ 0 and conjectured that

B5,7(7n + 6)≡ 0 (mod 7),
B3,7(An + B)≡ 0 (mod 2),
B3,7(4n + 3)≡ 0 (mod 3),

B3,7(Cn + D)≡ 0 (mod 9),

for (A, B) ∈ {(14, 4), (14, 10), (16, 1), (28, 6), (32, 21)} and (C, D) ∈ {(7, 3), (7, 4),
(14, 13), (21, 6), (21, 20), (25, 3), (25, 13), (25, 18), (25, 23)}.

The main goal of this paper is to prove Dou’s congruences. To do this, we
systematically study the arithmetic properties of Bk,`(n) for k ∈ {3, 5}. Along with
many other interesting Ramanujan-type congruences, we confirm and improve Dou’s
conjectures using both elementary approaches and the theory of modular forms (see
Theorem 1.3).

Firstly, we establish some double series representations for the generating functions
of Bk,`(n) modulo five and nine.

Theorem 1.1. Let m ≥ 1 be an integer and let p ≥ 5 be a prime.

(1) We have
∞∑

n=0

B3,m(n)q24n+m+1 ≡

∞∑
i=−∞

∞∑
j=−∞

(−1)i+ j(3i + 1)q(6i+1)2+m(6 j+1)2
(mod 9). (1.2)
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(2) If (−m/p) = −1 and n0 is an integer such that 0 ≤ n0 ≤ p − 1 and 24n0 + m + 1 ≡
0 (mod p), then
∞∑

n=0

B3,m(pn + n0)q24pn+24n0+m+1 ≡
∑

6i+1=px,
x∈Z

∑
6 j+1=py,

y∈Z

(−1)i+ j(3i + 1)qp2(x2+my2) (mod 9).

(1.3)
(3) We have

∞∑
n=0

B3,5(n)q8n+2 ≡

∞∑
i=−∞

∞∑
j=0

(−1)i+ j(2 j + 1)q(6i+1)2+(2 j+1)2
(mod 5). (1.4)

(4) If p ≡ 3 (mod 4) and n0 is an integer such that 0 ≤ n0 ≤ p − 1 and 4n0 + 1 ≡ 0
(mod p), then
∞∑

n=0

B3,5(pn + n0)q8pn+8n0+2 ≡
∑

6i+1=px,
x∈Z

∑
2 j+1=py,

y∈Z+

(−1)i+ j(2 j + 1)qp2(x2+y2) (mod 5).

(1.5)
(5) If p ≡ 3 (mod 4) and n0 is an integer such that 0 ≤ n0 ≤ p − 1 and 12n0 + 5 ≡ 0

(mod p), then
∞∑

n=0

B3,5(3(pn + n0) + 1)q24pn+24n0+10

≡ −3
∑

6i+1=px,
x∈Z

∑
2 j+1=py,

y∈Z+

(−1)i+ j(2 j + 1)qp2(x2+9y2) (mod 5). (1.6)

(6) We have
∞∑

n=0

B5,m(n)q24n+m+3 ≡

∞∑
i=0

∞∑
j=−∞

(−1)i+ j(2i + 1)q3(2i+1)2+m(6 j+1)2
(mod 5). (1.7)

(7) If (−3m/p) = −1 and n0 is an integer such that 0 ≤ n0 ≤ p − 1 and 24n0 + m + 3 ≡
0 (mod p), then

∞∑
n=0

B5,m(pn + n0)q24(pn+n0)+m+3

≡
∑

2i+1=px,
x∈Z+

∑
6 j+1=py,

y∈Z

(−1)i+ j(2i + 1)qp2(3x2+my2) (mod 5). (1.8)

Theorem 1.2. Let m ≥ 1 and n ≥ 0 be any integers.

(1) If 24n + 1 is a quadratic nonresidue modulo m, then B3,m(n) ≡ 0 (mod 9).
(2) Under the conditions of Theorem 1.1(2), if 24n + (24n0 + m + 1)/p . 0 (mod p),

then B3,m(pn + n0) ≡ 0 (mod 9).
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(3) Under the conditions of Theorem 1.1(4), if 4n + (4n0 + 1)/p . 0 (mod p), then
B3,5(pn + n0) ≡ 0 (mod 5).

