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JÖRG LEHNERT
Max Planck Institute for Mathematics in the Sciences,

Inselstraße 22, 04103 Leipzig, Germany
e-mail: lehnert@mis.mpg.de

NORBERT SEIFTER
Department Mathematik und Informationstechnologie,

Montanuniversität Leoben, Franz-Josef-Straße 18,
8700 Leoben, Austria

e-mail: seifter@unileoben.ac.at

and ELMAR TEUFL
Mathematisches Institut, Universität Tübingen,
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Abstract. We define a pseudometric on the set of all unbounded subsets of a
metric space. The Kolmogorov quotient of this pseudometric space is a complete
metric space. The definition of the pseudometric is guided by the principle that two
unbounded subsets have distance 0 whenever they stay sublinearly close. Based on this
pseudometric we introduce and study a general concept of boundaries of metric spaces.
Such a boundary is the closure of a subset in the Kolmogorov quotient determined by
an arbitrarily chosen family of unbounded subsets. Our interest lies in those boundaries
which we get by choosing unbounded cyclic sub(semi)groups of a finitely generated
group (or more general of a compactly generated, locally compact Hausdorff group).
We show that these boundaries are quasi-isometric invariants and determine them in
the case of nilpotent groups as a disjoint union of certain spheres (or projective spaces).
In addition we apply this concept to vertex-transitive graphs with polynomial growth
and to random walks on nilpotent groups.

2010 Mathematics Subject Classification. 20F65 (54E35, 20F18, 22E25, 05C63).

1. Introduction. There are numerous boundary notions of graphs, groups,
manifolds, metric spaces and other geometric objects. The literature on the subject is
extensive and boundary notions proved to be a useful tool in studying the underlying
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space. An early instance is the theory of ends which was developed in the first half
of the twentieth century by Freudenthal (see e.g. [10]) and others. Various geometric
ideas were used to refine the notion of ends:

In 1973 Eberlein and O’Neill [9] constructed the boundary at infinity of a
CAT(0) space by considering equivalence classes of non-compact geodesic rays. The
equivalence notion of geodesic rays uses the natural parametrisation, i.e. two geodesic
rays are equivalent if they stay at bounded distance as the parameter tends to ∞. A
different description is given by Gromov in [14] which uses an embedding into the set
of continuous functions relying on the metric only.

In graph theory in the 1990s Jung [21] and Jung, Niemayer [20] introduced a
refinement of ends of graphs called b-fibers and d-fibers, respectively. The basic idea
behind fibers is to consider points at infinity as equivalence classes of rays (infinite
paths) which stay at bounded distance “up to linear reparametrisation”. In 2005
Bonnington, Richter and Watkins [6] modified this concept by considering rays as
equivalent whenever they stay at sublinear distance “up to linear reparametrisation”.
They were able to use this concept to prove some nice results on infinite planar graphs,
but the boundary, whose elements have been called “bundles”, was not topologised
and not considered for groups or vertex-transitive graphs.

Another instance, where the concept of staying at sublinear distance is used, is
given by Kaimanovich in [22, Theorem 5.5]. The so-called “ray approximation” is used
to determine, whether a given probability space is the Poisson boundary of a random
walk on a countable group G defined by a probability measure μ on G. A proposal
space (B, λ) is the Poisson boundary of (G, μ), if compatibility conditions between μ

and λ hold and if there exist measureable “projections” πn : B → G, such that almost
every trajectory (g1, g2, . . . ) stays sublinear close to (π1(g∞), π2(g∞), . . . ), where g∞ is
the limit point of the trajectory (g1, g2, . . . ) in B.

In these examples the “parametrisation” of rays or sequences is used in the
definition of staying (sublinearly) close. In the following we relax this and work with
general subsets and not only with rays or sequences. Let (X, d) be a metric space, let
o ∈ X be a fixed reference point and denote by B(x, r) the closed ball in (X, d) with
centre x and radius r. If R, S are two unbounded subsets of X , their distance t(R, S) is
defined to be the square root of the infimum over all α ≥ 0, such that

S ⊆
⋃
x∈R

B(x, αd(o, x) + a) and R ⊆
⋃
y∈S

B(y, αd(o, y) + a)

for some a ≥ 0. The sets R, S are sublinearly close, if t(R, S) = 0. We show that the
set of all unbounded subsets of (X, d) equipped with the distance t is a pseudometric
space, whose Kolmogorov quotient is a complete metric space (Proposition 2.6 and
Theorem 2.9). Given some family E of unbounded subsets the associated “boundary”
of X is the closure of all equivalence classes which contain an element from E in the
Kolmogorov quotient. Interesting families of unbounded subsets include: geodesics,
horoballs, cyclic sub(semi)groups (in the case of groups), one-parameter sub(semi)-
groups (in the case of topological groups).

We mainly focus on the group case. Let G be a finitely generated (or more general
compactly generated, locally compact Hausdorff) group and let d be a word metric on
G. If the family E is given by all unbounded cyclic subsemigroups or by all unbounded
cyclic subgroups, we call the associated boundary linear boundary in the former
case and projective boundary in latter case. We prove that these two boundaries are
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quasi-isometric invariants (Lemma 5.3). In our main result (Theorem 6.1) we identify
the linear and projective boundary for nilpotent groups. Let G be either a connected,
nilpotent Lie group or a finitely generated, nilpotent group with descending central
series

G = γ1(G) ⊇ γ2(G) ⊇ · · · ⊇ γc(G) � γc+1(G) = 1.

Let ν(i) denote the compact-free dimension or the torsion-free rank of the commutative
group γi(G)/γi+1(G). Then the linear boundary is homeomorphic to the disjoint union
of c spheres

�ν(1)−1 	 �ν(2)−1 	 · · · 	 �ν(c)−1

and the projective boundary is homeomorphic to the disjoint union of projective spaces

�ν(1)−1 	 �ν(2)−1 	 · · · 	 �ν(c)−1.

Here �d is the d-dimensional sphere and �d is the d-dimensional projective space.
The following facts about the boundary notion introduced above must be stressed:

Compact elements of a group G do not contribute to the boundaries PG and LG.
Hence, whenever G only contains compact elements, these boundaries are empty. In
particular, this means in the discrete case, thatPG andLG are empty for torsion groups.
We also emphasise that we compare unbounded sets using the distance function t and
not sequences or rays using their parametrisations, as it is e.g. done in [6]. For instance,
two sequences or rays might be distant in the sense of [6] using parametrisations an = n
and bn = √

n, respectively, although the underlying unbounded sets are the same hence
sublinearly close.

The paper is organised as follows:
� The general framework for metric spaces is studied in Section 2. The distance t and

some auxiliary quantities are introduced and several basic results are proved. For
instance we show that the distance t has all properties stated above.

� In Section 3 we investigate the relationship to quasi-isometries. It is shown that the
distance t is preserved up to bi-Lipschitz-equivalence under quasi-isometries of the
underlying space (Theorem 3.3).

� In Section 4 we show that the boundary at infinity of a complete CAT(0) space
equipped with the angular metric can be obtained by the boundary construction
outlined above using the set of unbounded geodesics up to bi-Hölder equivalence.

� In Section 5 we apply this concept to groups using unbounded cyclic sub(semi)-
groups as families of unbounded subsets. Some general results are obtained and the
case of abelian groups is discussed in detail. In the latter case the projective boundary
is homeomorphic to a projective space and the linear boundary is homeomorphic
to a sphere.

� Section 6 is devoted to the formulation and proof of the main result (Theorem 6.1).
Most technical parts of the proof are deferred to Appendix B.

� Section 7 discusses the situation for graphs. The projective boundary of a graph is
defined by the above procedure, using the family of unbounded orbits generated by
cyclic subgroups of the automorphism group and the linear boundary is defined
analogously. For connected, vertex-transitive graphs with polynomial volume
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growth we obtain the same description of the projective (respectively linear)
boundary as in the case of nilpotent groups (Corollary 7.12).

� In Section 8 we construct a topology on the disjoint union of the base space X
and some boundary which is obtained by the construction above. The definition
is reminiscent of the cone topology of the boundary at infinity of CAT(0) spaces.
The subspace topology on X of this topology is always induced by the metric d,
but the subspace topology on the boundary is neither induced by t nor Hausdorff
in general. We discuss criteria (Lemma 8.2 and Proposition 8.3) which guarantee
both: the subspace topology on the boundary is Hausdorff and induced by t.

� In Section 9 we show that every boundary point in the linear boundary of a nilpotent
Lie group is obtained as a limit of a random walk with drift and vice versa.

� Appendix A collects some known results on compactly generated groups and word
metrics which are used in the previous sections.

� Appendix B mostly contains the technical lemmas used in the proof of Theorem 6.1
and the necessary notions from Lie theory.

2. General construction. Let (X, d) be a metric space. We write U to denote the
family of unbounded subsets of (X, d). The closed and open ball with centre x ∈ X
and radius r ≥ 0 in (X, d) are denoted by

B(x, r) = {y ∈ X : d(y, x) ≤ r} and U(x, r) = {y ∈ X : d(y, x) < r},
respectively. Let o be a fixed reference point, let R ⊆ X , and let α and a be nonnegative
real numbers. We set

αR + a =
⋃
x∈R

B(x, αd(o, x) + a)

and write αR instead of αR + 0.

Remark . The notation αR + a is unusual, but turns out to be convenient for
computations involving sets of this form. Mostly this notation will be used if X is
a metric space, so no confusion should occur. However, if X is a linear space too,
αR + a will always be used in the above meaning and never means a linearly scaled
and translated set. Furthermore, it should be the stressed that 0R = R and

0R + a =
⋃
x∈R

B(x, a),

which is often called a-neighbourhood of R or generalised ball of radius a around R.

LEMMA 2.1. Let R ∈ U and α > 1. Then αR = X.

Proof. Let x be any point in X . Since R is unbounded, there is an element y ∈ R
such that (α − 1)d(o, y) ≥ d(o, x). Hence

d(x, y) ≤ d(x, o) + d(o, y) ≤ (α − 1)d(o, y) + d(o, y) = αd(o, y),

and x ∈ B(y, αd(o, y)) ⊆ αR. �
LEMMA 2.2. Let R, S, and T be subsets of X. If T ⊆ βS + b and S ⊆ αR + a then

T ⊆ (α + αβ + β)R + βa + a + b.
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Proof. Let z be in T . Since the sets αR + a and βS + b are defined as unions of
balls, z is in B(y, βd(o, y) + b) for some y ∈ S and y is in B(x, αd(o, x) + a) for some
x ∈ R. Set c = d(o, x). Then d(x, y) ≤ αc + a. By the triangle inequality,

d(o, y) ≤ d(o, x) + d(x, y) ≤ (α + 1)c + a.

Hence

d(y, z) ≤ βd(o, y) + b ≤ (αβ + β)c + βa + b.

Finally,

d(x, z) ≤ d(x, y) + d(y, z) ≤ (α + αβ + β)c + βa + a + b.

This means that z ∈ (α + αβ + β)R + βa + a + b. �
DEFINITION 2.3. For two subsets R, S ⊆ X let s+(R, S) be the infimum of all α ≥ 0

such that S ⊆ αR + a for some a ≥ 0. Set

s(R, S) = max{s+(R, S), s+(S, R)}
and t(R, S) = √

s(R, S). If R, S ∈ U and s(R, S) = 0 then R and S are called linearly
equivalent and we write R ∼ S.

Remark . The functions s+, s, t depend on the metric space (X, d). In order to
emphasise the underlying metric space (X, d) we write s+

X or s+
(X,d) and analogously for

s and t. Similarly, we write UX or U(X,d) instead of U , if it is necessary to specify the
metric space.

LEMMA 2.4. Let R, S be two subsets of X. Then s+(R, S) and therefore s(R, S) and
t(R, S) do not depend on the reference point o in X.

Proof. Let o, p ∈ X and set c = d(o, p). We write s+
o (R, S) in order to emphasise

the reference point o. Furthermore, write Co(R, α, a) to denote the set αR + a with
respect to the reference point o. For α > s+

o (R, S) there is a number a > 0 such that S ⊆
Co(R, α, a). Hence for y ∈ S we can find a point x ∈ R such that d(y, x) ≤ αd(o, x) + a.
The triangle inequality implies that

d(y, x) ≤ α(d(p, x) + d(p, o)) + a = αd(p, x) + αc + a.

Therefore S ⊆ Cp(R, α, αc + a) and thus s+
p (R, S) ≤ s+

o (R, S). The reversed inequality
is obtained by changing the rôle of o and p. �

LEMMA 2.5. Let R, S ∈ U . Then s+(R, S) is the infimum of all α ≥ 0 such that
S \ U(o, r) ⊆ αR for some r ≥ 0.

Proof. We write σ+(R, S) to denote the infimum of all α ≥ 0 such that S \ U(o, r) ⊆
αR for some r ≥ 0. First we show that s+(R, S) ≤ σ+(R, S). Assume that α > σ+(R, S)
and r ≥ 0 such that S \ U(o, r) ⊆ αR. Set a = r + d(o, R), where d(o, R) = inf{d(o, x) :
x ∈ R}. Then, by triangle inequality, S ⊆ αR + a. Therefore s+(R, S) ≤ α and hence
s+(R, S) ≤ σ+(R, S).

Now we prove the reversed inequality: Let α > s+(R, S) and set ε = 1
2 (α −

s+(R, S)) > 0. Then, by definition of s+(R, S), there exists a constant a ≥ 0 such that
S ⊆ (α − ε)R + a. We claim that S \ U(o, r) ⊆ αR holds for r = a

ε
(1 + α). Let y ∈ S.
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Then there is a x ∈ R with d(y, x) ≤ (α − ε)d(o, x) + a. Using the triangle inequality
yields

d(o, y) ≤ d(o, x) + d(y, x) ≤ d(o, x) + (α − ε)d(o, x) + a ≤ (1 + α − ε)d(o, x) + a,

which implies

d(o, x) ≥ d(o, y) − a
1 + α − ε

.

If d(o, y) ≥ r then we obtain

a ≤ ε · d(o, y) − a
1 + α − ε

≤ εd(o, x)

and

d(y, x) ≤ (α − ε)d(o, x) + a ≤ (α − ε)d(o, x) + εd(o, x) = αd(o, y).

Therefore S \ U(o, r) ⊆ αR and σ+(R, S) ≤ s+(R, S). �
PROPOSITION 2.6. The function s+ is a premetric on U satisfying a weak form of the

triangle inequality, i.e. if R, S, T are unbounded subsets of X, then
� s+(R, S) ∈ [0, 1] and s+(R, R) = 0,
� s+(R, T) ≤ s+(R, S) + s+(R, S)s+(S, T) + s+(S, T).
Similarly, s is a symmetric premetric on U satisfying the same weak triangle inequality,
i.e.
� s(R, S) ∈ [0, 1] and s(R, R) = 0,
� s(R, S) = s(S, R),
� s(R, T) ≤ s(R, S) + s(R, S)s(S, T) + s(S, T).
Finally, t is a pseudometric on U , i.e.
� t(R, S) ∈ [0, 1] and t(R, R) = 0,
� t(R, S) = t(S, R),
� t(R, T) ≤ t(R, S) + t(S, T).

