A FORMULA OF BATEMAN

by L. CARLITZ
(Received 31st May, 1956)

1. The formula

$$
\sum_{k=0}^{\infty}\left((x y)^{\dagger} e^{i \phi}\right)^{k-n} \frac{n!}{k!} L_{n}^{(k-n)}(x) L_{n}^{(k-n)}(y)=\exp \left((x y)^{\sharp} e^{i \phi}\right) L_{n}\left\{x+y-2(x y)^{\dagger} \cos \phi\right\}
$$

was stated by Bateman ([2], p. 457) ; a proof is sketched in [3], p. 144. Here

$$
\begin{equation*}
L_{n}^{(\alpha)}(x)=\sum_{r=0}^{n}\binom{n+\alpha}{r} \frac{(-x)^{n-r}}{(n-r)!} \tag{l-2}
\end{equation*}
$$

the Laguerre polynomial of degree n, and $L_{n}(x)=L_{n}^{(0)}(x)$.
We should like to point out that ($1 \cdot 1$) can be proved very rapidly by making use of the following formula due to Bailey ([1], p. 219) :

$$
L_{n}^{(\alpha)}(x) L_{n}^{(\alpha)}(y)=\frac{\Gamma(1+\alpha+n)}{n!} \sum_{r=0}^{n} \frac{(x y)^{n-r} L_{r}^{(\alpha+2 n-2 r)}(x+y)}{(n-r)!\Gamma(1+\alpha+n-r)}
$$

as well as the simpler formulas ($[3], \mathrm{p}$ 1f:)

$$
\begin{align*}
L_{n}^{(\alpha)}(x-y) & =\sum_{r=0}^{n} \frac{y^{r}}{r!} L_{n-r}^{(\alpha+\gamma)}(x), \\
L_{n}^{(\alpha)}(x-y) & =e^{-y} \sum_{r=0}^{\infty} \frac{y^{r}}{r!} L_{n}^{(\alpha+r)}(x), \tag{1-5}
\end{align*}
$$

which are easy consequences of the definition of $L_{n}^{(\alpha)}(x)$.
Using first ($1 \cdot 3$) and then (1.5) and (1.4) we have

$$
\begin{align*}
& n!\sum_{k=0}^{\infty} \frac{z^{k}}{k!} L_{n}^{(k-n)}(x) L_{n}^{(k-n)}(y)=\sum_{k=0}^{\infty} z^{k} \sum_{\substack{r=0 \\
r \leqslant k}}^{n} \frac{(x y)^{n-r} L_{r}^{(k+n-2 r)}(x+y)}{(n-r)!(k-r)!} \\
& =\sum_{r=0}^{n} \frac{(x y)^{n-r} z^{r}}{(n-r)!} \sum_{k=r}^{\infty} \frac{z^{k-r}}{(k-r)!} L_{r}^{(k+n-2 r)}(x+y)=\sum_{r=0}^{n} \frac{(x y)^{n-\tau} z^{r}}{(n-r)!} \sum_{k=0}^{\infty} \frac{z^{k}}{k!} L_{r}^{(k+n-r)}(x+y) \\
& =\sum_{r=0}^{n} \frac{(x y)^{n-r} z^{r}}{(n-r)!} e^{z} L_{r}^{(n-r)}(x+y-z)=z^{n} e^{z} L_{n}\left(x+y-z-\frac{x y}{z}\right) . \ldots \tag{l-6}
\end{align*}
$$

Thus for $z=(x y) t t$ this becomes

$$
\sum_{k=0}^{\infty}\left((x y)^{t t}\right)^{k-n} \frac{n!}{k!} L_{n}^{(k-n)}(x) L_{n}^{(k-n)}(y)=\exp \left((x y)^{t} t\right) L_{n}\left\{x+y-(x y)^{\frac{t}{t}}\left(t+\frac{1}{t}\right)\right\}
$$

For $t=e^{i \phi},(1 \cdot 7)$ is identical with ($1 \cdot 1$).
2. The identity $(1 \cdot 6)$ evidently implies that

$$
\begin{aligned}
z^{n} L_{n}\left(x+y-z-\frac{x y}{z}\right) & =n!e^{-z} \sum_{k=0}^{\infty} \frac{z^{k}}{k!} L_{n}^{(k-n)}(x) L_{n}^{(k-n)}(y) \\
& =n!\sum_{k=0}^{\infty} \frac{z^{k}}{k!} \sum_{r=0}^{k}(-1)^{k-r}\binom{k}{r} L_{n}^{(r-n)}(x) L_{n}^{(r-n)}(y)
\end{aligned}
$$