(4) Under the conditions of Theorem 1.1(5), if 12n + (12n0 + 5)/p . 0 (mod p), then
B3,5(3pn + 3n0 + 1) ≡ 0 (mod 5).

(5) If gcd(m, 3) = 1 and 8n + 1 is a quadratic nonresidue modulo m, then B5,m(n) ≡
0 (mod 5).

(6) Under the conditions of Theorem 1.1(7), if 24n + (24n0 + m + 3)/p . 0 (mod p)
and gcd(m, 3) = 1, then B5,m(pn + n0) ≡ 0 (mod 5).

Theorem 1.3. Let n ≥ 0 be any integer.

(1)

B3,5(3n + 2) ≡ 0 (mod 5), (1.9)

B5,11(5n + 4) ≡ 0 (mod 5), (1.10)

B3,5(5n + 3) ≡ B3,5(5n + 4) ≡ 0 (mod 9), (1.11)

B3,5(121n + 11r + 8) ≡ 0 (mod 9), ∀r, 0 ≤ r ≤ 10 and r , 2, (1.12)

B3,7(7n + r) ≡ 0 (mod 9), r ∈ {3, 4, 6}, (1.13)

B3,7(25n + r) ≡ 0 (mod 9), r ∈ {3, 13, 18, 23}, (1.14)

B3,5(147n + 21r + 19) ≡ 0 (mod 5), r ∈ {0, 1, 3, 4, 5, 6}, (1.15)

B5,7(7n + r) ≡ 0 (mod 5), r ∈ {2, 4, 5}. (1.16)

(2)

B3,7(4n + 1) ≡ −B3,7(n) (mod 3), (1.17)

B3,7

(
22αn +

5 · 22α−1 − 1
3

)
≡ 0 (mod 3), ∀α ≥ 1. (1.18)

(3)

B3,5(27n + 11) ≡ 0 (mod 25), (1.19)

B3,7(14n + r) ≡ 0 (mod 2), r ∈ {4, 6, 10}, (1.20)

B3,7(16n + 1) ≡ 0 (mod 2), (1.21)

B3,7(32n + 21) ≡ 0 (mod 2), (1.22)

B5,7(7n + 6) ≡ 0 (mod 7), (1.23)

B5,7(49n + 20) ≡ 0 (mod 49). (1.24)

The paper is organised as follows. In Section 2, we prove Theorems 1.1 and 1.2
and the first group of congruences in Theorem 1.3. In Section 3, we use q-series
techniques to prove the second group of congruences in Theorem 1.3. In Section 4,
we apply Radu’s modular approach to complete the proof of Theorem 1.3.
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2. Proof of Theorems 1.1, 1.2 and Theorem 1.3(1)

Lemma 2.1.

(q; q)∞
∞∑

n=1

(n
3

) qn

1 − qn =

∞∑
j=−∞

(−1) j jq j(3 j+1)/2.

Proof. By Jacobi’s triple product identity (see, for example, [3, Theorem 1.3.3]),
∞∑

j=−∞

(−1) jz jq j(3 j+1)/2 = (zq2; q3)∞(q/z; q3)∞(q3; q3)∞.

Logarithmic differentiation with respect to z yields∑∞
j=−∞(−1) j jz j−1q j(3 j+1)/2

(zq2; q3)∞(q/z; q3)∞(q3; q3)∞
=

∞∑
n=0

( z−2q3n+1

1 − z−1q3n+1 −
q3n+2

1 − zq3n+2

)
,

and the lemma follows by setting z = 1. �

Proof of Theorem 1.1. (1) From [1, Entry 18.2.20, page 406],

(q; q)3
∞

(q3; q3)∞
= 1 − 3a(q) + 9a(q3), (2.1)

where

a(q) =

∞∑
n=1

(n
3

) qn

1 − qn .

By (2.1),
(q3; q3)∞ ≡ (q; q)3

∞(1 + 3a(q)) (mod 9).