Proof. The statements for s+ and s follow from the definition and from the
Lemmas 2.1 and 2.2.

It remains to show that t satisfies the triangle inequality. Let R, S be unbounded
subsets of X . Then

s(R, T) ≤ s(R, S) + s(R, S)s(S, T) + s(S, T)

≤ s(R, S) + 2
√

s(R, S)s(S, T) + s(S, T)

which implies

t(R, T) =
√

s(R, T) ≤
√

s(R, S) +
√

s(S, T) = t(R, S) + t(S, T).

�
COROLLARY 2.7. Assume that R, S, T are unbounded subsets of X. If s+(S, T) = 0

then s+(R, T) ≤ s+(R, S) and s+(S, R) ≤ s+(T, R). Therefore, if S ∼ T, then s+(R, S) =
s+(R, T), s+(S, R) = s+(T, R), and s(R, S) = s(R, T), t(R, S) = t(R, T).
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Proof. Using Proposition 2.6 and s+(S, T) = 0 we get

s+(R, T) ≤ s+(R, S) + s+(R, S)s+(S, T) + s+(S, T) = s+(R, S)

and

s+(S, R) ≤ s+(S, T) + s+(S, T)s+(T, R) + s+(T, R) = s+(T, R).

The remaining claims follow, since S ∼ T implies s+(S, T) = s+(T, S) = 0. �
COROLLARY 2.8. Linear equivalence is an equivalence relation on unbounded subsets

and the functions s+, s, t are well-defined on the quotient space U/∼.

Proof. Reflexivity and symmetry follow immediately from the definition.
Transitivity follows from Corollary 2.7. Let R1, R2, S1, S2 be unbounded subsets
and suppose s(R1, R2) = s(S1, S2) = 0. Corollary 2.7 implies that s+(R1, S1) =
s+(R2, S1) = s+(R2, S2), whence s+ and therefore s, t are well-defined on equivalence
classes. �

THEOREM 2.9. (U/∼, t) is a complete metric space.

Proof. By Proposition 2.6 and Corollary 2.8 (U/∼, t) is a metric space. It remains
to prove that it is also complete.

Let (ξn)n≥0 be a Cauchy sequence in U/∼. Without loss of generality we may
assume that s(ξn, ξm) ≤ 1/2 for all n, m. Choose representatives Rn ∈ ξn. Then for any
ε > 0 there is an index N such that s(Rn, Rm) < ε for n, m ≥ N. Therefore there exists
a function ε∗ : � → (0, 1/2] such that ε∗ is decreasing, ε∗(n) → 0 as n → ∞, and
s(Rm, Rn) < ε∗(m) for m ≤ n.

According to Lemma 2.5 there are r(m, n) ≥ 0, for m ≤ n, such that

Rn \ U(o, r(m, n)) ⊆ ε∗(m)Rm and Rm \ U(o, r(m, n)) ⊆ ε∗(m)Rn.

Hence there is an increasing function r∗ : � → [0,∞) such that r∗(n) ≥ r(m, n) for
m ≤ n. Applying Lemma 2.5 to Rm \ U(o, r∗(n)) and Rn \ U(o, r∗(n)) for m ≤ n implies
that there are q(m, n) ≥ 0 such that

Rn \ U(o, q(m, n)) ⊆ ε∗(m)
(
Rm \ U(o, r∗(n))

)
,

Rm \ U(o, q(m, n)) ⊆ ε∗(m)
(
Rn \ U(o, r∗(n))

)
.

Thus there is an increasing function q∗ : � → [0,∞) such that q∗(n) → ∞ as n → ∞
and q∗(n) ≥ q(m, n) for m ≤ n.

Let x ∈ Rm with q∗(n) ≤ d(o, x) < q∗(n + 1) for some n ≥ m. Then there is a y ∈ Rn

such that

d(o, y) ≥ r∗(n) and d(x, y) ≤ ε∗(m)d(o, y).

Using the triangle inequality and ε∗(m) ≤ 1/2 we get

d(o, y) ≤ d(o, x) + d(x, y) ≤ d(o, x) + ε∗(m)d(o, y) ≤ d(o, x) + d(o, y)/2

and

d(o, y) ≤ 2d(o, x) < 2q∗(n + 1). (1)
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We write x∗ to denote this element y and define the set S by

S =
⋃
m≥1

{x∗ : x ∈ Rm, d(o, x) ≥ q∗(m)}.

Then S is an unbounded subset of X . Note that if x ∈ S and d(o, x) ≥ 2q∗(m) for some
m then x ∈ Rn for some n ≥ m due to the estimate in (1). We claim that s(S, Rm) ≤ ε∗(m)
for m ≥ 1.
� Let x be an element of Rm with d(o, x) ≥ q∗(m). Then, by construction of S, there

is a y ∈ S with d(x, y) ≤ ε∗(m)d(o, y). This implies

Rm \ U(o, q∗(m)) ⊆ ε∗(m)S.

� Let x be an element of S with d(o, x) ≥ 2q∗(m). Then x ∈ Rn for some n ≥ m. This
implies the lower bound d(o, x) ≥ r∗(n). By definition of r∗ there is a y ∈ Rm such
that d(x, y) ≤ ε∗(m)d(o, y). Hence

S \ U(o, 2q∗(m)) ⊆ ε∗(m)Rm.

This implies the claim. Let ζ be the equivalence class of S. Then

s(ξm, ζ ) = s(Rm, S) ≤ ε∗(m)

for m ≥ 1. Therefore ξm converges to ζ proving Cauchy completeness. �
DEFINITION 2.10. We call t angle metric of unbounded sets (see Example 2.11).

If � is a subset of U/∼, we write cl(�) to denote the closure of � in the metric
space (U/∼, t). Let E ⊆ U be a family of unbounded subsets of (X, d). Define E/∼ to
be the set of equivalence classes in U/∼ which contain at least one element from E , this
is

E/∼ = {[R] : R ∈ E} ⊆ U/∼,

where [R] is the equivalence class of R with respect to linear equivalence ∼. Note that
cl(E/∼) is a well-defined subset of U/∼ which is closed and hence Cauchy complete.
Thus up to isometry (cl(E/∼), t) is the Cauchy completion of (E/∼, t).

Remark. The definition of the set E/∼ depends on the underlying metric space
(X, d). However, no confusion should occur, since the underlying metric space will be
clear from the context. Moreover, the above definition of E/∼ is somewhat unusual,
since E/∼ ⊆ U/∼. The reason for this definition is that we will use topological notions
of (U/∼, t) for the subset E/∼. Furthermore, note that, if ∼E denotes the restriction
of ∼ to the set E then

E/∼ → E/∼E , ζ �→ ζ ∩ E

is a canonical bijection.

EXAMPLE 2.11. Consider �n equipped with the usual 2-metric. For a nonzero
vector x ∈ �n let Lx denote the line {λx : λ ∈ �} and Hx the half-line {λx : λ ≥
0}. Set L = {Lx : x ∈ �n, x �= 0} and H = {Hx : x ∈ �n, x �= 0}. Then cl(L/∼) is the
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projective space �n−1 and cl(H/∼) is the sphere �n−1. If x, y ∈ �n \ {0} then

s(Lx, Ly) = sin(∠(Lx, Ly)) and s(Hx, Hy) = sin(min{ 1
2π,∠(Hx, Hy)})

where ∠(Lx, Ly) is the smaller angle between the lines Lx and Ly and ∠(Hx, Hy) is the
angle between the half-lines Hx, Hy.

The following examples show that the function s is not always a metric and that
geodesics do not always yield a nice structure.

EXAMPLE 2.12. Consider the 2-dimensional space �2 with 1-metric d1. Let x1 =
(1, 0), x2 = (2, 1), and x3 = (1, 1). Set Li = {λxi : λ ∈ �} for i ∈ {1, 2, 3}. Then

s(L1, L2) = 1
2 , s(L2, L3) = 1

3 , s(L1, L3) = 1,

and the triangle inequality is not satisfied.

EXAMPLE 2.13. Consider the metric space (�2, d1), where d1 is the 1-metric. In
this discrete setting a geodesic ray is an infinite sequence (x0, x1, . . . ) in �2 such
that d(xi, xj) = |i − j|. Let G be the family of all geodesic rays emanating from the
origin. Furthermore, let E be the family of all sets {nx : n ∈ �0} for x ∈ �2, x �= 0.
Then the space cl(G/∼) contains much more elements than cl(E/∼). To see this set
x2n = (2n − 1, 2n − 1) and x2n+1 = (2n+1 − 1, 2n − 1) for n ∈ �0. Join xm and xm+1,
m ∈ �0, by a geodesic path and let R denote the ray consisting of the union of these
finite geodesic paths. Obviously R is a geodesic ray and there is some ε > 0 such that
s(R, S) ≥ ε for all S ∈ E .

Remark . The definition τ (R, S) = log(1 + s(R, S)) yields another pseudometric
on the set U . In regards to Example 2.12 and Proposition 4.2 this definition may
be advantageous in comparison to the pseudometric t. For instance, the statement
of the latter proposition holds with bi-Lipschitz-equivalence in place of bi-Hölder-
equivalence if τ is used. We want to thank Gerhard Kirchner for bringing this to our
attention.

3. Quasi-isometries.

DEFINITION 3.1. Let (X, dX ) and (Y, dY ) be metric spaces and let q > 0. A function
f : X → Y is called a q-quasi-isometry if

q−1dX (x, x′) − q ≤ dY (f (x), f (x′)) ≤ qdX (x, x) + q

for all x, x′ ∈ X and such that every closed ball in Y with radius q contains an element
of f (X). We say that two metrics d1 and d2 on X are quasi-isometrically equivalent, if
the identity is a quasi-isometry from (X, d1) to (X, d2).

LEMMA 3.2. Let f : X → Y be a q-quasi-isometry of the metric spaces (X, dX ) and
(Y, dY ). Let R, S be unbounded subsets of X. Then f (R), f (S) are unbounded subsets of
Y and

q−2s+
X (R, S) ≤ s+

Y (f (R), f (S)) ≤ q2s+
X (R, S).
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Proof. We fix reference points o and f (o) in X and Y , respectively. First of all note
that

q−1dX (x, x′) − q ≤ dY (f (x), f (x′)) ≤ qdX (x, x′) + q

implies

q−1dY (f (x), f (x′)) − 1 ≤ dX (x, x′) ≤ qdY (f (x), f (x′)) + q2

for all x, x′ ∈ X .
Let α > s+

X (R, S). Then there is a number a such that S ⊆ αR + a. Hence for x′ ∈ S
there is a point x ∈ R with dX (x′, x) ≤ αdX (o, x) + a. Since f is a q-quasi-isometry, we
get dX (o, x) ≤ qdY (f (o), f (x)) + q2. This implies

dY (f (x′), f (x)) ≤ qdX (x′, x) + q ≤ qαdX (o, x) + qa + q

≤ q2αdY (f (o), f (x)) + q3α + qa + q,

proving that

f (S) ⊆ q2αf (R) + q3α + qa + q

holds. Thus s+
Y (f (R), f (S)) ≤ q2s+

X (R, S).
If s+

X (R, S) = 0 then s+
Y (f (R), f (S)) ≥ q−2s+

X (R, S) trivially holds. Hence we assume
that s+

X (R, S) > 0. Then, for α < sX (R, S), S ⊆ αR + a fails to be true for all a ≥ 0.
Hence for every a ≥ 0 there exists a point x′ ∈ S which is not contained in αR + a.
Thus dX (x′, x) > αd(o, x) + a for all x ∈ R. This implies

dY (f (x′), f (x)) ≥ q−1dX (x′, x) − q > q−1αdX (o, x) + q−1a − q

≥ q−2αdY (f (o), f (x)) + q−1(a − α) − q.

Thus f (x′) is not contained in q−2αf (R) + q−1(a − α) − q. Since a ≥ 0 was arbitrary,
this means that s+

Y (f (R), f (S)) ≥ q−2s+
X (R, S). �

THEOREM 3.3. Let f : X → Y be a q-quasi-isometry of the metric spaces (X, dX ) and
(Y, dY ). Then f induces a bijection f : UX/∼ → UY/∼ which is bi-Lipschitz continuous:

q−1tX (ζ, ξ ) ≤ tY (f (ζ ), f (ξ )) ≤ qtX (ζ, ξ )

for all ζ, ξ ∈ UX/∼. In particular, if E is a family of unbounded subsets in X, then
f (E/∼) = f (E)/∼ and f (cl(E/∼)) = cl(f (E)/∼).

Proof. Of course f (UX ) is a subset of UY . By Lemma 3.2 the function f : UX/∼ →
UY/∼ which maps the equivalence class of an unbounded R ⊆ X to the equivalence
class of f (R) is well-defined, one-to-one, and satisfies

q−1tX (ζ, ξ ) ≤ tY (f (ζ ), f (ξ )) ≤ qtX (ζ, ξ )

for all ζ, ξ ∈ UX/∼. Thus it remains to show that f is also onto. Let S be an unbounded
subset of Y . Since f is a q-quasi-isometry, the set R = f −1((0S + q) ∩ f (X)) is an
unbounded subset of X and f (R) = (0S + q) ∩ f (X) ∼ S. �
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4. Boundary at infinity and angular metric in a CAT(0) space. Let us recall the
definitions of the boundary at infinity and the angular metric in a CAT(0) space.
For more details we refer to the book of Bridson and Haefliger [3], see especially
Chapter II.8 and Chapter II.9 therein. A geodesic ray in a metric space (X, d) is a
curve c : [0,∞) → X such that d(c(x), c(y)) = |x − y| for all x, y ≥ 0. The boundary at
infinity ∂X of X is defined to be the set of equivalence classes of geodesic rays, where
geodesic rays c, c′ are equivalent whenever they stay at bounded distance, that is, if
there is a constant K , such that d(c(x), c′(x)) ≤ K for all x ∈ [0,∞). In the sequel we
assume that X is a complete CAT(0) space.

For each point p in X and ξ in ∂X there is precisely one geodesic ray belonging
to ξ which emanates from p. Then ∠p(ξ, ζ ) for ξ, ζ ∈ ∂X is defined to be the angle at
p between the uniquely determined rays in ξ and ζ which emanate from p. The angle
between ξ and ζ is defined by

∠(ξ, ζ ) = sup{∠p(ξ, ζ ) : p ∈ X}.

This yields a metric on ∂X called angular metric and (∂X,∠) is a complete metric
space. For our purposes the following description of the angular metric is useful. Fix
a reference point o in X . If ξ ∈ ∂X , we write cξ for the uniquely determined geodesic
ray in ξ which emanates from o and Rξ for the image of cξ in X , i.e. Rξ = cξ ([0,∞)).
Then, see [3, Proposition 9.8 (4)],

2 sin
( 1

2∠(ξ, ζ )
) = lim

x→∞
1
x d(cξ (x), cζ (x)).