L. CARLITZ

Since by (1-2) $L_{n}^{(\alpha)}(x)$ is of degree n in α (as well as in x) it follows that

$$
\begin{equation*}
\Delta_{k}=\sum_{r=0}^{k}(-1)^{k-r}\binom{k}{r} L_{n}^{(r-n)}(x) L_{n}^{(r-n)}(y)=0 \tag{2.1}
\end{equation*}
$$

for $k>2 n$. Consequently we get the following polynomial identity equivalent to (1-6):

$$
z^{n} L_{n}\left(x+y-z-\frac{x y}{z}\right)=n!\sum_{k=0}^{2 n} \frac{z^{k}}{k!} \Delta_{k}
$$

with Δ_{k} defined by the first half of (2-1). We remark that

$$
\sum_{r=0}^{k}(-1)^{k-r}\binom{k}{r} L_{n}^{(\alpha+r)}(x)=L_{n-k}^{(\alpha+k)}(x) \quad(n \geqslant k)
$$

and in particular

$$
\begin{equation*}
\sum_{r=0}^{k}(-1)^{k-r}\binom{k}{r} L_{n}^{(r-n)}(x)=L_{n-k}^{(k-n)}(x)=\frac{(-x)^{n-k}}{(n-k)!} \quad(n \geqslant k) \tag{2•3}
\end{equation*}
$$

but there seems to be no equally simple formula for Δ_{k}. Using ($1 \cdot 2$) we get

$$
\begin{aligned}
\Delta_{k} & =\sum_{r=0}^{k}(-1)^{k-r}\binom{k}{r} \sum_{u=0}^{n}\binom{r}{u} \frac{(-x)^{n-u}}{(n-u)!} \sum_{v=0}^{n}\binom{r}{v} \frac{(-y)^{n-v}}{(n-v)!} \\
& =\sum_{u, v=0}^{n} \frac{(-x)^{n-u}(-y)^{n-v}}{(n-u)!(n-v)!} \sum_{r=0}^{k}(-1)^{k-r}\binom{k}{r}\binom{r}{u}\binom{r}{v}
\end{aligned}
$$

Using Vandermonde's theorem it is not difficult to show that

$$
\sum_{r=0}^{k}(-1)^{k-r}\binom{k}{r}\binom{r}{u}\binom{r}{v}=\frac{k!}{(k-u)!(k-v)!(u+v-k)!}
$$

for $k \leqslant u+v$; for $k>u+v$ or for u or $v>k$ the sum vanishes. Therefore

$$
\Delta_{k}=\sum_{\substack{u, v=0 \\ u+v \geqslant k}}^{\min (k, n)} \frac{k!}{(k-u)!(k-v)!(u+v-k)!} \frac{(-x)^{n-u}(-y)^{n-v}}{(n-u)!(n-v)!},
$$

which may be compared with (2.3).
If in (2.2) we replace z by $x y / z$ we get

$$
\left(\frac{x y}{z}\right)^{n} L_{n}\left(x+y-z-\frac{x y}{z}\right)=n!\sum_{k=0}^{2 n} \frac{(x y / z)^{k}}{k!} \Delta_{k} .
$$

It follows that

$$
\begin{equation*}
\frac{\Delta_{k}}{k!}=(x y)^{n-k} \frac{\Delta_{2 n-k}}{(2 n-k)!} \quad(0 \leqslant k \leqslant 2 n), \tag{2•6}
\end{equation*}
$$

so that (2.2) becomes

$$
\begin{equation*}
z^{n} L_{n}\left(x+y-z-\frac{x y}{z}\right)=n!\sum_{k=0}^{n-1}\left(z^{k}+(x y)^{k-n} z^{2 n-k}\right) \frac{\Delta_{k}}{k!}+z^{n} \Delta_{n} \tag{2.7}
\end{equation*}
$$

For $z=(x y)^{\frac{1}{2} t}$ we get the more symmetrical result

$$
\begin{equation*}
(x y)^{n / 2} L_{n}\left\{x+y-(x y)^{\sharp}\left(t+\frac{1}{t}\right)\right\}=n!\sum_{k=0}^{n-1}(x y)^{k / 2}\left(t^{k-n}+t^{n-k}\right) \frac{\Delta_{k}}{k!}+(x y)^{n / 2} \Delta_{n}, \tag{2•8}
\end{equation*}
$$

or, if we prefer,

$$
(x y)^{n / 2} L_{n}\left\{x+y-2(x y)^{\frac{1}{2}} \cos \phi\right\}=n!\sum_{k=0}^{n-1}(x y)^{k / 2} \frac{\Delta_{k}}{k!} 2 \cos (n-k) \phi+(x y)^{n / 2} \Delta_{n} .
$$

