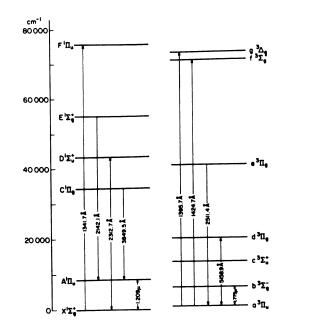
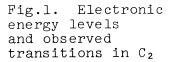
NRCC 18508

RECENT LABORATORY WORK ON MOLECULES OF POSSIBLE IMPORTANCE FOR INTERSTELLAR STUDIES

G. Herzberg National Research Council of Canada Ottawa, Ontario, KlA OR6 Canada


One of the aims of our work at the National Research Council (Ottawa) during the last thirty years has been to contribute laboratory data that are of possible astronomical interest especially for the study of the interstellar medium.


NEUTRAL MOLECULES

The detection of the first two interstellar molecules, CH and CN in the near ultraviolet region, needed no special laboratory work since all the information for this identification had been assembled a long time before. As is well known, the radio-frequency detection of CH presented considerable difficulty. Various attempts to determine the Λ -type doubling in the CH ground state, X ²II, from the optical spectrum were required (Douglas and Elliott (1965), Goss (1966), Baird and Bredohl (1971)) before this transition was observed by Rydbeck et al. (1974). Even now the radio lines of CH have not been observed in the laboratory.

A considerable amount of work has been done at NRC on the spectra of H_2 , HD and D_2 . The earlier work on these molecules, with the exception of that of Wilkinson (1968), was marred by the lack of good standards. This was not a difficulty for the new laboratory measurements of HD (Dabrowski and Herzberg (1976)) and as a result the agreement between the Copernicus observations and the laboratory spectra is now excellent.

For the detection of diatomic carbon, that is, the C_2 molecule, it was first necessary to establish the nature of the ground state of this molecule. This was done in the laboratory work of Ballik and Ramsay (1963) who established that the ground state is ${}^{1}\Sigma_{g}^{+}$. In Figure 1 the known

electronic states of C_2 are presented. It was only last year that the transition from the ground state to the lowest excited state (the Phillips bands) was observed in interstellar absorption by Chaffee and Lutz (1978). At the same time Snow (1978) observed in the ultraviolet the Mulliken bands in absorption.

It is surprising that the OH molecule, which was the first molecule identified by radio-astronomy in interstellar space, was only quite recently observed optically, first in the vacuum ultraviolet by Snow (1976) using the 1222 Å band found in the laboratory somewhat earlier by Douglas (1974) and still more recently in the ordinary ultraviolet near 3080 Å by Crutcher and Watson (1976).

In the 1950's the optical spectra of HCO and HNO were discovered at NRC (Herzberg and Ramsay 1955, Dalby 1958). Subsequently microwave spectra were observed in the laboratory by Saito (1972) and Saito and Takagi (1973) and on that basis these two radicals were detected in the interstellar medium by Snyder et al. (1976) and Ulich et al. (1977). It is somewhat surprising to find HCO present in spite of the fact that its dissociation energy is rather small, of the order of 1 eV. It is of interest to mention that HCO in the visible region (near 5400, 5900 and 6460 Å) has diffuse absorption bands (in addition to sharp ones).

232

MOLECULES OF POSSIBLE IMPORTANCE FOR INTERSTELLAR STUDIES

The R(0) lines of these bands should be observable in the interstellar medium if sufficient concentrations of HCO are present. However they do not agree with the known diffuse interstellar absorption features.

The spectrum of the NH₂ radical in the optical region was discovered in 1952 (Herzberg and Ramsay) and was analysed by Dressler and Ramsay in 1959. The laboratory work on this spectrum is continuing (Johns, Ramsay and Ross 1976). While some microwave lines have been found in the laboratory by microwave optical double resonance and laser magnetic resonance no features have yet been identified in the interstellar medium. The optical spectrum of NH₂ is, however, a prominent feature in the spectra of the heads of comets.

The CH₂ radical has been found by laboratory experiments to have a triplet ground state $({}^{3}B_{1})$ and a number of lowlying singlet states (Herzberg 1961, Herzberg and Johns 1971). The optical absorption spectrum lies in the vacuum ultraviolet near 1415 Å. In CH₂, unlike CD₂, the individual rotational lines of the absorption band are fairly diffuse. The R(0) and P(1) lines lie at 1415.50 and 1416.05 Å. It is perhaps significant that Snow, York and Resnick (1977) report in a number of stars as the only diffuse feature in the vacuum ultraviolet one somewhat questionable line at 1416 Å.