LEMMA 4.1. Let ξ, ζ be elements in ∂X. Then

s(Rξ , Rζ ) ≤ 2 sin
( 1

2∠(ξ, ζ )
) ≤ 4s(Rξ , Rζ ).

Proof. Note that d(o, cξ (x)) = d(o, cζ (x)) = x for all x ∈ [0,∞), since cξ (0) =
cζ (0) = o. Suppose that α > 2 sin

( 1
2∠(ξ, ζ )

)
. Then there exists a constant a ≥ 0, such

that d(cξ (x), cζ (x)) ≤ αx for all x ≥ a. This implies that

Rξ ⊆ αRζ + a and Rζ ⊆ αRξ + a.

Therefore s(Rξ , Rζ ) ≤ α which yields the lower bound.
If s(Rξ , Rζ ) ≥ 1

2 then the upper bound is trivially true. Hence assume that
s(Rξ , Rζ ) < 1

2 and fix some α, such that s(Rξ , Rζ ) < α ≤ 1
2 . By Lemma 2.5 there

is a constant r ≥ 0, such that Rζ \ U(o, r) ⊆ αRξ . Hence, for any x ≥ r, there is a
y = y(x) ≥ 0, such that

d(cζ (x), cξ (y)) ≤ αd(o, cξ (y)) = αy.

Using the triangle inequality the estimate above yields y ≤ x + αy and x ≤ y + αy. It
follows that |y − x| ≤ αy and y ≤ 2x, since α ≤ 1

2 . Collecting the pieces we get

d(cζ (x), cξ (x)) ≤ d(cζ (x), cξ (y)) + d(cξ (y), cξ (x))

≤ αd(o, cξ (y)) + |y − x|
≤ 2αy ≤ 4αx.
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and thus

2 sin
( 1

2∠(ξ, ζ )
) = lim

x→∞
1
x d(cζ (x), cξ (x)) ≤ 4α.

�
As a consequence of the previous lemma we get that two geodesic rays c and c′

stay at bounded distance if and only if the subsets c([0,∞)) and c′([0,∞)) are linearly
equivalent. Write G to denote the family of all subsets of the form c([0,∞)), where c is
some geodesic ray in X .

PROPOSITION 4.2. Let X be a complete CAT(0) space and equip ∂X with the angular
metric ∠. Then

∂X → G/∼, ξ �→ [Rξ ],

where [Rξ ] is the equivalence class of Rξ with respect to linear equivalence, is one-to-one,
onto, and bi-Hölder continuous:

1
π
∠(ξ, ζ ) ≤ (

t([Rξ ], [Rζ ])
)2 ≤ ∠(ξ, ζ )

for all ξ, ζ ∈ ∂X. Furthermore, G/∼ is a closed subset of (U/∼, t), since (∂X,∠) is a
complete metric space.

Proof. Since ∠(ξ, ζ ) ∈ [0, π ] and 2
π

x ≤ sin(x) ≤ x for all x ∈ [0, π
2 ], Lemma 4.1

yields 1
π
∠(ξ, ζ ) ≤ s(Rξ , Rζ ) ≤ ∠(ξ, ζ ) �

5. Boundaries of groups. Let G be a group and d be a metric on G. Fix the
identity element 1 ∈ G as reference point. From an algebraic point of view it is
natural to consider the families of unbounded cyclic subgroups and unbounded cyclic
subsemigroups of the group G. Hence define

CG = {〈g〉 : g ∈ G, 〈g〉 ∈ U}
and

C+G = {〈g〉+ : g ∈ G, 〈g〉+ ∈ U},
where 〈g〉+ = {gn : n ∈ �0} is the semigroup generated by g ∈ G. Note that, if 〈g〉+ ∈
C+G, then 〈g〉 ∈ CG.

DEFINITION 5.1. We define the projective boundary of G by PG = cl(CG/∼) and
the linear boundary by LG = cl(C+G/∼)

Remark. Both, PG and LG, depend on the metric d. If it is necessary to emphasise
this dependence, we write P(G, d) and L(G, d), respectively.

LEMMA 5.2. If g ∈ CG and h ∈ C+G then 〈gn〉 ∼ 〈g〉 and 〈hn〉+ ∼ 〈h〉+ for all n ∈ �.
Furthermore, if d is left-invariant or right-invariant, then 〈g〉+ ∈ C+G if and only if
〈g〉 ∈ CG.

There are two interesting sources for metrics on a group G. If G is finitely generated
(or more generally compactly generated), it is natural to consider word metrics on G. If
G is a connected Lie group, it is natural to consider left-invariant Riemannian metrics
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on G. In this case G is also compactly generated and Corollary A.7 implies that any
left-invariant Riemannian metric is quasi-isometrically equivalent to any word metric
on G. Hence for our purposes it is sufficient to study the setting of compactly generated
groups in more detail.

A topological group is called compactly generated, if there is a compact generating
set K ⊆ G. In this case S = K ∪ K−1 is a compact, symmetric (i.e. S = S−1), generating
set. Set S0 = {1} and Sn = {s1 · · · sn : s1, . . . , sn ∈ S} for n ≥ 1. Note that Sn is compact
and symmetric for all n ≥ 0 and

G =
⋃
n≥0

Sn.

The word metric d of G with respect to S is defined by d(g, h) = inf{n : g−1h ∈ Sn}.
The metric d is left-invariant and induces the discrete topology on G which is in general
different from the group topology. In the sequel we consider the class of compactly
generated, locally compact Hausdorff groups. Some facts about such groups and their
word metrics are provided by Appendix A. Finitely generated groups fit in this setting
(in this case a finitely generated group is equipped with the discrete topology). If
not stated otherwise, all topological notions refer to the group topology (except for
boundedness which refers to the word metric d).

We fix some compactly generated, locally compact Hausdorff group G and a word
metric d on G. Notice that a subset of G is bounded with respect to d if and only if
it is relatively compact (see Lemma A.1). Suppose that d ′ is another word metric on
G or (more general) a metric which is quasi-isometrically equivalent to d. Then, by
Theorem 3.3, t(G,d) and t(G,d ′) are bi-Lipschitz-equivalent. Hence linear equivalence and
all notions which only depend on the topological or uniform structure of U/∼ (like
closure or Cauchy completeness for instance), do not depend on the generating set. In
particular, we obtain the following statement.

LEMMA 5.3. If a compactly generated, locally compact Hausdorff group G is equipped
with a word metric d then the (topological) spaces LG and PG do not depend on the
choice of the word metric (or of the generating set).

A group element g is called compact, if 〈g〉 is relatively compact, and non-
compact otherwise. Thus g is non-compact if and only if 〈g〉 ∈ CG. Notice that, if
G is finitely generated, a group element g is non-compact if and only if g is non-
torsion. Furthermore, by Weil’s lemma (see [19, Theorem 9.1]) g is non-compact,
if and only if 〈g〉 is the image of a monomorphism � → G which is a topological
isomorphism onto 〈g〉 (a topological isomorphism is a group isomorphism which is
also a homeomorphism). Hence, Weil’s lemma implies the following.

LEMMA 5.4. If g ∈ G is non-compact then d(1, gn) → ∞ for n → ∞.

Remark. Notice, that compact group elements of a group G do not contribute to
the boundaries PG and LG. Especially, if G only contains compact group elements,
then these boundaries are empty. In the discrete case this means that torsion groups
have empty boundaries.

Remark. Let g and h be non-compact group elements. We have seen that
s(〈g〉+, 〈h〉+) ≤ 1 and s(〈g〉+, 〈gn〉+) = 0 for all n ∈ �. Now it is natural to ask, what
can be said about s(〈g〉+, 〈g−1〉+). Often s(〈g〉+, 〈g−1〉+) = 1, but in [23] Krön, Lehnert
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and Stein give an example of a finitely generated group constructed by iterated HNN-
extensions with a non-torsion element g such that s(〈g〉+, 〈g−1〉+) ≤ 12

17 . They also show
that in general this value cannot be arbitrarily close to zero. Indeed, s(〈g〉+, 〈g−1〉+) is
always greater or equal 1

2 . The infimum of these values (for all groups) is unknown. In
[23] there is also an example of a finitely generated group with non-torsion elements
g, h for which 〈g〉+ ∼ 〈h〉+ but 〈g−1〉+ �∼ 〈h−1〉+.

The following lemma yields a useful alternative to compute s+(〈g〉+, 〈h〉+) and
s+(〈g〉, 〈h〉).

LEMMA 5.5. Let g and h be non-compact group elements. Then

s+(〈g〉+, 〈h〉+) = lim sup
n→∞

inf
{

d(hn, gm)
d(1, gm)

: m ∈ �0

}

and

s+(〈g〉, 〈h〉) = lim sup
|n|→∞

inf
{

d(hn, gm)
d(1, gm)

: m ∈ �

}
.

Proof. We only prove the first claim, since the proof of the second is analogous.
Suppose that α > s+(〈g〉+, 〈h〉+). Hence 〈h〉+ ⊆ α〈h〉+ + a for some a ≥ 0. Thus, for
each n ∈ �0, there is an integer k = k(n) ≥ 0, such that d(hn, gk) ≤ αd(1, gk) + a. Then

inf
{

d(hn, gm)
d(1, gm)

: m ∈ �0

}
≤ d(hn, gk)

d(1, gk)
≤ α + a

d(1, gk)
.

Using the triangle inequality we get

(1 − α)d(1, gk) − a ≤ d(1, hn) ≤ (1 + α)d(1, gk) + a.

If n → ∞ then d(1, hn) → ∞ by Lemma 5.4 and therefore d(1, gk) → ∞. This implies

lim sup
n→∞

inf
{

d(hn, gm)
d(1, gm)

: m ∈ �0

}
≤ lim sup

n→∞
α + a

d(1, gk)
= α.

In order to prove the reversed inequality assume that

α > lim sup
n→∞

inf
{

d(hn, gm)
d(1, gm)

: m ∈ �0

}
.

Then there is an integer N ≥ 0, such that

inf
{

d(hn, gm)
d(1, gm)

: m ∈ �0

}
≤ α

for all n ≥ N. Let ε > 0. Then, for each n ≥ N, we can find an integer k = k(n) ≥ 0,
such that

d(hn, gk)
d(1, gk)

≤ α + ε.

Set a = max{d(1, hn) : 0 ≤ n < N}. Then we obtain 〈h〉+ ⊆ (α + ε)〈g〉+ + a. �
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Using Corollary A.6 and its notation, we obtain the following:

LEMMA 5.6. Let G be a compactly generated, locally compact group. The following
statements are true up to bi-Lipschitz-equivalence of the metric t:
� Suppose that N is a compact group and H is a topological Hausdorff group. If

{1} −→ N −→ H
π−→ G −→ {1} is a topological short exact sequence, such that

π : H → G is also open, then H and G have the same linear and projective boundaries,
respectively.

� If H is a closed subgroup of G and (H\G, dH\G) is bounded then

LH ⊆ LG and PH ⊆ LG.

If H is of finite index in G then equality holds.

Proof. In order to prove the first statement note that, by Corollary A.6 the
homomorphism π : H → G is a quasi-isometry. Assume that h ∈ H and 〈π (h)〉 is
bounded in G then π−1(〈π (h)〉) is bounded by Lemma A.3. Hence 〈h〉 ⊆ π−1(〈π (h)〉) is
bounded. Thus unbounded cyclic sub(semi)groups of H are mapped onto unbounded
cyclic sub(semi)groups of G. This implies the first statement using Theorem 3.3.

Now suppose that H is a closed subgroup of G and H\G is bounded. By
Corollary A.6 the inclusion is a quasi-isometry. In order to emphasise the dependence
on H and G, we use subscripts H and G. By Theorem 3.3 we have

LH = clH(C+H/∼H) = clG(C+H/∼G) ⊆ clG(C+G/∼G) = LG

and analogously for PH ⊆ PG. Assume that H has finite index in G. If g ∈ G then
H\H〈g〉 is finite. Thus there are k ∈ � and n > 0, such that Hgk+n = Hgk. This implies
gn ∈ H. Hence in this case Lemma 5.2 implies

C+H/∼H = C+G/∼G and CH/∼H = CG/∼G

which yields the assertion. �
In the setting of finitely generated groups the previous lemma implies that two

weakly commensurable finitely generated groups G and H (i.e. there is a group Q and
homomorphisms Q → G and Q → H both having finite kernels and images of finite
index) have the same linear and projective boundaries. In the continuous setting the
situation is more complicated: In general it is possible that

C+H/∼H � C+G/∼G

(consider for instance �2 ≤ �2). However, equality may hold after taking closures on
both sides, i.e. LH = LG. The problem here is to find for each non-compact g ∈ G a
sequence (hn)n≥0 in H, such that t(〈g〉+, 〈hn〉+) → 0 for n → ∞. Notice that there is
always an unbounded subset R ⊆ H with 〈g〉+ ∼ R, if H\G is bounded.

With this preparations we can settle the commutative case completely. Recall that,
if G is a commutative, compactly generated, locally compact Hausdorff group, then by
[19, Theorem 9.8] there are integers a, b ≥ 0 and a commutative, compact Hausdorff
group C, such that G is topologically isomorphic to �a × �b × C.

COROLLARY 5.7. Assume that G is a commutative, compactly generated, locally
compact Hausdorff group.
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� If G is topologically isomorphic to �a × �b × C for some integers a, b ≥ 0 and some
compact, commutative group C then LG = �a+b−1 and PG = �a+b−1.

� If H is a closed subgroup, such that G/H is compact then LH = LG and PH = PG.

Proof. As �a × �b is a quotient of G with compact kernel, the linear and projective
boundaries of G and �a × �b are the same, respectively. Since any word metric on
�a × �b is quasi-isometrically equivalent to the 2-metric on �a × �b, we may use the
2-metric. It is then easy to see that �a × �b and �a+b have the same boundaries. Hence
the assertion follows from Example 2.11.

Suppose that H is a closed subgroup, such that G/H is compact. As before,
let G be topologically isomorphic to �a × �b × C. It follows that H is topologically
isomorphic to �a−c × �b+c × D for some integer c and some commutative, compact
Hausdorff group D. Thus the first assertion implies the second. �

In the setting of topological groups it is natural to consider also unbounded
one-parameter subgroups and unbounded one-parameter subsemigroups, as well. A
one-parameter subgroup in G is the image of a continuous homomorphism � → G and
a one-parameter subsemigroup is the image of a continuous semigroup homomorphism
[0,∞) → G. Obviously, if ϕ : [0,∞) → G is a continuous semigroup homomorphism,
then there is a canonical extension to a continuous group homomorphism ϕ̄ : � → G
and ϕ has unbounded image, if and only if ϕ̄ has. DefineC�G andC+

� G to be the family of
unbounded one-parameter subgroups and unbounded one-parameter subsemigroups,
respectively. Again, by Weil’s lemma a continuous homomorphism ϕ : � → G has
unbounded image if and only if ϕ is a topological isomorphism onto its image.