By Lemma 2.1 and Euler’s pentagonal number theorem,

(q3; q3)∞(qm; qm)∞
(q; q)2

∞

≡ (q; q)∞(1 + 3a(q))(qm; qm)∞

≡

( ∞∑
i=−∞

(−1)iqi(3i+1)/2 + 3
∞∑

i=−∞

(−1)iiqi(3i+1)/2
) ∞∑

j=−∞

(−1) jqm j(3 j+1)/2

≡

∞∑
i=−∞

∞∑
j=−∞

(−1)i+ j(3i + 1)qi(3i+1)/2+m j(3 j+1)/2 (mod 9).

This proves (1.2).
(2) Since (−m/p) = −1,

(6i + 1)2 + m(6 j + 1)2 ≡ 0 (mod p)⇔ 6i + 1 ≡ 6 j + 1 ≡ 0 (mod p).

Extracting those terms on both sides of (1.2) for which the powers of q are divisible
by p yields (1.3).
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(3) By the binomial theorem and Jacobi’s identity (see [3, Theorem 1.3.9]),
∞∑

n=0

B3,5(n)qn =
(q3; q3)∞(q5; q5)∞

(q; q)2
∞

≡ (q3; q3)∞(q; q)3
∞ (2.2)

≡

∞∑
i=−∞

∞∑
j=0

(−1)i+ j(2 j + 1)q3i(3i+1)/2+ j( j+1)/2 (mod 5), (2.3)

from which (1.4) follows.
(4) Since (−1/p) = −1,

(6i + 1)2 + (2 j + 1)2 ≡ 0 (mod p) ⇔ 6i + 1 ≡ 2 j + 1 ≡ 0 (mod p).

Extracting those terms on both sides of (1.4) for which the powers of q are divisible
by p, yields (1.5).
(5) Let

(q; q)3
∞ =

∞∑
n=0

a(n)qn.

By Jacobi’s identity,

(q; q)3
∞ =

∞∑
k=0

(−1)k(2k + 1)qk(k+1)/2.

Extracting those terms on both sides for which the powers of q are of the form 3n + 1,
∞∑

n=0

a(3n + 1)q3n+1 = −3q
∞∑

k=0

(−1)k(2k + 1)q9k(k+1)/2 = −3q(q9; q9)3
∞.

From the above equation and (2.2),
∞∑

n=0

B3,5(3n + 1)qn ≡ −3(q; q)∞(q3; q3)3
∞

≡ −3
∞∑

i=−∞

∞∑
j=0

(−1)i+ j(2 j + 1)qi(3i+1)/2+3 j( j+1)/2 (mod 5),

and hence
∞∑

n=0

B3,5(3n + 1)q24n+10 ≡ −3
∞∑

i=−∞

∞∑
j=0

(−1)i+ j(2 j + 1)q(6i+1)2+9(2 j+1)2
(mod 5). (2.4)

Since p ≡ 3 (mod 4), (−9/p) = −1 and thus

(6i + 1)2 + 9(2 j + 1)2 ≡ 0 (mod p)⇔ 6i + 1 ≡ 2 j + 1 ≡ 0 (mod p).

Extracting those terms on both sides of (2.4) for which the powers of q are divisible
by p, we obtain (1.6).
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(6) By the binomial theorem,
∞∑

n=0

B5,m(n)qn =
(q5; q5)∞(qm; qm)∞

(q; q)2
∞

≡ (q; q)3
∞(qm; qm)∞

≡

∞∑
i=0

(−1)i(2i + 1)qi(i+1)/2
∞∑

j=−∞

(−1) jqm j(3 j+1)/2 (mod 5), (2.5)

from which (1.7) follows.
(7) Since (−3m/p) = −1,

3(2i + 1)2 + m(6 j + 1)2 ≡ 0 (mod p)⇔ 2i + 1 ≡ 6 j + 1 (mod p).

Extracting those terms on both sides of (1.7) for which the powers of q are divisible
by p, we obtain (1.8). �

Proof of Theorem 1.2. If 24n + 1 is a quadratic nonresidue modulo m, then there are
no integers i, j such that

24n + m + 1 = (6i + 1)2 + m(6 j + 1)2.

Hence by (1.2) we see that B3,m(n) ≡ 0 (mod 9). This proves Theorem 1.2(1). A similar
argument involving (1.7) yields Theorem 1.2(5).