The CH₃ radical (Herzberg 1961) has diffuse absorption bands with peaks at 2157.6, 2163.6, 1502.4 and 1496.89 Å. It seems likely that they will eventually be found in interstellar absorption.

Recently we have found (Herzberg 1979) in hollow cathode discharges in hydrogen a number of emission bands which have been definitely assigned as belonging to the Rydberg spectrum of triatomic hydrogen (H₃ and D₃). All rotational lines are diffuse, for H₃ much more so than for D₃. The observed intensity alternation confirms the D_{3h} symmetry of this molecule, i.e. that the nuclei form an equilateral triangle with a H-H distance of 0.87 A as in H₃⁺. The new spectra are emitted in the process of dissociative recombination of H₃⁺ and D₃⁺. This process has been assumed to be the cause of the eventual destruction of H₃⁺ in the interstellar medium. It seems possible therefore that the H₃ spectrum will be observable in astronomical spectra.

MOLECULAR IONS

Recently Alberti and Douglas (1975) have made new measurements of the NO⁺ spectrum, first discovered by Baer and Miescher (1953), with the principal aim of having accurate predictions for possible identification of interstellar lines of this ion. Table I summarizes their

Transition	R(0)
${}^{1}\Pi(v=0) - {}^{1}\Sigma(v=0)$ ${}^{1}\Pi(v=1) - {}^{1}\Sigma(v=0)$ ${}^{1}\Pi(v=2) - {}^{1}\Sigma(v=0)$ ${}^{1}\Pi(v=3) - {}^{1}\Sigma(v=0)$ ${}^{1}\Pi(v=4) - {}^{1}\Sigma(v=0)$ ${}^{1}\Sigma(v=1) - {}^{1}\Sigma(v=0)$ ${}^{1}\Sigma(J=1-J=0)$	1368.2404 1339.6361 1312.9400 1288.0254 1264.7900 2347.74 (cm ⁻¹) 119187±30 MHz

Table I. NO⁺ lines of astronomical interest

results. Colbourn and Douglas (1977) made new measurements of N_2^+ and O_2^+ with the same aim. It would seem worthwhile to make an all-out attempt to observe the N_2^+ spectrum since the N_2^+ lines have a high f value and are very conveniently located in the spectrum (3914 Å).

Ms. Dabrowski and I (1977) have used the theoretical potential function of HeH⁺ derived by Wolniewicz (1965) and Kolos and Peek (1976) in order to predict the infrared spectrum of this ion. We have also calculated the quasibound levels of this ion which lie above the dissociation limit at 1.845 eV. The inverse predissociation via these quasibound levels may lead to a recombination spectrum that has also been predicted. Attempts in this laboratory to observe the infrared spectrum of HeH⁺ have so far been unsuccessful.

Discharges through He-Ne mixtures yield two features near 4200 Å and similar spectra occur near 1400 Å in Ar-He mixtures. Tanaka, Yoshino and Freeman (1975) first correctly recognized the nature of the transitions responsible for these spectra. They are charge transfer spectra in which the molecule goes from a state that is essentially He⁺ + Ne to a lower state that is essentially He + Ne⁺ and similarly for HeAr⁺. Figure 2 gives a potential energy diagram for HeNe⁺ based on a fairly complete analysis of the spectrum near 4200 Å (Dabrowski and Herzberg 1978). The ground state of HeNe⁺ has a fairly large dissociation energy (0.6 eV). On account of the

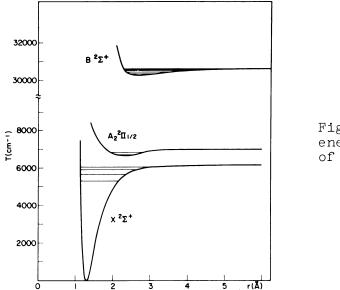


Fig.2. Potential energy functions of HeNe⁺

Franck-Condon principle we were unable to observe the lowest vibrational levels of the ground state but were able to establish the vibrational numbering on the basis of isotope shifts in ³HeNe⁺. In the interstellar medium it seems likely that HeNe⁺ if once formed will reach by infrared transition the lowest level of the ground state. A microwave line at 173550 MHz and an infrared line at 1280 cm⁻¹ are predicted.

As is well known, the ions HCO^+ and $N_2\text{H}^+$ were first observed by radio-astronomical methods before they were observed in the laboratory by Woods et al. (1975) and Saykally et al. (1976) in absorption in electric discharges through suitable gas mixtures. We have attempted, so far unsuccessfully, to observe the ultraviolet spectra of these ions. It seems possible that some of the unidentified interstellar lines in the vacuum ultraviolet might be due to the electronic transition of these molecular ions.