LEMMA 5.8. Suppose that ϕ : � → G is a continuous homomorphism with unbounded
image. Then

ϕ([0,∞)) ∼ 〈ϕ(t)〉+ and ϕ(�) ∼ 〈ϕ(t)〉

for all t > 0. Hence

C�G/∼ ⊆ CG/∼ and C+
� G/∼ ⊆ C+G/∼.

PROPOSITION 5.9. Let G be a connected, nilpotent Lie group. Then

C�G/∼ = CG/∼ and C+
� G/∼ = C+G/∼.

Proof. Let g be the Lie algebra of G and exp: g → G be the exponential map. Then
exp is surjective. Thus, if g is a non-compact group element, then there is an element
x ∈ g with exp(x) = g. Then � → G, t �→ exp(tx) is a continuous homomorphism with
unbounded image which proves the statement. �

6. Boundaries of nilpotent groups. In the following we determine the linear
and projective boundary of connected, nilpotent Lie groups and their discrete
counterparts, finitely generated nilpotent groups. A commutative, connected Lie group
G is isomorphic to �a × (�/�)b for some integers a and b. In analogy to the discrete
case we call the integer a the compact-free dimension of G. For convenience we define
�−1 and �−1 to be the empty set.
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THEOREM 6.1. Let G be a nilpotent group which is either a connected Lie group or a
finitely generated group. Suppose that G has descending central series

G = G1 ⊇ G2 ⊇ · · · ⊇ Gc � Gc+1 = {1},

where c ≥ 1 is the nilpotency class of G. Let ν(i) denote the compact-free dimension or
torsion-free rank of Gi/Gi+1, respectively. Then the linear boundary LG is homeomorphic
to the disjoint union of c spheres:

LG = �ν(1)−1 	 �ν(2)−1 	 · · · 	 �ν(c)−1.

Analogously, the projective boundary PG is homeomorphic to the disjoint union of
projective spaces:

PG = �ν(1)−1 	 �ν(2)−1 	 · · · 	 �ν(c)−1.

If two finitely generated, nilpotent groups G and H are weakly commensurable
then previous result yields a new proof of the fact that the multisets

{ν1(G), ν2(G), . . . } and {ν1(H), ν2(H), . . . }

of torsion-free ranks are equal, since the boundaries of G and H are bi-Lipschitz-
equivalent. Notice that there is no information on the ordering and it is unclear,
whether it is possible to deduce the ordering from the angle metrics of G and H,
respectively . It is a corollary of Pansu’s theorem (see [26, Théorème 3]), that even the
tuples

(ν1(G), ν2(G), . . . ) and (ν1(H), ν2(H), . . . )

are equal.
First we prove the theorem for connected Lie groups and then use the Mal’tsev

completion to deduce the statement for finitely generated groups. For both cases we
use the notation and results of Appendix B.

Proof of Theorem 6.1 in the Lie case. We prove that statement for LG, as the other
case is completely analogous. Let G be a connected, nilpotent Lie group with word
metric dG. Set tG = t(G,dG) and write ∼G to denote linear equivalence in (G, dG). By
Lemmas B.1 and 5.6 we may assume that G is also simply connected. Set ta = t(g,da)

and write ∼a to denote linear equivalence in (g, da). By the Lemmas B.7, B.8, B.11 the
map

ϕ : C+(g,+)/∼a → C+(G, ·)/∼G

which maps the equivalence class of 〈x〉+ ∈ C+(g,+) to the equivalence class of
〈exp(x)〉+ ∈ C+(G, ·), is well-defined and bi-Hölder continuous with respect to the
metrics ta and tG, respectively. Hence ϕ extends to a bi-Hölder continuous map from
L(g, da) to L(G, dG). Then the assertion follows from the first part of Lemma B.8. �

Proof of Theorem 6.1 in the discrete case. Let � be a finitely generated, nilpotent
group. We only show the assertion forL� for the same reason as above. By Lemmas B.1
and 5.6 we may assume that � is also torsion-free. Then the (real) Mal’tsev completion
of � yields a connected, simply connected, nilpotent Lie group G, such that � is a
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uniform subgroup of G, see [24]. Using Lemma 5.6 it follows that L� ⊆ LG. Let dG

be a word metric on G and set tG = t(G,dG). In order to prove equality, it is sufficient
to construct for each g ∈ G a sequence h1, h2, . . . ∈ �, such that tG(〈g〉+, 〈hm〉+) → 0 if
m → ∞. Suppose that g is an element of Gn. Set � = log(�) and x = log(g). Then
� ∩ gk is a uniform subgroup in (gk, ·) for all k. Hence πn(� ∩ gn) is a uniform
subgroup of (Vn,+), since πn is a continuous epimorphism from (gn, ·) to (Vn,+).
As Vn is isomorphic to �ν(n), πn(� ∩ gn) is isomorphic to �ν(n). Thus there is a
sequence y1, y2, . . . ∈ � ∩ gn, such that ta(〈π (x)〉+, 〈π (ym)〉+) → 0 if m → ∞. Since
〈x〉+ ∼a 〈π (x)〉+ and 〈ym〉+ ∼a 〈π (ym)〉+, we infer that ta(〈x〉+, 〈ym〉+) → 0 if m → ∞.
Set hm = exp(zm) ∈ �. Then tG(〈g〉+, 〈hm〉+) → 0 for m → ∞ using Lemma B.11 as
required. �

Remark. We have carried out an alternative proof for the discrete case which avoids
the use of Mal’tsev completion and tools from Lie theory and employs techniques
from combinatorial group theory—mainly commutator calculus and careful analysis
of word lengths’. This proof follows similar lines compared to the proof for the Lie
case given here.

7. Boundaries of vertex-transitive graphs with polynomial growth. Let G be a group
and let S be a finite generating set of G. Then the Cayley graph X of G with respect to
S is given by VX = G and EX = {{g, gs} : g ∈ G, s ∈ S}. If we define a Cayley graph
in this way, namely by right multiplication, then G acts as a vertex-transitive group of
automorphisms on X by left multiplication. Hence Cayley graphs of finitely generated
groups give rise to a particular class of locally finite, vertex-transitive graphs.

Since we have defined our notion of boundary for metric spaces in general, it
is natural to consider LG and PG not only for groups G (and thus for their Cayley
graphs), but also for vertex-transitive graphs in general. But as Example 2.13 shows,
even for simple structures, as Cayley graphs of �d , for Cayley graphs of groups G
the space U/∼ is much richer than LG or PG. Hence it seems rather difficult to
characterise our boundaries for graphs without involving group actions. Therefore, we
define—roughly speaking—the projective (linear) boundary of a graph as the projective
(linear) boundary induced by the action of its automorphism group. Then, at least for
graphs with polynomial growth, it is possible to obtain results similar to the above.

Furthermore, we emphasise that the concepts defined in the sequel are not
restricted to locally finite graphs. In addition the results up to Corollary 7.8 also
hold without the assumption of local finiteness. From Theorem 7.9 to the end of this
section we consider graphs with polynomial growth which of course implies that they
are locally finite. Hence, although the main results of this section only hold for locally
finite graphs, this assumption is never explicitly stated.

In the following we always endow a graph X with the graph metric d, i.e., for any
two vertices u, v ∈ VX , the distance d(u, v) is the infimum of all numbers k such that
there is a path of length k connecting u and v.

DEFINITION 7.1. Let X = (VX ,EX ) be an infinite, connected graph and let Aut X
be the automorphism group of X . For v ∈ VX , we write Unbv X ⊆ Aut X to denote the
set of group elements g ∈ Aut X for which the set 〈g〉v = {gnv : n ∈ �} is unbounded.

LEMMA 7.2. Let X be an infinite, connected graph, v ∈ VX , and let g ∈ Unbv X.
� The set Unbv X is symmetric and both, g∞v = {gnv : n ∈ �0} and (g−1)∞v = {g−nv :

n ∈ �0}, are unbounded.
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� If n is a nonzero integer then gn ∈ Unbv X. Furthermore, 〈g〉v, 〈gn〉v are linearly
equivalent and g∞v, (gn)∞ are linearly equivalent, too.

Proof. The first part is immediate. The second part can be proved in the same way
as Lemma 5.2. �

DEFINITION 7.3. Let X be an infinite, connected graph and let G ≤ Aut X . For
v ∈ VX we define

CG,vX = {〈g〉v : g ∈ Unbv X ∩ G}, C+
G,vX = {g∞v : g ∈ Unbv X ∩ G}.

LEMMA 7.4. Let X be an infinite, connected graph. Then, for u, v ∈ VX , we have

Unbu X = Unbv X.

If G ≤ Aut X then

CG,uX/∼ = CG,vX/∼ and C+
G,uX/∼ = C+

G,vX/∼
up to isometric isomorphy.

Proof. Assume that g ∈ Unbu X . Then d(u, gnu) → ∞ as n → ∞. As X is
connected, d(u, v) < ∞ for all v ∈ VX . The triangle inequality implies

d(u, gnu) ≤ d(u, v) + d(v, gnv) + d(gnv, gnu) = 2d(u, v) + d(v, gnv),

hence d(v, gnv) ≥ d(u, gnu) − 2d(u, v) → ∞ as n → ∞. Thus Unbu X ⊆ Unbv X and
the reversed inclusion follows by means of symmetry. In order to prove the second part
of our assertion, note that, for g ∈ Unbu X ∩ G = Unbv X ∩ G,

〈g〉u ⊆ 0〈g〉v + d(u, v) and 〈g〉v ⊆ 0〈g〉u + d(u, v)

which means that 〈g〉u and 〈g〉v are linearly equivalent, thus implying CG,uX/∼ =
CG,vX/∼ up to isometric isomorphy. An analogous reasoning yields C+

G,uX/∼ =
C+

G,vX/∼. �
In the light of Lemma 7.4 we may drop dependence on the vertex v. This motivates

the following definition:

DEFINITION 7.5. Let X be an infinite, connected graph and fix a reference vertex
v. Then we define Unb X = Unbv X . If G is a subgroup of Aut X then we set

PGX = cl(CG,vX/∼) and LGX = cl(C+
G,vX/∼).

The spaces PX = PAut X X and LX = LAut X X are called projective boundary and linear
boundary of X , respectively.

Let X be a graph and let σ be a partition of the vertex set VX . The quotient graph
Xσ is defined as follows: the vertex set VX σ is σ , and two vertices x, y ∈ VX σ are
adjacent, if there are adjacent vertices v,w ∈ X with v ∈ x and w ∈ y. Let G ≤ Aut X
be a group of automorphisms such that σ is G-invariant, i.e. g(b) ∈ σ for all b ∈ σ

and all g ∈ G. Then G naturally induces a group action on Xσ . The subgroup of the
automorphism group Aut Xσ corresponding to this action is denoted by Gσ . Also,
there is a homomorphism ϕ : G → Gσ such that the kernel of ϕ consists of all those
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Figure 1. An example graph X for (Aut X)σ � Aut Xσ .

g ∈ G with g(b) = b for all b ∈ σ . If G ≤ Aut X acts vertex-transitively on X and σ is
a G-invariant partition of VX then σ is called imprimitivity system of G on X . The
elements of an imprimitivity system are called blocks.

Let σ be an Aut X-invariant partition of VX . In order to avoid ambiguity we write
(Aut X)σ to denote the subgroup of Aut Xσ corresponding to the natural action of
Aut X on Xσ . Notice that (Aut X)σ ⊆ Aut Xσ , but these two groups are not necessarily
equal as the next example shows.

EXAMPLE 7.6. Consider the graph X depicted in Figure 1. It consists of two disjoint
infinite double-rays {vi : i ∈ �} and {wi : i ∈ �} and additional “crossed rungs”: For
even i, vi is connected to wi+1 and for odd i, vi is connected to wi−1. This graph is
vertex-transitive, and the sets {vi, wi}, i ∈ �, give rise to an imprimitivity system σ of
Aut X on X . The quotient graph Xσ is an infinite double-ray {xi : i ∈ �}, where the
vertices xi correspond to the sets {vi, wi} for i ∈ �. The mapping gσ which fixes x0 and
maps xi onto x−i for i ∈ � is obviously an automorphism of Xσ . But there exists no
automorphism g ∈ Aut X with

g({vi, wi}) = {v−i, w−i}
for i ∈ �. Hence, for this graph X , (Aut X)σ � Aut Xσ holds.

Let X be an infinite, connected graph and H ≤ G ≤ Aut X . As the underlying
metric space (VX , d) is fixed, the inclusion H ≤ G implies, that LHX and PHX are up
to isometric isomorphy subspaces of LGX and PGX , respectively: Fix some reference
vertex v ∈ VX and notice that C+

H,v ⊆ C+
G,v. Hence the map

C+
H,v → C+

G,v, h∞v �→ h∞v

induces an isometric embedding C+
H,v/∼ → C+

G,v/∼ which extends naturally to the
topological closuresLHX andLGX . Similarly, there is an isometric embeddingPHX →
PGX .

LEMMA 7.7. Let X be an infinite, connected graph.
� If H ≤ G ≤ Aut X and H has finite index in G then LHX and LGX (PHX and PGX)

are isometrically isomorphic.
� Let G ≤ Aut X and let σ be a G-invariant partition of VX such that

sup{d(x, y) : x, y ∈ b, b ∈ σ } < ∞.

Then LGX and LGσ
Xσ (PGX and PGσ

Xσ ) are bi-Lipschitz-equivalent.

Proof. In order to prove the first statement, we may assume that H is a normal
subgroup of G with finite index, as the intersection of all conjugates of H forms a
normal subgroup with finite index. Let n be the finite index of H in G. Then, for any
g ∈ Unbv X ∩ G, gn ∈ Unbv X ∩ H and the unbounded subsets g∞v ∈ C+

G,v, (gn)∞v ∈
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C+
H,v are linearly equivalent. Therefore, the isometric embedding C+

H,v/∼ → C+
G,v/∼

is an isometric isomorphism which extends naturally to LHX and LGX . Analogous
reasoning yields the statement for PHX and PGX .

We now prove the second assertion. For x ∈ VX we write x̄ to denote the element
of σ = VX σ containing x. Similarly, we write ḡ ∈ Gσ for the automorphism of Xσ

induced by the group element g ∈ G. Fix some reference vertex v and set

a = sup{d(x, y) : x, y ∈ b, b ∈ σ } < ∞.

The map π : VX → VX σ , x �→ x̄, is a quasi-isometry, since

dXσ
(x̄, ȳ) ≤ dX (x, y) ≤ (a + 1)dXσ

(x̄, ȳ) + a

for x, y ∈ VX . Furthermore, π induces a map from C+
G,vX onto C+

Gσ ,v̄Xσ : if g∞v =
{v0, v1, . . . } ∈ C+

G,vX then π (g∞v) = {v̄0, v̄1, . . . } = ḡ∞v̄ ∈ C+
Gσ ,v̄Xσ . Theorem 3.3

implies that

LGX = cl(C+
G,vX/∼) and LGσ

Xσ = cl(C+
Gσ ,v̄Xσ /∼)

are bi-Lipschitz-equivalent. Again the statement for PGX and PGσ
Xσ follows along

the same lines. �
COROLLARY 7.8. Let X be an infinite, connected graph.