It follows from Theorem 1.1(2) that if 24pn + 24n0 + m + 1 . 0 (mod p2), that is,
if 24n + (24n0 + m + 1)/p . 0 (mod p), then B3,m(pn + n0) ≡ 0 (mod 9). This proves
Theorem 1.2(2). Similar arguments involving parts (4), (5) and (7) of Theorem 1.1
yield parts (3), (4) and (6) of Theorem 1.2. �

Proof of Theorem 1.3(1). Observe that for any integer j, the residue of j( j + 1)/2
modulo three is zero or one. Thus from (2.3) we deduce theorem 1.3.

To prove (1.10), we set m = 11 in (1.7). Since (−3
5 ) = −1,

3(2i + 1)2 + 11(6 j + 1)2 ≡ 0 (mod 5) ⇔ 2i + 1 ≡ 6 j + 1 ≡ 0 (mod 5).

From (1.7) we conclude that B5,11(5n + 4) ≡ 0 (mod 5).
Set m = 5 in Theorem 1.2(1). If n ≡ 3 or 4 (mod 5), then 24n + 1 ≡ 2 or 3 (mod 5),

which are quadratic nonresidues modulo five. This proves (1.11).
Note that (−5

11 ) = −1. Let p = 11 and m = 5 in Theorem 1.2(2). We choose
n0 = 8 so that 24n0 + m + 1 ≡ 0 (mod 11). Then, for any 0 ≤ r ≤ 10 and r , 2,
24(11n + r) + 18 . 0 (mod 11). From Theorem 1.2(2) we deduce (1.12).

Similarly, setting m = 7 in Theorem 1.2(1), (p,m, n0) = (5, 7, 3) in Theorem 1.2(2),
(p, n0) = (7, 6) in Theorem 1.2(4) and m = 7 in Theorem 1.2(5), we get (1.13), (1.14),
(1.15) and (1.16), respectively. �

Remark 2.2. By making different choices of p, m and n0 in Theorem 1.2, we can
obtain other analogous sets of congruences.
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3. Proof of Theorem 1.3(2)

Lemma 3.1. Define c(n) by

(q; q)∞(q7; q7)∞ :=
∞∑

n=0

c(n)qn.

Then, for all n ≥ 0,

c(4n + 1) = −c(n) and c(4n + 3) = 0.

Proof. Throughout the proof, we shall use the notation

[z; q]∞ = (z; q)∞(q/z; q)∞ and [z1, z2, . . . , zn; q]∞ = [z1; q]∞[z2; q]∞ · · · [zn; q]∞.

We will employ the addition formula (see [9, Exercise 2.16, page 61])

[xλ, x/λ, µv, µ/v; q]∞ = [xv, x/v, λµ, µ/λ; q]∞ +
µ

λ
[xµ, x/µ, λv, λ/v; q]∞. (3.1)

Note that

(q; q)∞(q7; q7)∞ = (q2; q2)∞(q14; q14)∞[q, q3, q5, q7; q14]∞.

Setting (x, λ, µ, v, q)→ (−q4, q3, q4,−q, q14) in (3.1),

[q, q3, q5, q7; q14]∞ − [−q,−q3,−q5,−q7; q14]∞ = −q[−q8,−1,−q4,−q2; q14]∞.

This implies that
∞∑

n=0

c(2n + 1)qn = −
1
2

(q; q)∞(q7; q7)∞[−q4,−1,−q2,−q; q7]∞

= −(q; q)∞(q7; q7)∞(−q; q)∞(−q7; q7)∞ = −(q2; q2)∞(q14; q14)∞.

It follows that c(4n + 3) = 0 and
∞∑

n=0

c(4n + 1)qn = −(q; q)∞(q7; q7)∞,

which yields c(4n + 1) = −c(n). �

Proof of Theorem 1.3(2). By the binomial theorem,
∞∑

n=0

B3,7(n)qn ≡ (q; q)∞(q7; q7)∞ (mod 3).