An electronic transition of H_2O^+ , very similar to that of NH₂, was first observed by H. Lew (1973, 1976) in emission of hot cathode discharges. In the upper state the ion is essentially linear while in the lower state it is strongly bent with an angle of about 110°. The molecular constants of H_2O^+ may be found in Dr. Lew's paper. In Table II some of the predicted interstellar lines are listed. None have yet been found.

6146.802

6147.375

5481.217

4917.854

4469.358

5478.548

4922.382

a) in the microwave region b) in the visible region $\lambda_{lab}(Å)$ Rotational Spin Frequency Transition (GHz) transition component 6973.720 144.44±0.39 220-313 (0,6,0)-(0,0,0)F1 F2 187.19±0.42 6970.152

(0, 8, 0) - (0, 0, 0)

(0,10,0)-(0,0,0)

(0,12,0)-(0,0,0)

(0,14,0)-(0,0,0)

Table II. Pred	cted interst	tellar lines	of	H20'
----------------	--------------	--------------	----	------

652-743	F1 F2	64.07±1.6 105.63±1.6	(0,14,0)-(0,0,0)	4469.350			
From seen tha	the j.t. the	photoelectron s re is an excite	spectrum of NH3 it is ed state of NH3 + at 4.	readily .77 eV			
above th	eX²,	A ₂ " ground stat	e (assuming D _{3h} symme	etry).			
Therefor	e an e	emission spectr	um near 2300Å may be	expected.			
Since the excited state is in all probability a $^{2}E'$ state the transition between it and the ground state is							
the tran	sitio	n between it an	id the ground state is	5			
			lowever, vibronic inte				
			ional transitions in				
			ion allowed provided				
			state a degenerate v				
			bombardment excitatio				
			number of weak but dis				
			region. One simple b				
			rently alternate line				
			it would prove that t				
a sub-ba	nd of	$a \perp band in a$	planar molecule with	D _{3h}			

The ion-molecule reaction

symmetry as expected for NH₃⁺.

 $H_2^+ + H_2 \rightarrow H_3^+ + H + 1.75 \text{ eV}$

is one of the fastest known reactions. As a result one finds that in every discharge through H_2 the H_3^+ ion is the most abundant ion (except at very low pressure). It is believed that also in the interstellar medium H_3^+ is a fairly abundant ion. It seems to play an important role in the processes that lead to molecule formation (see Herbst and Klemperer 1973, Watson 1973, Suzuki 1979).

414-321

330-423

422-321

633-542

F,

 F_1

F₁

F,

 F_1

F2

Fi Fz 134.88±0.40

103.87±0.39

 218.61 ± 0.48

 266.56 ± 0.50

 34.27 ± 0.54

 -13.37 ± 0.54

 278.89 ± 0.72

 234.41 ± 0.72

MOLECULES OF POSSIBLE IMPORTANCE FOR INTERSTELLAR STUDIES

In order to detect H_3^+ spectroscopically one is dependent on its infrared bands since according to theoretical calculations all excited electronic states seem to be unstable. Up to now the infrared spectrum has not been observed in the laboratory. However, H. Lew, J. Sloan and I at Ottawa have made a number of attempts to observe this spectrum in emission from a hollow cathode discharge cooled to liquid nitrogen temperature. Using a Fourier transform spectrometer we have observed a number of infrared lines in the region between 5000 and 2000 cm^{-1} . Several of these lines are known to be due to H_2 (transitions between various excited electronic states) but a good number of the lines are unidentified. In order to ascertain whether some of these unidentified lines are due to H_3^+ one must either have reliable predictions or differentiate by discharge conditions or by electromagnetic deflection. We find that some of the unidentified lines are much weaker in the anode glow than in the cathode glow. Three years ago Carney and Porter (1976) made some predictions about the theoretically expected infrared spectrum. We find that the strongest predicted lines agree with those observed infrared lines that show considerable difference between the cathode and anode glow. It would be hasty to consider this as proof of the observation of the spectrum of ${\rm H_3}^+$ since there are quite a number of H₂ lines also. We either have to observe complete bands allowing the use of the method of combination differences for identification or we have to look at an electronically deflected beam of H_3^+ ions. Such experiments are now in preparation.