� If G ≤ Aut X acts vertex-transitively on X and σ is an imprimitivity system of G on X
with finite blocks thenLGX andLGσ

Xσ (PGX andPGσ
Xσ ) are bi-Lipschitz-equivalent.

� If G ≤ Aut X acts freely and with finitely many orbits on VX then LG and LGX (PG
and PGX) are bi-Lipschitz-equivalent.

Proof. The first statement is immediate:

sup{d(x, y) : x, y ∈ b, b ∈ σ } < ∞

follows from the fact that G acts vertex-transitively on X and the blocks of σ are finite.
To prove the second statement we apply the ideas of the proof of the so-called

Contraction Lemma (see [2]): Since G acts freely and with finitely many orbits on X ,
there is a finite tree T in X which contains exactly one vertex of each orbit of G on X .
Furthermore, the sets gVT for g ∈ G form a partition of VX . Set σ = {gVT : g ∈ G}.
Then Xσ is isomorphic to a Cayley graph of G, and the groups G and Gσ are isomorphic,
as VT contains exactly one vertex of each orbit. Hence LG is (by definition) equal
to LGσ

Xσ and the spaces LGσ
Xσ , LGX are bi-Lipschitz-equivalent by the previous

lemma. �
THEOREM 7.9. Let X be an infinite, connected, vertex-transitive graph with

polynomial growth. Then there is a finitely generated, torsion-free, nilpotent group N
which has the same growth rate as X, and LN and PN are bi-Lipschitz-equivalent to LX
and PX, respectively.

To prove this result about graphs with polynomial growth, the following two results
of Trofimov [35] are essential.

THEOREM 7.10 (Theorem 1 in [35]). Let X be an infinite, connected, vertex-transitive
graph with polynomial growth. Then there exists an imprimitivity system σ of Aut X on
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VX with finite blocks such that Aut Xσ is a finitely generated virtually nilpotent group
and the stabiliser in Aut Xσ of a vertex of Xσ is finite.

THEOREM 7.11 (Theorem 2 in [35]). Let X be an infinite, connected graph with
polynomial growth and let a group G ≤ Aut X act vertex-transitively on VX . Then there
exists an imprimitivity system σ of G on VX with finite blocks such that Gσ is a finitely
generated virtually nilpotent group and the stabiliser in Gσ of a vertex of Xσ is finite.

Proof of Theorem 7.9. Let G = Aut X and let σ and Gσ as in Theorem 7.11. Then
Gσ contains a finitely generated, nilpotent, normal subgroup N of finite index. By [30,
Corollary 2.7] we can furthermore assume that N is torsion-free. Since the finite index
of N in Gσ implies that N acts with finitely many orbits on X , we can assume by [29,
Theorem 2.3] that all n ∈ N, n �= 1, act with infinite orbits on Xσ .

Since the vertex stabilisers of Aut Xσ and Gσ are both finite (by Theorems 7.10
and 7.11), both groups have the same growth rate as the graph Xσ which is of course
equal to the growth rate of X . Hence Gσ has finite index in Aut Xσ . As N has finite
index in Gσ , it has also finite index in Aut Xσ . Therefore Lemma 7.7 implies that the
projective (linear) boundary induced by N on Xσ is bi-Lipschitz-equivalent to the
projective (linear) boundary induced by Aut Xσ which we defined to be the projective
(linear) boundary of Xσ .

Since Xσ is a quotient graph of X with respect to the finite blocks of σ , Corollary 7.8
implies that the projective (linear) boundaries of X and Xσ which are induced by Aut X
and Gσ = (Aut X)σ , respectively, are bi-Lipschitz-equivalent.

To conclude the proof we show that LN and PN are bi-Lipschitz-equivalent to
LNXσ and PNXσ , respectively. As N is torsion-free and the stabiliser of a vertex is
finite, N acts freely on Xσ . Since N also acts with finitely many orbits on Xσ , the claim
follows directly from Corollary 7.8. �

As a consequence of Theorem 6.1 we obtain the following result.

COROLLARY 7.12. Let X be an infinite, connected, vertex-transitive graph with
polynomial growth and let N be a finitely generated, torsion-free, nilpotent group supplied
by Theorem 7.9. Then the linear boundary LX is homeomorphic to a disjoint union of
spheres:

LX = �ν(1)−1 	 �ν(2)−1 	 · · · 	 �ν(c)−1,

where c is the nilpotency class of N and ν(i) is the torsion-free rank of the i-th quotient in the
descending central series of N. Analogously, the projective boundaryPX is homeomorphic
to a disjoint union of projective spaces:

PX = �ν(1)−1 	 �ν(2)−1 	 · · · 	 �ν(c)−1.

Having these characterisations of the linear and projective boundaries of vertex-
transitive graphs with polynomial growth, immediately the following question arises:
When are the linear (projective) boundary of an infinite, connected, vertex-transitive
graph X with polynomial growth and the linear (projective) boundary of its
automorphism group Aut X bi-Lipschitz-equivalent? Using the concept of bounded
automorphisms we are able to present a partial answer to this question.

An automorphism b ∈ Aut X is called bounded if there is an integer k, depending on
b, such that d(x, b(x)) ≤ k holds for all x ∈ VX . Of course the bounded automorphisms
of X give rise to a normal subgroup B(X) of Aut X . As was shown in [11], the same
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holds for the bounded automorphisms of finite order of X . We denote the normal
subgroup of Aut X generated by all bounded automorphisms of finite order by B0(X).
As was also shown in [11], B0(X) is locally finite, periodic and has finite orbits on X .
Furthermore, in [30] the following result concerning B0(X) was proved:

PROPOSITION 7.13 (Corollary 2.7 in [30]). Let X be an infinite, connected graph
with polynomial growth and let G ≤ Aut X act vertex-transitively on X. Then the orbits
of B0(X) ∩ G on X give rise to an imprimitivity system σ of G on VX such that Gσ

satisfies the assertions of Theorem 7.11.

Together with the following result of Sabidussi [27], Proposition 7.13 now
immediately implies a partial answer to the above formulated question. To formulate
Sabidussi’s result we need another definition.

If X is a graph and m is a cardinal then the graph mX is defined on the Cartesian
product of VX by a set M of cardinality m, and

E(mX) = {{(x, i), (y, j)} : {x, y} ∈ EX , i, j ∈ M
}
.

THEOREM 7.14 (Theorem 4 in [27]). Let X be a connected graph and let G ≤ Aut X
act vertex-transitively on X. Furthermore, let m denote the cardinality of the stabiliser in
G of a vertex of X. Then mX is a Cayley graph of G.

COROLLARY 7.15. Let X be an infinite, connected, vertex-transitive graph with
polynomial growth. Then LAut X and P Aut X are bi-Lipschitz-equivalent to LX and
PX, respectively, if B0(X) is finite.

Proof. B0(X) is a normal subgroup of Aut X . If it is in addition finite then it
follows from 7.13 and 7.10 that the stabiliser of a vertex of X in Aut X has some finite
cardinality m. Then, by Theorem 7.14, mX is a Cayley graph of Aut X and arguments
quite similar to those in the proof of Theorem 7.9 immediately complete the proof. �

In [34] Trofimov defined a lattice as a connected locally finite graph X , such that
for one of the groups G, acting vertex-transitively on X , there exists an imprimitivity
system σ with finite blocks, such that Gσ is a finitely generated, commutative group. As
was shown in [34], in this case G ≤ B(X) holds. Furthermore, it is obvious that lattices
have polynomial growth with the same growth rate as Gσ . In addition lattices can be
characterised as follows:

THEOREM 7.16 (Theorem 1 in [34]). Let X be a connected locally finite graph. Then
X is a lattice if and only if a group G ≤ B(X) acts vertex-transitively on X.

This immediately leads to the following:

THEOREM 7.17. Let X be a connected locally finite graph of polynomial growth with
growth rate r and let a group G ≤ B(X) act vertex-transitively on X. Then

LX = �r−1 and PX = �r−1.

Proof. Applying Theorem 7.16 this result can be shown analogously to the proof
of Theorem 7.9. �

Let X now be a Cayley graph of a group G. Then any group element g ∈ G gives
rise to a bounded automorphism of X if and only if the conjugacy class of g in G is
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finite (see e.g. [11, page 335]). So the boundedness of an element g ∈ G is independent
of whatever Cayley graph represents G.

A group G is called FC-group if for every g ∈ G the conjugacy class of g in G is
finite. Hence for FC-groups G each g ∈ G acts as a bounded automorphism on any
Cayley graph of G. Therefore Cayley graphs of finitely generated FC-groups are lattices
and Theorem 7.17 immediately implies:

COROLLARY 7.18. Let G be a finitely generated FC-group with polynomial growth
of growth rate r. Then

LG = �r−1 and PG = �r−1.

8. Attaching the boundary. Let � be any subset of U/∼. In the following we
describe a topology τ on the disjoint union X̄ of X and �, such that two requirements
hold:
� The subspace topology of τ on X is induced by the metric d.
� If x1, x2, . . . is a sequence in X , which eventually leaves any ball in X , and ξ is

an equivalence class in �, such that x1, x2, . . . ∈ R for some R ∈ ξ then x1, x2, . . .

converges to ξ in τ .

Due to the second requirement the subspace topology of τ on � is in general neither
induced by the metric t nor Hausdorff, see Lemma 8.2.

Fix some reference point o in X and let ξ ∈ � be an equivalence class. If R ∈ ξ

and α > 0 and r ≥ 0 then we set

N(R, α, r) = int
(
αR \ U(o, r)

) 	 {ζ ∈ � : s+(ξ, ζ ) < α}

where int(A) is the interior of the set A ⊆ X . Note that N(R, α, p) ⊆ N(S, β, q) if R ⊆ S,
α ≤ β, p ≥ q. We define the topology τ on X̄ = X 	 � by assigning to each x ∈ X̄ a
family Vx of sets which serves as an open neighbourhood base for x:
� If x ∈ X then Vx is the family of open balls centred at x.
� If ξ ∈ � then Vξ is the family of sets N(R, α, r) with R ∈ ξ , α > 0, and r ≥ 0.

LEMMA 8.1. The families Vx, x ∈ X̄ , are open neighbourhood bases of a topology τ

on X̄. Its subspace topology on X is induced by the metric d, X is dense and open in X̄,
and the subspace topology on � is T0.

Proof. By Theorem 4.5 in [36] we have to check the following three conditions for
all x ∈ X̄ :
� If V ∈ Vx then x ∈ V .
� If V1, V2 ∈ Vx then V3 ⊆ V1 ∩ V2 for some V3 ∈ Vx.
� If V ∈ Vx and z ∈ V then W ⊆ V for some W ∈ Vz.

The first condition is immediate for all x ∈ X̄ and the second and third condition hold
for all x ∈ X . Hence let ξ ∈ �. In order to prove the second condition for ξ consider
N(R, α, p), N(S, β, q) ∈ Vξ with R, S ∈ ξ , α, β > 0, and p, q ≥ 0. Choose ε in (0, β)
and set

γ = min
{
α,

β−ε

1+ε

}
.
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Since R, S ∈ ξ , it follows that s(R, S) = 0 and by Lemma 2.5 there is a number r ≥
max{p, q} such that R \ U(o, r) ⊆ εS. Using Lemma 2.2 this yields

γ R ⊆ γ (R \ U(o, r)) ∪ γ U(o, r) ⊆ (γ + εγ + ε)S ∪ U(o, (1 + γ )r)

⊆ βS ∪ U(o, (1 + γ )r)

by the choice of γ . Therefore

N(R, γ, (1 + γ )r) ⊆ N(R, α, p) ∩ N(S, β, q),

whence the second condition holds for ξ . The third condition holds for ξ , if z ∈ V ∩ X
or z = ξ . Hence consider V = N(R, α, p) with R ∈ ξ , α > 0, p ≥ 0, and let ζ �= ξ

be an element in V ∩ �. Choose an element S in ζ and choose β in (s+(R, S), α),
which is possible, since s+(R, S) = s+(ξ, ζ ) < α. There is a number r ≥ p, such that
S \ U(o, r) ⊆ βR. Set γ = α−β

1+β
> 0. Then

γ S ⊆ γ (S \ U(o, r)) ∪ γ U(o, r) ⊆ (γ + βγ + β)R ∪ U(o, (1 + γ )r)

= αR ∪ U(o, (1 + γ )r)

by the choice of β and γ . Hence we obtain

N(S, γ, (1 + γ )r) ⊆ N(R, α, p).

The last three assertions follow from the construction of τ . �

Remark. Let X be an unbounded, locally compact, metric space. Then (X̄, τ )
is compact if the equivalence class of the unbounded set X is an element of �. If,
apart from the equivalence class of X , � contains further elements then (X̄, τ ) is not
Hausdorff.

LEMMA 8.2. Let � be any subset of U/∼ and let (X̄, τ ) be defined as above.
� The space (X̄, τ ) is Hausdorff if and only if

s+(ξ, ζ ) = 0 ⇐⇒ s+(ζ, ξ ) = 0

for all ξ, ζ ∈ �. In this case, the subspace topology of τ on � is induced by the
metric t.

� Suppose that � = cl(E/∼) for some family E ⊆ U . If there exists a function f : [0, 1] →
[0,∞), such that f (0) = 0, f is continuous at 0, and s+(S, R) ≤ f (s+(R, S)) for all
R, S ∈ E then (X̄, τ ) is Hausdorff and the subspace topology of τ on cl(E/∼) is
induced by the metric t.

Proof. The first assertion is a direct consequence of the definition of the open
neighbourhood bases Vξ for ξ ∈ �. The second statement is a consequence of the first,
since the hypotheses imply that

s+(ξ, ζ ) = 0 ⇐⇒ s+(ζ, ξ ) = 0

https://doi.org/10.1017/S0017089514000512 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089514000512


616 BERNHARD KRÖN ET AL.

o

〈h〉+

hk

hk+1

〈g〉+
gν(k)

gn

gν(k+1)

Figure 2. The positive powers of two elements g, h and constellation used in the proof
of Proposition 8.3.

for all ξ, ζ ∈ cl(E/∼): If s+(ξ, ζ ) = 0 and ε > 0 is given then there are ξ ′, ζ ′ ∈ E/∼,
such that s(ξ, ξ ′) ≤ ε and s(ζ, ζ ′) ≤ ε. Thus

s+(ζ, ξ ) ≤ 2ε + ε2 + s+(ζ ′, ξ ′)(1 + ε)2

≤ 2ε + ε2 + f (s+(ξ ′, ζ ′))(1 + ε)2

≤ 2ε + ε2 + f (2ε + ε2)(1 + ε)2.