Thus B3,7(n) ≡ c(n) (mod 3). By Lemma 3.1, we deduce (1.17) and

B3,7(4n + 3) ≡ 0 (mod 3). (3.2)

Then (1.18) follows from (1.17), (3.2) and induction on α. �
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4. Modular proof of Theorem 1.3(3)

For a positive integer M, let R(M) be the set of integer sequences r = (rδ)δ|M indexed
by the positive divisors of M. If r ∈ R(M) and 1 = δ1 < · · · < δk = M are the positive
divisors of M, we write r = (rδ) = (rδ1 , . . . , rδk ). Define cr(n) by∏

δ|M

(qδ; qδ)rδ
∞ :=

∞∑
n=0

cr(n)qn.

In this section, we recall the approach to proving congruences for cr(n) developed by
Radu [19, 20]. Compared with the classical method which uses Sturm’s bound alone,
this approach reduces the number of coefficients that one must check.

Let N be a positive integer and define

Γ :=
{(

a b
c d

) ∣∣∣∣∣ a, b, c, d ∈ Z, ad − bc = 1
}
,

Γ0(N) :=
{(

a b
c d

)
∈ Γ

∣∣∣∣∣ c ≡ 0 (mod N)
}

and Γ∞ :=
{(

1 h
0 1

)
∈ Γ

∣∣∣∣∣ h ∈ Z
}
.

The index of Γ0(N) in Γ is

[Γ : Γ0(N)] = N
∏
p|N

(1 + p−1).

Let m be a positive integer. For any integer s, let [s]m denote the residue class of s in
Z/mZ. Thus [x]m = [y]m if and only if x ≡ y (mod m). Let Z∗m be the set of all invertible
elements in Zm. Let Sm ⊆ Zm be the set of all squares in Z∗m. For t ∈ {0, 1, . . . ,m − 1}
and r ∈ R(M), we define a subset Pm,r(t) ⊆ {0, 1, . . . ,m − 1} by

Pm,r(t) :=
{
t′ | ∃[s]24m ∈ S24m such that t′ ≡ ts +

s − 1
24

∑
δ|M

δrδ (mod m)
}
.

Definition 4.1. Suppose m, M and N are positive integers, r = (rδ) ∈ R(M) and
t ∈ {0, 1, . . . ,m − 1}. Let κ = κ(m) := gcd(m2 − 1, 24) and write∏

δ|M

δ|rδ | = 2s · j,

where s and j are nonnegative integers with j odd. The set ∆∗ consists of all tuples
(m,M,N, (rδ), t) satisfying these conditions and all of the following.

(1) Each prime divisor of m is also a divisor of N.
(2) δ|M implies δ|mN for every δ ≥ 1 such that rδ , 0.
(3) κN

∑
δ|M rδ mN/δ ≡ 0 (mod 24).

(4) κN
∑
δ|M rδ ≡ 0 (mod 8).

(5) 24m/gcd(κ(−24t −
∑
δ|M δrδ), 24m)|N.

(6) If 2|m, then either 4|κN and 8|Ns or 2|s and 8|N(1 − j).
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Let m,M,N be positive integers. For γ =
(a b

c d
)
∈ Γ, r ∈ R(M) and r′ ∈ R(N), set

pm,r(γ) := min
λ∈{0,...,m−1}

1
24

∑
δ|M

rδ
gcd2(δ(a + κλc),mc)

δm

and

p∗r′(γ) :=
1
24

∑
δ|N

r′δ
gcd2(δ, c)

δ
.

Lemma 4.2 [19, Lemma 4.5]. Let u be a positive integer, (m, M, N, t, r = (rδ)) ∈ ∆∗

and a = (aδ) ∈ R(N). Let {γ1, . . . , γn} ⊆ Γ be a complete set of representatives of the
double cosets of Γ0(N)\Γ/Γ∞. Assume that pm,r(γi) + p∗r′(γi) ≥ 0 for all 1 ≤ i ≤ n. Let
tmin = mint′∈Pm,r(t) t′ and

ν :=
1

24

((∑
δ|M

rδ +
∑
δ|N

r′δ
)
[Γ : Γ0(N)] −

∑
δ|N

δr′δ
)
−

1
24m

∑
δ|M

δrδ −
tmin

m
.

If the congruence cr(mn + t′) ≡ 0 (mod u) holds for all t′ ∈ Pm,r(t) and 0 ≤ n ≤ bνc,
then it holds for all t′ ∈ Pm,r(t) and n ≥ 0.