References

Alberti, F. and Douglas, A.E.: 1975, Can. J. Phys. <u>53</u>, 1179. Baer, P. and Miescher, E.: 1953, Helv. Phys. Acta <u>26</u>, 91. Baird, K.M. and Bredohl, H.: 1971, Astrophys. J. 169, L83. Ballik, E.A. and Ramsay, D.A.: 1963, Astrophys. J. 137, 61. Carney, G.D. and Porter, R.N.: 1976, J. Chem. Phys. 65, 3547. Chaffee, F.H. Jr. and Lutz, B.L.: 1978, Astrophys. J. 221, L91. Colbourn, E.A. and Douglas, A.E.: 1977, J. Mol. Spectrosc. <u>65</u>, 332. Crutcher, R.M. and Watson, W.D.: 1976, Astrophys. J. 203, L123. Dabrowski, I. and Herzberg, G.: 1976, Can. J. Phys. 54, 525. Dabrowski, I. and Herzberg, G.: 1977, Trans. N.Y. Acad. Sci. 38, II, 14. Dabrowski, I. and Herzberg. G.: 1978, J. Mol. Spectrosc. 73, 183. Dalby, F.W.: 1958, Can. J. Phys. 36, 1336.

Douglas, A.E.: 1974, Can. J. Phys. <u>52</u>, 318. Douglas, A.E. and Elliott, G.A.: 1965, Can. J. Phys. <u>43</u>, 496. Dressler, K. and Ramsay, D.A.: 1959, Phil. Trans. <u>251</u>A, 553. Goss, W.M.: 1966, Astrophys. J. 145, 707. Herbst, E. and Klemperer, W.: 1973, Astrophys. J. <u>185</u>, 505. Herzberg, G.: 1961, Proc. Roy. Soc. <u>262</u>A, 291. Herzberg, G.: 1979, J. Chem. Phys. <u>70</u>, 4806. Herzberg, G. and Johns, J.W.C.: 1971, J. Chem. Phys. <u>54</u>, 2276. Herzberg, G. and Ramsay, D.A.: 1952, J. Chem. Phys. 20, 347. Herzberg, G. and Ramsay, D.A.: 1955, Proc. Roy. Soc. 233A, 34. Johns, J.W.C., Ramsay, D.A. and Ross, S.C.: 1976, Can. J. Phys. <u>54</u>, 1804. Kolos, W. and Peek, J.M.: 1976, Chem. Phys. 12, 381. Lew, H.: 1976, Can. J. Phys. <u>54</u>, 2028. Lew, H. and Heiber, I.: 1973, J. Chem. Phys. <u>58</u>, 1246. Rydbeck, O.E.H., Ellder, J., Irvine, W.M., Sume, A. and Hjalmarson, A.: 1974, Astron. Astrophys. <u>33</u>, 315, <u>34</u>, 479. Saito, S.: 1972, Astrophys. J. <u>178</u>, L95. Saito, S. and Takagi, K.: 1973, J. Mol. Spectrosc. <u>47</u>, 99. Saykally, R.J., Dixon, T.A., Anderson, T.G., Szanto, P.G. and Woods, R.C.: 1976, Astrophys. J. 205, L101. Snow, T.P. Jr.: 1976, Astrophys. J. 204, L127. Snow, T.P. Jr.: 1978, Astrophys. J. 220, L93. Snow, T.P. Jr., York, D.G. and Resnick, M.: 1977, Publ. Astron. Soc. Pacific 89, 758. Snyder, L.E., Hollis, J.M. Lovas, F.J. and Ulich, B.L.: 1976, Astrophys. J. 209, 67. Suzuki, H.: 1979, Prog. Theor. Phys. <u>62</u>, October. Tanaka, Y., Yoshino, K. and Freeman, D.E.: 1975, J. Chem. Phys. 62, 4484. Ulich, B.L., Hollis, J.M., Snyder, L.E.: 1977, Astrophys. J. 217, L105. Watson, W.D.: 1973, Astrophys. J. 183, L17, 188, 35. Wilkinson, P.G.: 1968, Can. J. Phys. 46, 1225. Wolniewicz, L.: 1965, J. Chem. Phys. 43, 1087. Woods, R.C., Dixon, T.A., Saykally, R.J. and Szanto, P.G.: 1975, Phys. Rev. Letters 35, 1269.

DISCUSSION FOLLOWING HERZBERG

<u>Hollenbach</u>: Although grain composition may vary from place to place, I would think the correlation of diffuse bands with A_v more likely if the bands were caused by grains; molecular abundances generally are very sensitive to parameters such as gas density and radiation fields along the line of sight.

Herzberg: The references I have quoted, and several others, suggest considerable difficulty for that explanation.

<u>Geballe</u>: What type of H_2 lines might be contaminating the infrared spectrum of H_3^+ ?

<u>Herzberg</u>: The H_2 lines in question represent transitions between several excited states of H_2 , for example E-B.