This shows that s+(ζ, ξ ) = 0. �
With these preparations we are able to provide a criterion which ensures that

the topology defined above on the disjoint union of a compactly generated, locally
compact Hausdorff group G and its linear boundary LG (projective boundary PG) is
Hausdorff and the subspace topology on LG (PG) is induced by the angle metric t.

PROPOSITION 8.3. Let G be a compactly generated, locally compact Hausdorff group.
Assume that there exists a constant C ≥ 1, such that for every group element g ∈ G with
〈g〉+ ∈ C+G there is an element g̃ ∈ G with the following two properties:
� 〈g̃〉+ ∼ 〈g〉+ and
� d(1, g̃m) ≤ Cd(1, g̃n) + C for all m, n with 0 ≤ m ≤ n.
Then the topology τ on G 	 LG defined by Lemma 8.1 is Hausdorff and the subspace
topology of τ on LG is induced by the metric t. An analogous statement holds for the
projective boundary.

Proof. We check that the function f : [0, 1] → [0,∞), x �→ 2(1 + 4C)x satisfies the
conditions of the second part of Lemma 8.2 which implies the statement.

Of course, f is continuous and f (0) = 0. Furthermore, if x ≥ 1
2 , then f (x) ≥

1 + 4C ≥ 1. Hence s+(〈h〉+, 〈g〉+) ≤ f (s+(〈g〉+, 〈h〉+)) is trivially true if 〈g〉+, 〈h〉+ ∈
C+G and s+(〈g〉+, 〈h〉+) ≥ 1

2 , since s+(〈h〉+, 〈g〉+) ≤ 1. Hence we may assume that
s+(〈g〉+, 〈h〉+) < 1

2 . Additionally, after replacing g by g̃ if necessary, we may assume that
d(1, gm) ≤ Cd(1, gn) + C for all m, n with m ≤ n. Choose a number α which satisfies
s+(〈g〉+, 〈h〉+) < α < 1

2 . Then there is a constant a ≥ 0, such that 〈h〉+ ⊆ α〈g〉+ + a.
Hence, for each n ∈ �0 there is an integer ν(n) ≥ 0 such that

d(hn, gν(n)) ≤ αd(1, gν(n)) + a.

Now we define the function κ : �0 → �0 by

κ(n) = min{m ∈ �0 : ν(m) ≤ n ≤ ν(m + 1)}.
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We claim that

d(gn, hκ(n)) ≤ 2(1 + 4C)αd(1, hκ(n)) + 2Cd(1, h) + 2a + 8Ca + C

for all n ∈ �0. Once this claim is established then, by the second assertion of Lemma 8.2,
the proof is finished. Let n ≥ 0 be an integer and set k = κ(n). Since

d(gn, hk) ≤ d(gn, gν(k)) + d(gν(k), hk),

we need to find upper bounds for d(gn, gν(k)) and d(gν(k), hk), see Figure 2.
Then

d(1, gν(k)) ≤ d(1, hk) + d(hk, gν(k)) ≤ d(1, hk) + αd(1, gν(k)) + a

yields

d(1, gν(k)) ≤ 1
1−α

(d(1, hk) + a) ≤ 2d(1, hk) + 2a

using the bound α ≤ 1
2 . Thus

d(gν(k), hk) ≤ αd(1, gν(k)) + a ≤ 2αd(1, hk) + 2a.

We obtain

d(gν(k), gν(k+1)) ≤ d(gν(k), hk) + d(hk, hk+1) + d(hk+1, gν(k+1))

≤ αd(1, gν(k)) + a + d(1, h) + αd(1, gν(k+1)) + a.

Then d(1, gν(k+1)) ≤ d(1, gν(k)) + d(gν(k), gν(k+1)) implies

d(gν(k), gν(k+1)) ≤ αd(gν(k), gν(k+1)) + 2αd(1, gν(k)) + d(1, h) + 2a

and by rearranging the last inequality we get

d(gν(k), gν(k+1)) ≤ 1
1−α

(2αd(1, gν(k)) + d(1, h) + 2a)

≤ 4αd(1, gν(k)) + 2d(1, h) + 4a

≤ 8αd(1, hk) + 2d(1, h) + 8a

using the bound α ≤ 1
2 twice. The assumption on g implies

d(gn, gν(k)) ≤ Cd(gν(k), gν(k+1)) + C ≤ 8Cαd(1, hk) + 2Cd(1, h) + 8Ca + C.

Collecting the pieces yields

d(gn, hk) ≤ 2(1 + 4C)αd(1, hk) + 2Cd(1, h) + 2a + 8Ca + C.

�
LEMMA 8.4. Let G be a connected, nilpotent Lie group or a finitely generated,

nilpotent group. Then the assumption of the previous proposition on G holds.

Proof. Without loss of generality we may assume that G is simply connected in
the Lie case or torsion-free in the discrete case, see Lemma B.1 and Corollary A.6.
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Furthermore, it is sufficient to prove the statement in the Lie case, as the discrete case
follows by embedding G in its real Mal’tsev completion.

Hence suppose that G is a connected, simply connected, nilpotent Lie group and
let dG be a word metric on G. We use the notation of Appendix B. By Lemma B.6 there
exists a constant q, such that

q−1⎪⎪⎪x
⎪⎪⎪≤ dG(1, exp(x)) ≤ q

⎪⎪⎪x
⎪⎪⎪+ q

for all x ∈ g. We claim that the assumption of the previous proposition holds for
C = q2. Let g be a group element of G. Then g ∈ Gi but g /∈ Gi+1 for some i ≥ 1.
Set y = πi(log(g)) ∈ Vi and h = exp(y). Then, for 0 ≤ m ≤ n, we have

⎪⎪⎪ym⎪⎪⎪= m1/ i⎪⎪⎪y
⎪⎪⎪≤

n1/ i⎪⎪⎪y
⎪⎪⎪=⎪⎪⎪yn⎪⎪⎪and therefore

dG(1, hm) ≤ q
⎪⎪⎪ym⎪⎪⎪+ q ≤ q

⎪⎪⎪yn⎪⎪⎪+ q ≤ q2dG(1, hn) + q. �

9. Random walks on nilpotent groups. Many aspects of random walks on
nilpotent groups were studied, see for instance [1, 16, 17, 22, 32]. In the sequel we
give a simple corollary of some results of Kaimanovich in [22]. Let G be a connected,
simply connected, nilpotent Lie group with descending central series

G = G1 ⊇ G2 ⊇ . . . Gc � Gc+1 = {1}
and let dG be a word metric on G. A random walk (Sk)k≥0 on G has finite first moment,
whenever

E(dG(1, S1)) =
∫

G
dG(1, g)dμ(g) < ∞,

where μ is the law of S1. Note that this notion does not depend on the choice of
the word metric. We say that (Sk)k≥0 has drift if there is an integer n ≥ 1, such
that S1 ∈ Gn almost surely and (SkGn+1)k≥0 is a random walk in the commutative
group Gn/Gn+1 with drift, i.e. if we identify Gn/Gn+1 with �ν(n), where ν(n) is the
dimension of Gn/Gn+1, then the expected direction E(S1Gn+1) ∈ Gn/Gn+1 = �ν(n) is
non-zero.

THEOREM 9.1. Let (Sk)k≥0 be a random walk with finite first moment and drift on a
connected, simply connected, nilpotent Lie group G. Then there is a deterministic group
element g, such that {Sk : k ≥ 0} ∼ 〈g〉+ holds almost surely. In terms of the topology on
G 	 LG, of Lemma 8.1, this means that almost surely (Sk)k≥0 converges to the equivalence
class of 〈g〉+ in LG. On the other hand, every point in LG is limit point of a random walk
with drift (in the sense above).

Proof. Let n ≥ 1 be the integer, such that S1 ∈ Gn almost surely and (SkGn+1)k≥0 is a
random walk with drift. By triviality of Poisson boundary and a result of Kaimanovich
(see Theorem 4.2 and the following Remark in [22]) there is a deterministic group
element g ∈ Gn (g /∈ Gn+1 by the assumptions), such that dGn (Sk, gk) = o(k) almost
surely. This implies dG(Sk, gk) = o(k1/n). Since dG(1, gk) ≥ C(g)k1/n for some constant
C(g) > 0, we obtain {Sk : k ≥ 0} ∼ 〈g〉+ almost surely. And the other statements
follow.

On the other hand, every point inLG is limit point of a corresponding deterministic
random walk. �
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Remark. As pointed out by Ryokichi Tanaka [33] the deterministic group element
g in the previous theorem is given by gGn+1 = E(S1Gn+1), where n is the integer, such
that S1 ∈ Gn almost surely and (SkGn+1)k≥0 is a random walk with drift.

Remark. A similar statement holds for finitely generated, torsion-free, nilpotent
groups. Suppose that G is such a group and consider a random walk (Sk)k≥0 on G with
drift. Then (Sk)k≥0 converges to an element in LG with respect to the topological space
(G 	 LG, τ ), where τ is the topology of Lemma 8.1. On the other hand, every point in
LG is limit point of a random walk with drift.

Appendix A. Compactly generated groups. We provide some results on word
metrics of compactly generated, locally compact groups and related issues which are
completely analogous to the case of finitely generated groups. The books of Hewitt and
Ross [19], Stroppel [31], and de la Harpe [8] provide a good background on topological
and finitely generated groups. We recall some basics from [17].

LEMMA A.1 (Proposition 1 in [17]). Let G be a compactly generated, locally
compact Hausdorff group.
� If S is a compact, symmetric, generating set then, for some n ≥ 0, the set Sn contains

a neighbourhood of 1.
� A subset of G is compact, if and only if it is closed and bounded with respect to some

word metric. Consequently, a subset is bounded if and only if it is relatively compact.
� If S and S′ are two compact symmetric generating sets then the associated word metrics

d and d ′ are bi-Lipschitz-equivalent, i.e. there is a constant q > 0, such that

q−1d(x, y) ≤ d ′(x, y) ≤ qd(x, y)

for all x, y ∈ G.

Proof. For sake of completeness we provide a short proof: Since G is Hausdorff, the
sets Sn, n = 0, 1, . . . , are closed and their union is equal to G. Hence, as locally compact
Hausdorff spaces are Baire spaces (see [36, Corollary 25.4]), there is an integer n ≥ 0,
such that Sn contains a non-empty open subset. Since Sn is symmetric, S2n contains a
neighbourhood of 1.

Let S be any compact, symmetric, generating subset of G and d be the associated
word metric. Choose n ≥ 0 such that Sn contains some open neighbourhood U of
1. Suppose that A is a compact subset of G. Then there are finitely many elements
a1, . . . , ar of A such that A ⊆ a1U ∪ · · · ∪ arU . Thus

d(1, a) ≤ n max{d(1, a1), . . . , d(1, ar)}

for all a ∈ A. Hence A is bounded with respect to d and, since G is assumed to be
Hausdorff, the set A is also closed. Now suppose that A is a closed subset of G and
bounded with respect to d. Then A ⊆ Sm for some m ≥ 0 which implies that A is
compact.

By the second statement, there is a constant q > 0, such that d ′(1, x) ≤ q for all
x ∈ S and d(1, y) ≤ q for all y ∈ S′. This implies the third assertion. �
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A metric space (X, d) is called q-quasi-geodesic, if for all x, y ∈ X there is an integer
n ≥ 0 and points x = x0, x1, . . . , xn−1, xn = y in X , such that

n ≤ qd(x, y) + q and d(xi−1, xi) ≤ q

for all 1 ≤ i ≤ n. We remark that similar notions are used in the literature (see for
instance [3, Definition 8.22] and [15, Section 0.2.D]). Of course, any geodesic metric
space is 1-quasi-geodesic and any word metric on a compactly generated, locally
compact group is 1-quasi-geodesic.

In the following we give a straightforward generalisation of the classical Milnor-
Švarc lemma (see for instance [3, Proposition 8.19] or [8, Theorem IV.B.23]) to the
continuous case. Before stating the lemma we give a precise description of the setting:
Let G be a locally compact group and X be a Hausdorff space. Furthermore, let dX

be a quasi-geodesic metric on X (we do not assume that dX induces the topology on
X). If not stated otherwise, all topological notions concerning X refer to the topology
on X with the exception of boundedness, which refers to the metric dX . An action
G × X → X , (g, x) �→ gx is called
� continuous, if it is a continuous mapping from G × X to X ,
� q-cobounded, if for all x, y ∈ X there is a g ∈ G with dX (gx, y) ≤ q,
� proper, if {g ∈ G : dX (gx, x) ≤ r} is compact for all x ∈ X and all r ≥ 0.

We say that G acts by isometries, if x �→ gx is an isometry with respect to dX for all
g ∈ G. Note that if the action is continuous and K ⊆ G is compact then, for any x ∈ X ,
the set Kx = {gx : g ∈ K} is compact and hence bounded. With these preparations we
are ready to state the lemma:

LEMMA A.2. Let G be a locally compact Hausdorff group and X be a Hausdorff
space which is additionally endowed with a quasi-geodesic metric dX , such that all compact
subsets are bounded. Suppose that there is a continuous, cobounded, proper action of G
by isometries on X. Then G is compactly generated and for any x ∈ X the map G → X,
g �→ gx is a quasi-isometry from (G, dG) to (X, dX ), where dG is some word metric of G.

Proof. Except for minor modifications the proof is the same as in [3, 8].
For simplicity we assume that the constant q involved in the quasi-geodesic metric

is the same as the constant q of the cobounded action. Fix x ∈ X . Since the action is
proper, the set {g ∈ G : d(gx, x) ≤ 3q} is compact. Let S be the union of this set and
its inverse. Then S is compact and symmetric and 1 ∈ S.

We show that S generates G. Let g ∈ G. Since (X, dX ) is q-quasi-geodesic, there are
x = x0, x1, . . . , xn = gx, such that n ≤ qd(x, gx) + q and d(xi−1, xi) ≤ q for 1 ≤ i ≤ n.
Since the action is q-cobounded, there are group elements g0 = 1, g1, . . . , gn = g, such
that dX (gix, xi) ≤ q for all 0 ≤ i ≤ n. Then

dX (g−1
i−1gix, x) = dX (gix, gi−1x) ≤ dX (gix, xi) + dX (xi, xi−1) + dX (xi−1, gi−1x) ≤ 3q.

It follows that si = g−1
i−1gi ∈ S and thus g = gn = s1 · · · sn ∈ Sn. Hence S is a generating

set. Let dG be the word metric on G with respect to S. Then the estimate above for
g ∈ G yields

dG(1, g) ≤ n ≤ qdX (x, gx) + q.
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Now we prove that G → X , g �→ gx is a quasi-isometry from (G, dG) to (X, dX ).
Let g, h ∈ G. Then we obtain

dG(g, h) = dG(1, g−1h) ≤ qdX (x, g−1hx) + q = qdX (gx, hx) + q.