To apply this lemma, we need to find a complete set of representatives of the double
coset in Γ0(N)\Γ/Γ∞.

Lemma 4.3. If N or 1
2 N is a square-free integer, then⋃

δ|N

Γ0(N)
(
1 0
δ 1

)
Γ∞ = Γ.

Proof. If 4 - N, then N is a square-free integer and the assertion follows from [20,
Lemma 2.6].

Suppose 4|N, say, N = 4N0. Then 1
2 N is square-free, so N0 is an odd square-free

integer. Let
(a b

c d
)
∈ Γ. From the proof of [20, Lemma 2.6], it suffices to show that

ch ≡ d −
c

gcd(c,N)
(mod N/gcd(c,N)) (4.1)

has a solution h ∈ Z. If c is odd, then clearly gcd(c, N/gcd(c, N)) = 1 and therefore
(4.1) has an integer solution. Now suppose that c is even and write c = 2c0. If c0 is
even, then N/gcd(c, N) is odd and thus gcd(c, N/gcd(c, N)) = 1, which implies that
(4.1) has an integer solution. Finally, if c0 is odd, then, since ad − bc = 1, we see that
d must be odd. Thus (4.1) is equivalent to

c0h ≡ 1
2 (d − c0/gcd(c0,N)) (mod N0/gcd(c0,N0)).

Since gcd(c0,N0/gcd(c0,N0)) = 1, the above equation has integer solutions. �
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Table 1. Parameters used in the proof of Theorem 1.3.

Equation Gen Fn m M t u bνc N (r′δ) ∈ R(N)
(1.20) 1−23171 14 21 4 2 247 42 (0, 0, 64, 0, 0, 0, 0, 0)
(1.21) 1−23171 16 21 1 2 582 84 (0, 0, 74, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(1.22) 1−23171 32 21 21 2 568 42 (0, 0, 147, 0, 0, 0, 0, 0)
(1.23) 1−25171 7 35 6 7 22 35 (12, 0, 0, 0)
(1.24) 147517−6 49 35 20 49 73 35 (0, 0, 0, 0)

Proof of Theorem 1.3(3). By the binomial theorem,
∞∑

n=0

B3,5(n)qn ≡
(q3; q3)∞(q5; q5)∞

(q; q)2
∞

·
(q; q)25

∞

(q5; q5)5
∞

≡
(q3; q3)∞(q; q)23

∞

(q5; q5)4
∞

(mod 25).

Let
(q3; q3)∞(q; q)23

∞

(q5; q5)4
∞

=

∞∑
n=0

b(n)qn.

We choose

(m,M,N, r = (rδ), t) = (27, 15, 15, r = (23, 1,−4, 0), 11).

It is easy to verify that (m,M,N, r, t) ∈ ∆∗ and we compute Pm,r(t) = {11}.
From now on, we set γδ :=

( 1 0
δ 1

)
. By Lemma 4.3, {γδ|δ|N} forms a complete set of

double coset representatives of Γ0(N)\Γ/Γ∞. Let

r′ = (r′1, r
′
3, r
′
5, r
′
15) = (0, 0, 0, 0) ∈ R(N).

It is easy to verify that pm,r(γδ) + p∗r′(γδ) ≥ 0 for each δ|N. We also compute that
the upper bound in Lemma 4.2 is bνc = 5. Using Mathematica, we have verified
that b(27n + 11) ≡ 0 (mod 25) for n ≤ 5. Thus, by Lemma 4.2, we conclude that
b(27n + 11) ≡ 0 (mod 25) for any n ≥ 0. This completes the proof of (1.19).

Congruences (1.20)–(1.24) can be proved in a similar way and we summarise the
choices of variables in Table 1. Given a positive integer M, we are considering

∞∑
n=0

Bk,`(n)qn ≡
∏
δ|M

(qδ; qδ)rδ
∞ (mod u).

We abbreviate the generating function in the right hand side as
∏
δrδ . In Table 1, the

second column describes the generating function under consideration and the third,
fifth and sixth columns specify the integers m, t and u for which we wish to show that

Bk,`(mn + t′) ≡ 0 (mod u) ∀t′ ∈ Pm,r(t) and ∀n ≥ 0. �
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