3. The formula (2.9) can be generalized in the following way. Differentiation with respect to ϕ yields

$$
-(x y)^{(n+1) / 2} L_{n}^{\prime}\left\{x+y-2(x y)^{\ddagger} \cos \phi\right\}=n!\sum_{k=0}^{n-1}(x y)^{k / 2}(n-k) \frac{\Delta_{k}}{k!} \frac{\sin (n-k) x}{\sin x}
$$

Now let $C_{n}^{(\lambda)}$ denote the ultraspherical polynomial defined by

$$
\left(1-2 x z+z^{2}\right)^{-\lambda}=\sum_{n=0}^{\infty} z^{n} C_{n}^{(\lambda)}(x),
$$

so that

$$
C_{n}^{(1)}(\cos \phi)=\frac{\sin (n+1) \phi}{\sin \phi}, \quad \frac{d}{d x} C_{n}^{(\lambda)}(x)=2 \lambda C_{n-1}^{(\lambda+1)}(x)
$$

We have also

$$
\frac{d}{d x} L_{n}^{(\alpha)}(x)=-L_{n+1}^{(\alpha+1)}(x) .
$$

Thus

$$
(x y)^{(n+1) / 2} L_{n-1}^{(1)}\left\{x+y-2(x y)^{\mathbf{t}} z\right\}=n!\sum_{k=0}^{n-1}(x y)^{k / 2}(n-k) \frac{\Delta_{k}}{k} C_{n-k-1}^{(1)}(z) .
$$

Repeated differentiation with respect to z now leads to

$$
(x y)^{(n+\lambda) / 2} L_{n-\lambda}^{(\lambda)}\left\{x+y-2(x y)^{1} z\right\}=n!(\lambda-1)!\sum_{k=0}^{n-\lambda}(x y)^{k / 2}(n-k) \frac{\Delta_{k}}{k!} C_{n-k-\lambda}^{(\lambda)}(z), .
$$

where λ is an arbitrary positive integer. If we replace n by $n+\lambda$, then, by ($2 \cdot 1$), Δ_{k} becomes

Since

$$
\begin{gather*}
\sum_{r=0}^{k}(-1)^{k-r}\binom{k}{r} L_{n+\lambda}^{(r-n-\lambda)}(x) L_{n+\lambda}^{(r-n-\lambda)}(y) . \tag{3•2}\\
L_{n}^{(-k)}(x)=(-x)^{k} \frac{(n-k)!}{n!} L_{n-k}^{(k)}(x) \quad(0 \leqslant k \leqslant n),
\end{gather*}
$$

(3.2) may be written

$$
\frac{(x y)^{n+\lambda}}{((n+\lambda)!)^{2}} \sum_{r=0}^{k}(-1)^{k-r}\binom{k}{r}(r!)^{2} L_{r}^{(n+\lambda-r)}(x) L_{r}^{(n+\lambda-r)}(y)
$$

We accordingly rewrite (3.1) as

$$
\begin{equation*}
\frac{\Gamma(n+\lambda+1)}{\Gamma(\lambda)} L_{n}^{(\lambda)}\{x+y-2(x y) \nmid z\}=\sum_{k=0}^{n}(x y)^{(n+k) / 2}(n+\lambda-k) \frac{\Delta_{k}^{(\lambda)}}{k!} C_{n-k}^{(\lambda)}(z) \tag{3•3}
\end{equation*}
$$

where

$$
\Delta_{k}^{(\lambda)}=\sum_{r=0}^{k}(-1)^{k-r}\binom{k}{r}(r!)^{2} L_{r}^{(n+\lambda-r)}(x) L_{r}^{(n+\lambda-r)}(y) .
$$

The formula (3.3) has been proved for λ a positive integer. However, since each side is a polynomial in λ, it follows that (3.3) holds for all λ.

REFERENCES

1. W. N. Bailey, On the product of two Legendre polynomials with different arguments, Proc. Lond. Math. Soc., 41 (1936), 215-220.
2. H. Bateman, Partial differential equations of mathematical physics, Cambridge, 1932.
3. H. Buchholz, Die konfluente hypergeometrische Funktion, Berlin-Göttingen-Heidelberg, 1953.

Doke University