For the reversed bound, note that Sx is bounded, since S is compact. Hence

M = sup{dX (x, y) : y ∈ Sx}
is finite. Suppose that dG(g, h) = n ≥ 1 and g−1h = s1 · · · sn for some s1, . . . , sn ∈ S.
Then

dX (gx, hx) = dX (x, g−1hx) = dX (x, s1 · · · snx)

≤ dX (x, s1x) + dX (s1x, s1s2x) + · · · + dX (s1 · · · sn−1x, s1 · · · snx)

= dX (x, s1x) + dX (x, s2x) + · · · + dX (x, snx)

≤ Mn = MdG(g, h).

�
In order to have a handy reference we formulate the following well-known results,

see [19, Section 5] and [4, Section I.10.2].

LEMMA A.3. Let G be a Hausdorff group.
� Suppose that H is a subgroup. We write H\G to denote the set of right cosets Hg,

g ∈ G, and equip H\G with the quotient topology. Then the projection π : G → H\G
is open (i.e. images of open sets are open). If H is compact then π is also proper (i.e.
preimages of compact sets are compact).

� Suppose that H is a Hausdorff group and π : H → G is a continuous and open
homomorphism which is onto. If the kernel of π is compact then π is proper.

EXAMPLE A.4. Let G be a compactly generated, locally compact Hausdorff group
with word metric dG, N a compact Hausdorff group, and H a Hausdorff group. Suppose
that

{1} −→ N −→ H
π−→ G −→ {1}

is a topological exact sequence (i.e. all involved homomorphisms are continuous). The
action H × G → G, (h, g) �→ π (h)g is continuous and it acts by isometries. As π is
onto, this action is obviously cobounded. Furthermore, the action is proper, if and
only if

{h ∈ H : dG(hg, g) ≤ r} = π−1(gB(1, r)g−1)

is compact for all g ∈ G and all r ≥ 0. Here B(1, r) is the closed ball in G with respect
to dG. If π is an open map, it follows that the action is proper (Lemma A.3) and H is
locally compact, since this is an extension property.

EXAMPLE A.5. Consider a compactly generated, locally compact Hausdorff group
G with word metric dG and let H be a subgroup of G. Then H × G → G, (h, g) → hg
is a continuous action which acts by isometries. The set H\G inherits a metric dH\G

from G:

dH\G(Hg1, Hg2) = min{dG(h1g1, h2g2) : h1, h2 ∈ H}
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for g1, g2 ∈ G, which is well-defined, since dG is discrete. By left-invariance the action
is cobounded, if and only if (H\G, dH\G) is bounded. Notice that (H\G, dH\G) is
bounded, if H\G is compact with respect to the quotient topology of G. To see this,
choose n ≥ 1, such that Sn contains an open neighbourhood U of 1. Since the projection
π : G → H\G is open (Lemma A.3), {π (gU) : g ∈ G} is an open cover of H\G. Hence
there is a finite subcover {π (g1U), . . . , π (gmU)}. Thus any coset of H\G is of the form
Hgiu for some 1 ≤ i ≤ m and some u ∈ U . This yields the bound

dH\G(H, Hgiu) ≤ dG(1, giu) ≤ dG(1, gi) + dG(1, u)

≤ max{dG(1, gi) : 1 ≤ i ≤ m} + n.

If H is a closed subgroup then H is locally compact and this action is proper. To see
this let g ∈ G and r ≥ 0 be given. Then

{h ∈ H : dG(hg, g) ≤ r} = gB(1, r)g−1 ∩ H

is compact, since gB(1, r)g−1 is compact and H is closed.

By an application of the generalised Milnor-Švarc lemma to the situations
described in the two previous examples we obtain the following:

COROLLARY A.6. Consider a compactly generated, locally compact Hausdorff group
G with word metric dG.
� Suppose that N is a compact Hausdorff group and H is a Hausdorff group and that

{1} −→ N −→ H
π−→ G −→ {1}

is a topological exact sequence, such that π : H → G is open. Then H is compactly
generated and locally compact and π is a quasi-isometry from (H, dH) to (G, dG) for
any word metric dH on H.

� If H is a closed subgroup of G and (H\G, dH\G) is bounded then H is compactly
generated and locally compact and the inclusion is a quasi-isometry from (H, dH)
to (G, dG) for any word metric dH on H. Furthermore, if H\G is compact, then
(H\G, dH\G) is bounded.

Finally, we note the following consequence of the Milnor-Švarc lemma, which
says, that any reasonable metric on a compactly generated, locally compact Hausdorff
group is quasi-isometrically equivalent to any word metric on the group.

COROLLARY A.7. Let G be a locally compact Hausdorff group. Suppose that dQ is a
left-invariant, q-quasi-geodesic metric on G with the property, that compact subsets are
bounded with respect to dQ and closed balls with respect to dQ are compact. Then G is
compactly generated and dQ is quasi-isometrically equivalent to any word metric on G.

Note that it is not assumed that the metric dQ induces the group topology. However,
the assumptions guarantee some compatibility between the metric dQ and the group
topology. For example, the assumptions on dQ are satisfied, if dQ is left-invariant,
geodesic, proper and induces the group topology.

Appendix B. Nilpotent Lie groups. The purpose of the appendix is to provide
some background on nilpotent Lie groups, see for instance [7, 13, 18], and, mainly, to
prove several technical results, which are used in the proof of Theorem 6.1.
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Let G be a group. We denote by [g, h] = g−1h−1gh the commutator in G and define
the k-fold commutator inductively by [g1] = g1 and [g1, . . . , gk] = [g1, [g2, . . . , gk]]. The
descending central series of G is inductively defined by

γ1(G) = G and γn+1(G) = 〈[G, γn(G)]〉
for n ≥ 1. A group G is called nilpotent if γn+1(G) = {1} for some integer n and the least
integer n with this property is called nilpotency class of G. If A is a subset of G then the
set

I(A) = {g ∈ G : gn ∈ A for some n ∈ �}
is called isolator of A.

If G is commutative and finitely generated, we denote its torsion-free rank by rk(G).
If G is a commutative, connected Lie group then G is isomorphic to �a × (�/�)b for
some integers a, b. In analogy to the discrete case we call a the compact-free dimension
of G and denote it by dim(G).

LEMMA B.1. Let G be a nilpotent group and set Gn = γn(G) for n ∈ �.
� If G is additionally a connected Lie group then the set C of all compact elements in G

is a characteristic, connected, compact subgroup, G/C is simply connected and

dim(γn(G/C)/γn+1(G/C)) = dim(Gn/Gn+1)

for all n ∈ �.
� If G is finitely generated then the set T of torsion elements in G is a characteristic,

finite subgroup, G/T is torsion-free and

rk(γn(G/T)/γn+1(G/T)) = rk(Gn/Gn+1)

for all n ∈ �.
� If G is finitely generated and torsion-free then G = I(G1) ⊇ I(G2) ⊇ · · · is a central

series of G with torsion-free quotients, Gn has finite index in I(Gn) and

rk(I(Gn)/I(Gn+1)) = rk(Gn/Gn+1)

for all n ∈ �

Proof. Let G be a connected, nilpotent Lie group. Theorem 5.1 in [12] implies
the statements concerning C and G/C. It remains to show the equality concerning
dimensions. By induction we have γn(G/C) = GnC/C and it is easy to check that

Gn/Gn+1 → (GnC/C)/(Gn+1C/C), gGn+1 �→ gC · (Gn+1C/C)

is a continuous epimorphism with compact kernel which implies the equality.
Now let G be a finitely generated, nilpotent group. Corollary 1.10 in [28] yields the

first part and the assertion concerning ranks follows mutatis mutandis.
Finally, assume that G is a finitely generated, torsion-free, nilpotent group. By

Lemma 3.4 in [28] I(G1) ⊇ I(G2) ⊇ . . . is a central series with torsion-free quotients.
Furthermore, it is easy to see that I(Gn)/Gn = T(G/Gn), where T(G/Gn) is the
characteristic, finite subgroup of all torsion elements in G/Gn. Consider the map

Gn/Gn+1 → I(Gn)/I(Gn+1), gGn+1 �→ gI(Gn+1).
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This is a homomorphism which has finite kernel and an image of finite index. This
yields the claim concerning ranks. �

In the following we fix a connected, simply connected, nilpotent Lie group G with
nilpotency class c and set Gn = γn(G) for n ∈ �. We denote by g the associated Lie
algebra and by (x, y) the Lie bracket of g. Furthermore, we define the k-fold Lie bracket
inductively by (x1) = x1 and (x1, . . . , xk) = (x1, (x2, . . . , xk)). The descending central
series of g is

g1 = g and gn+1 = span�(g, gn)

for n ≥ 1. The Lie algebra of Gn is gn. Let ν(n) be the compact-free dimension of
Gn/Gn+1. Then

Gn/Gn+1 � gn/gn+1 � �ν(n)

as commutative groups. The exponential map exp: g → G is a diffeomorphism from g

to G and its inverse is log : G → g. The Baker-Campbell-Hausdorff formula yields a
multiplicative group structure on g:

xy = x + y + 1
2 (x, y) + 1

12 (x, x, y) − 1
12 (y, x, y) − 1

24 (y, x, x, y) ± · · ·
for x, y ∈ g. Then the exponential map exp is a group isomorphism from (g, ·) to (G, ·)
and it is common to identify the Lie group G with its Lie algebra g.

A subgroup � is called uniform in G, if � is discrete and the quotient �\G is
compact. In the following lemma we study uniform subgroups. Its proof depends on
well-known results on such subgroups which can be found in [7, Chapter 5].

LEMMA B.2. Let � be a uniform subgroup in G and set �n = γn(�) for n ∈ �. Then
� ∩ Gn = I(�n) and

rk(�n/�n+1) = dim(Gn/Gn+1)

for all n ∈ �

Proof. First we show that � ∩ γn(G) = I(γn(�)) for all n ∈ � by backward induction
on n:
� Suppose that n = c: Obviously, I(�c) ⊆ � and I(�c) ⊆ Gc, hence I(�c) ⊆ Gc ∩ �.

To prove the reversed inclusion, note that exp is a group homomorphism from
(gc,+) to (Gc, ·). Let X ⊆ g be a strong Mal’tsev basis strongly based on �

and set Z = exp(X). Then �c = 〈[Z, . . . , Z]〉 (see [25, Theorem 5.4]) and thus
log(�c) = span�(X, . . . , X), since exp((x1, . . . , xc)) = [exp(x1), . . . , exp(xc)] for all
x1, . . . , xc ∈ g. Furthermore, we have gc = span�(X, . . . , X). This implies that �c

and Gc ∩ � are uniform subgroups in Gc. Therefore (Gc ∩ �)/�c is finite, whence
Gc ∩ � ⊆ I(�c).

� Assume that the claim holds for n ≥ 2: Consider the groups G/Gn and �Gn/Gn. Then
�Gn/Gn is (topologically) isomorphic to �/(� ∩ Gn). By ϕ we denote the canonical
isomorphism �Gn/Gn → �/(� ∩ Gn). Since �Gn/Gn is a uniform subgroup in G/Gn

and G/Gn is nilpotent with nilpotency class n − 1, using the initial step for the
nilpotent group G/Gn yields

(� ∩ Gn−1)Gn/Gn = �Gn/Gn ∩ γn−1(G/Gn) = I(γn−1(�Gn/Gn)).
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Applying the isomorphism ϕ on both sides we obtain

(� ∩ Gn−1)/(� ∩ Gn) = I(γn−1(�/(� ∩ Gn)))

= I(�n−1(� ∩ Gn))/(� ∩ Gn)

= I(�n−1)/(� ∩ Gn)

using the induction hypothesis � ∩ Gn = I(�n) once more. It follows that � ∩
Gn−1 = I(�n−1).

Now we prove the assertion concerning ranks. Since � ∩ Gk is uniform in Gk for all
k ≥ 1, it follows that (� ∩ Gn)Gn+1/Gn+1 is uniform in Gn/Gn+1. This implies that

rk((� ∩ Gn)/(� ∩ Gn+1)) = rk((� ∩ Gn)Gn+1/Gn+1) = dim(Gn/Gn+1)

which yields the statement using the last part of Lemma B.1. �
Since g is a real vector space of finite dimension ν(1) + · · · + ν(c), there are linear

subspaces Vn ⊆ g of dimension ν(n), such that gn = Vn ⊕ gn+1. Hence

gn = Vn ⊕ · · · ⊕ Vc.

Write πn : g → Vn to denote the canonical projection. Then πn is a continuous
epimorphism from (gn, ·) to (Vn,+) with kernel gn+1. Let ‖·‖n be some 2-norm on
Vn. Then

‖x‖ = max{‖πn(x)‖n : 1 ≤ n ≤ c}
is a norm on g. Notice that ‖πn(x)‖ = ‖πn(x)‖n. Since the Lie bracket (·, ·) is bilinear,
we have the following simple statement.

LEMMA B.3. There is a constant M ≥ 1, such that ‖(x, y)‖ ≤ M‖x‖ ‖y‖ for all
x, y ∈ g. Consequently,

‖(x1, . . . , xk)‖ ≤ Mk−1‖x1‖ · · · ‖xk‖
for all x1, . . . , xk ∈ g.

For x ∈ g set
⎪⎪⎪x

⎪⎪⎪= max{‖πn(x)‖1/n : 1 ≤ n ≤ c}.
Then

⎪⎪⎪·⎪⎪⎪is called (homogeneous) gauge or quasi-norm (see for instance [5, 13, 16]). Note
that

⎪⎪⎪·⎪⎪⎪is homogeneous with respect to the dilation δt(x) = tπ1(x) + · · · + tcπc(x), i.e.⎪⎪⎪δt(x)
⎪⎪⎪= t

⎪⎪⎪x
⎪⎪⎪, and it satisfies a weak form of the triangle inequality with respect to the

Lie group structure on g (see Lemma B.5).

LEMMA B.4. For all x, y ∈ g the following holds:
�

⎪⎪⎪−x
⎪⎪⎪=⎪⎪⎪x

⎪⎪⎪,
�

⎪⎪⎪x + y
⎪⎪⎪≤⎪⎪⎪x

⎪⎪⎪+⎪⎪⎪y
⎪⎪⎪,

� if x ∈ gn and α ≥ 1 then
⎪⎪⎪αx

⎪⎪⎪≤ α1/n⎪⎪⎪x
⎪⎪⎪,

� if 0 ≤ α ≤ 1 then
⎪⎪⎪αx

⎪⎪⎪≤ α1/c⎪⎪⎪x
⎪⎪⎪.

In any case,
⎪⎪⎪αx

⎪⎪⎪≤ max{1, α}⎪⎪⎪x
⎪⎪⎪for all α ≥ 0.

The following lemma is a crucial observation due to Guivarc’h [16, Lemme 2.1],
see also [5, Lemma 2.5].
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LEMMA B.5. Let α > 0. Then, by appropriately rescaling the norms ‖·‖n, we have

⎪⎪⎪xy
⎪⎪⎪≤⎪⎪⎪x

⎪⎪⎪+⎪⎪⎪y
⎪⎪⎪+ α

for all x, y ∈ g.

In the sequel we assume that the norms ‖·‖n are chosen appropriately, so that
the previous lemma holds with α = 1. As a simple consequence we obtain

⎪⎪⎪(x, y)
⎪⎪⎪≤

2
⎪⎪⎪x

⎪⎪⎪+ 2
⎪⎪⎪y

⎪⎪⎪+ 2 and it follows by induction, that

⎪⎪⎪(x1, . . . , xk)
⎪⎪⎪≤ 2k−1(

⎪⎪⎪x1
⎪⎪⎪+ · · · +⎪⎪⎪xk

⎪⎪⎪) + 2k (2)

for all x1, . . . , xk ∈ g.
Since (G, ·) � (g, ·) is a connected, locally compact group, it is compactly

generated. Let dw be some word metric on the group (g, ·). The following result shows
a fundamental connection between the gauge

⎪⎪⎪·⎪⎪⎪and the word metric dw.

LEMMA B.6 (Theorem 2.7 in [5]). There is a constant q ≥ 1, such that

q−1⎪⎪⎪x
⎪⎪⎪≤ dw(0, x) ≤ q

⎪⎪⎪x
⎪⎪⎪+ q

for all x ∈ g.

After providing the basic setup and important tools from Lie theory, we now apply
the notions of Section 2 to this setting. We write s+

w instead of s+
(g,dw). The quantity da

defined by da(x, y) =⎪⎪⎪−x + y
⎪⎪⎪yields by Lemma B.4 a metric on g, and as before we

write s+
a instead of s+

(g,da). Although (x, y) �→⎪⎪⎪x−1y
⎪⎪⎪is not a metric, we define

s+
m(〈x〉+, 〈y〉+) = lim sup

n→∞
inf

{⎪⎪⎪y−nxm⎪⎪⎪⎪⎪⎪xm⎪⎪⎪ : m ∈ �0

}

and

s+
m(〈x〉, 〈y〉) = lim sup

|n|→∞
inf

{⎪⎪⎪y−nxm⎪⎪⎪⎪⎪⎪xm⎪⎪⎪ : m ∈ �0

}

for x, y ∈ g \ {0}. Using Lemmas 5.5 and B.6 we get the following comparison of s+
w

and s+
m.

LEMMA B.7. Let x, y ∈ g with x �= 0 and y �= 0. Then

q−2s+
m(〈x〉+, 〈y〉+) ≤ s+

w(〈x〉+, 〈y〉+) ≤ q2s+
m(〈x〉+, 〈y〉+)

and

q−2s+
m(〈x〉, 〈y〉) ≤ s+

w(〈x〉, 〈y〉) ≤ q2s+
m(〈x〉, 〈y〉),

where q is the constant of Lemma B.6.

Our goal is the comparison of s+
a and s+

m. We restrict this comparison to elements
of C+g and Cg. Note that C+(g, ·) = C+(g,+) and C(g, ·) = C(g,+), since xn = nx for
all x ∈ g and n ∈ �. Before we provide the necessary tools for this comparison, let us
identify L(g, da) and P(g, da).
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LEMMA B.8. Up to homeomorphism we have

L(g, da) = �ν(1)−1 	 · · · 	 �ν(c)−1, P(sg, da) = �ν(1)−1 	 · · · 	 �ν(c)−1.

Moreover, the following three statements yield a precise description of L(g, da) and
P(g, da).

(a) If x, y ∈ gi and x + gi+1 = y + gi+1 �= gi+1 then

s+
a (〈x〉+, 〈y〉+) = 0 and s+

a (〈x〉, 〈y〉) = 0.

(b) If x ∈ gi, x /∈ gi+1, and y ∈ gi+1 then

s+
a (〈x〉+, 〈y〉+) = 1 and s+

a (〈x〉, 〈y〉) = 1.

(c) If x, y ∈ Vi and x, y �= 0 then, using the notation of Example 2.11,

s+
a (〈x〉+, 〈y〉+) = (

sin(min{ 1
2π,∠(Hx, Hy)}))1/ i

and

s+
a (〈x〉, 〈y〉) = (

sin(∠(Lx, Ly))
)1/ i

.

Proof. Once we have proved (a), (b), (c) the statement of the lemma follows. We
only prove these three statements for s+

a (〈x〉+, 〈y〉+) the other case being analogous.
Statement (a). By assumption −y + x ∈ gi+1, whence

⎪⎪⎪−ny + nx
⎪⎪⎪=⎪⎪⎪n(−y + x)

⎪⎪⎪≤ n1/(i+1)⎪⎪⎪−y + x
⎪⎪⎪.

Since x ∈ gi \ gi+1, it follows that πi(x) �= 0 and

⎪⎪⎪nx
⎪⎪⎪≥⎪⎪⎪πi(nx)

⎪⎪⎪= n1/ i⎪⎪⎪πi(x)
⎪⎪⎪.

From this we infer that

s+
a (〈x〉+, 〈y〉+) ≤ lim sup

n→∞

⎪⎪⎪−ny + nx
⎪⎪⎪⎪⎪⎪nx

⎪⎪⎪ ≤ lim sup
n→∞

n1/(i+1)⎪⎪⎪−y + x
⎪⎪⎪

n1/ i⎪⎪⎪πi(x)
⎪⎪⎪ = 0.

Statement (b). Using (a), we may assume that x ∈ Vi. Then πi(−ny + mx) = mx and
so

⎪⎪⎪−ny + mx
⎪⎪⎪≥⎪⎪⎪πi(−ny + mx)

⎪⎪⎪=⎪⎪⎪mx
⎪⎪⎪.

This implies

inf
{⎪⎪⎪−ny + mx

⎪⎪⎪⎪⎪⎪mx
⎪⎪⎪ : m ∈ �0

}
≥ 1

and therefore s+
a (〈x〉+, 〈y〉+) ≥ 1.

Statement (c). Note that
⎪⎪⎪v

⎪⎪⎪= ‖v‖1/ i for all v ∈ Vi. Since s+
a (〈x〉+, 〈y〉+) =

s+
a (Hx, Hy), the statement follows from Example 2.11. �
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We now compare s+
a and s+

w . Let y, z be elements in g and consider the product
y−1(y + z) = (−y)(y + z). Then, using the Baker-Campbell-Hausdorff formula,

y−1(y + z) = (−y) + (y + z) + 1
2 (−y, y + z) + 1

12 (−y,−y, y + z)

− 1
12 (y + z,−y, y + z) ± · · ·

= z − 1
2 (y, z) + 2

12 (y, y, z) + 1
12 (z, y, z) ± · · · .

(3)

Of course in the last expression above at most c-fold Lie brackets occur and, for
each 1 ≤ k ≤ c, there are finitely many k-fold Lie brackets, say vk,1, . . . , vk,m(k), whose
entries are either y or z, and each of which contains at least one y and at least one z.
If 1 ≤ k ≤ c and 1 ≤ j ≤ m(k) then write qk,j for the rational coefficient in front of the
k-fold Lie bracket vk,j. Then

y−1(y + z) =
∑

1≤k≤c

∑
1≤j≤m(k)

qk,jvk,j.

Note that the constants qk,j depend on the Baker-Campbell-Hausdorff formula only.
For convenience we set Qk,j = max{1, qk,j} and

Q =
∑

1≤k≤c

∑
1≤j≤m(k)

Qk,j.

LEMMA B.9. Suppose that x, y ∈ gi and xgi+1 = ygi+1 �= gi+1. Then

⎪⎪⎪y−nxn⎪⎪⎪≤ 2c−1Q(c
⎪⎪⎪x

⎪⎪⎪+ c
⎪⎪⎪y

⎪⎪⎪+ 2)n(1−1/c)/ i

for all n ≥ 0.

Proof. Set z = x − y and m =⎪⎪⎪x
⎪⎪⎪+⎪⎪⎪y

⎪⎪⎪. By assumption z ∈ gi+1 and obviously⎪⎪⎪x
⎪⎪⎪,⎪⎪⎪y

⎪⎪⎪,⎪⎪⎪z
⎪⎪⎪≤ m. Using the representation (3) of the product y−1(y + z) we obtain

y−nxn = y−n(y + z)n =
∑

1≤k≤c

∑
1≤j≤m(k)

qk,jnkvk,j.

Since each k-fold Lie bracket vk,j contains at least one z, we get vk,j ∈ gki+1. Using (2)
yields

⎪⎪⎪vk,j
⎪⎪⎪≤ 2k−1km + 2k = 2k−1(km + 2) for all k, j and therefore

⎪⎪⎪qk,jnkvk,j
⎪⎪⎪≤ Qk,jnk/(ki+1)2k−1(km + 2).

Collecting the pieces, we obtain

⎪⎪⎪y−nxn⎪⎪⎪≤
∑

1≤k≤c

∑
1≤j≤m(k)

⎪⎪⎪qk,jnkvk,j
⎪⎪⎪

≤
∑

1≤k≤c

∑
1≤j≤m(k)

Qk,jnk/(ki+1)2k−1(km + 2)

≤ 2c−1Q(cm + 2)n(1−1/c)/ i

�
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LEMMA B.10. Suppose that x, y ∈ Vi and
⎪⎪⎪x

⎪⎪⎪≥⎪⎪⎪y
⎪⎪⎪= 1 and

⎪⎪⎪x − y
⎪⎪⎪= α

⎪⎪⎪x
⎪⎪⎪for some

α ∈ [0, 1]. Then
⎪⎪⎪y−nxn⎪⎪⎪≤ MQαi/c⎪⎪⎪xn⎪⎪⎪

for all n ≥ 0.

Proof. Set z = x − y ∈ Vi. Of course ‖x‖ ≥ ‖y‖ = 1, and ‖z‖ = αi‖x‖. Using the
representation (3) we get as in the proof above

y−nxn = y−n(y + z)n =
∑

1≤k≤c

∑
1≤j≤m(k)

qk,jnkvk,j.

Each k-fold Lie bracket vk,j contains at least one z, but this time vk,j ∈ gki. An
application of Lemma B.3 implies

⎪⎪⎪vk,j
⎪⎪⎪= max{‖πj(vk,j)‖1/ l : ik ≤ l ≤ c}

≤ max{‖vk,j‖1/ l : ik ≤ l ≤ c}
≤ max{(Mk−1αi‖x‖k)1/ l : ik ≤ l ≤ c}
≤ Mαi/c‖x‖1/ i = Mαi/c⎪⎪⎪x

⎪⎪⎪.
Hence we obtain

⎪⎪⎪y−nxn⎪⎪⎪≤
∑

1≤k≤c

∑
1≤j≤m(k)

⎪⎪⎪qk,jnkvk,j
⎪⎪⎪

≤
∑

1≤k≤c

∑
1≤j≤m(k)

Qk,jn1/ iMαi/c⎪⎪⎪x
⎪⎪⎪

= MQαi/c⎪⎪⎪xn⎪⎪⎪
�

LEMMA B.11. The following three statements hold.
(a) If x, y ∈ gi and xgi+1 = ygi+1 �= gi+1 then

s+
m(〈x〉+, 〈y〉+) = 0 and s+

m(〈x〉, 〈y〉) = 0.

(b) If x ∈ gi, x /∈ gi+1, and y ∈ gi+1 then

s+
m(〈x〉+, 〈y〉+) = 1 and s+

m(〈x〉, 〈y〉) = 1.

(c) If x, y ∈ Vi and x, y �= 0 then

s+
a (〈x〉+, 〈y〉+) ≤ s+

m(〈x〉+, 〈y〉+) ≤ MQ
(
s+

a (〈x〉+, 〈y〉+)
)i/c

and

s+
a (〈x〉, 〈y〉) ≤ s+

m(〈x〉, 〈y〉) ≤ MQ
(
s+

a (〈x〉, 〈y〉))i/c
.

Proof. Statement (a). By assumption πi(x) �= 0 and we get

⎪⎪⎪xn⎪⎪⎪≥⎪⎪⎪πi(xn)
⎪⎪⎪= n1/ i⎪⎪⎪πi(x)

⎪⎪⎪.
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x

y1

Figure 3. The constraints for the choice of x and y.

On the other hand Lemma B.9 implies

⎪⎪⎪y−nxn⎪⎪⎪≤ 2c−1Q(c
⎪⎪⎪x

⎪⎪⎪+ c
⎪⎪⎪y

⎪⎪⎪+ 2)n(1−1/c)/ i

for all n ≥ 0. Hence

s+
m(〈x〉+, 〈y〉+) ≤ lim sup

n→∞

⎪⎪⎪y−nxn⎪⎪⎪⎪⎪⎪xn⎪⎪⎪
≤ lim sup

n→∞
2c−1Q(c

⎪⎪⎪x
⎪⎪⎪+ c

⎪⎪⎪y
⎪⎪⎪+ 2)n(1−1/c)/ i

n1/ i⎪⎪⎪πi(x)
⎪⎪⎪ = 0.

Statement (b): By the first claim we may assume that x ∈ Vi. Using the Baker-
Campbell-Hausdorff formula we obtain πi(y−nxm) = xm and thus

⎪⎪⎪y−nxm⎪⎪⎪≥⎪⎪⎪πi(y−nxm)
⎪⎪⎪=⎪⎪⎪xm⎪⎪⎪.

This implies

inf
{⎪⎪⎪y−nxm⎪⎪⎪⎪⎪⎪xm⎪⎪⎪ : m ∈ �0

}
≥ 1

and s+
m(〈x〉+, 〈y〉+) ≥ 1.

Statement (c): To prove the lower bound, note that

⎪⎪⎪y−nxm⎪⎪⎪≥⎪⎪⎪πi(y−nxm)
⎪⎪⎪=⎪⎪⎪−ny + mx

⎪⎪⎪
for all n, m ∈ �0. This implies s+

m(〈x〉+, 〈y〉+) ≥ s+
a (〈x〉+, 〈y〉+).

Now we prove the upper bound. Set α = s+
a (〈x〉+, 〈y〉+). Without loss of generality

we may assume that α < 1. Furthermore, we may scale x and y by positive constants
without changing the value of s+

a (〈x〉+, 〈y〉+) or of s+
m(〈x〉+, 〈y〉+). Hence we may

assume that ‖y‖ = 1 and y is orthogonal to x − y with respect to the inner product
on Vi associated with ‖·‖, see Figure 3. As a consequence we get 1 = ‖y‖ ≤ ‖x‖
and ‖x − y‖ = αi‖x‖ (due to Lemma B.8). Then 1 =⎪⎪⎪y

⎪⎪⎪≤⎪⎪⎪x
⎪⎪⎪and

⎪⎪⎪x − y
⎪⎪⎪= α

⎪⎪⎪x
⎪⎪⎪. By

Lemma B.10 we get

⎪⎪⎪y−nxn⎪⎪⎪≤ MQαi/c⎪⎪⎪xn⎪⎪⎪
for all n ≥ 0. Thus

s+
m(〈x〉+, 〈y〉+) ≤ lim sup

n→∞

⎪⎪⎪y−nxn⎪⎪⎪⎪⎪⎪xn⎪⎪⎪ ≤ MQαi/c.

�
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