
3
Quantum anomalies from path integral

As is well-known, the Lagrangian approach in classical field theory is very
useful for constructing conserved currents associated with symmetries of
the Lagrangian. Noether’s theorems∗ describe how to construct corre-
sponding currents and when they are conserved.
An analogous approach in quantum field theory is based on path inte-

grals over fields. It naturally incorporates the classical results since the
weight in the path integral is given by the classical action.
However, anomalous terms (i.e. those in addition to the classical ones)

in the divergences of currents can appear in the quantum case owing
to a contribution from regulators which make the theory finite in the
ultraviolet limit. They are called quantum anomalies.
In this chapter we first consider the chiral anomaly, i.e. the quantum

anomaly in the divergence of the axial current, which appears in the
path-integral approach as a result of the noninvariance of the regularized
measure. Then we briefly repeat the analysis for the scale anomaly, i.e.
the quantum anomaly in the divergence of the dilatation current.

3.1 QED via path integral

Let us restrict ourselves to the case of quantum electrodynamics (QED),
though most of the formulas will be valid for a non-Abelian Yang–Mills
theory as well.
QED is described by the following partition function:

Z =
∫
DAµ

∫
Dψ̄Dψ e−S[A,ψ,ψ̄] , (3.1)

where Aµ is the vector-potential of the electromagnetic field, ψi and ψ̄i are
the Grassmann variables which describe the electron–positron field with

∗ See, for example, §2 of the book [BS76].
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48 3 Quantum anomalies from path integral

i being the spinor index. They are independent but are interchangeable
under involution

ψ
inv.←→ ψ̄ , (3.2)

which is defined such that∗

ψ1ψ2
inv.−→ ψ̄2ψ̄1 . (3.3)

In particular, ψ̄ψ is invariant under involution. Therefore, ψ̄ is an analog
of iψ̄ = iψ†γ0 in the operator formalism, while involution is analogous to
Hermitian conjugation.
The Euclidean QED action in Eq. (3.1) is given by

S[A,ψ, ψ̄] =
∫
ddx
(
ψ̄γµ∇µψ +mψ̄ψ +

1
4
F 2µν

)
, (3.4)

where ∇µ = ∂µ − ieAµ (x) is the covariant derivative as before,

Fµν = ∂µAν − ∂νAµ (3.5)

is the field strength, and γµ are the Euclidean γ-matrices which are dis-
cussed in Sect. 1.2.

3.2 Chiral Ward identity

Let us perform the local chiral transformation (c.t.)

ψ(x) c.t.−→ ψ′(x) = eiα(x)γ5ψ(x) ,

ψ̄(x) c.t.−→ ψ̄′(x) = ψ̄(x) eiα(x)γ5 .

 (3.6)

Here the parameter of the transformation α(x) is a function of x and γ5
is the Hermitian matrix

γ5 = γ1γ2γ3γ4 (3.7)

in d = 4 dimensions. Note that both ψ and ψ̄ have the same transforma-
tion law since in Minkowski space

ψ̄ = ψ†γ0 , γ†5 = γ5 , γ†0 = γ0 , (3.8)

while γ5 and γ0 anticommute.

∗ See the book by Berezin [Ber86] (§3.5 of Part I). Sometimes involution is defined with
an opposite sign (i.e. ψ̄ is substituted by iψ̄) which results in a multiplication of the
fermionic part of the action (3.4) by an extra factor of i.
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3.2 Chiral Ward identity 49

The variation of the classical action (3.4) under the chiral transforma-
tion (3.6) reads as

δS =
∫
ddx
[
∂µα(x)JAµ (x) + 2imα(x)ψ̄(x)γ5ψ(x)

]
, (3.9)

where the axial current

JAµ = iψ̄γµγ5ψ (3.10)

is the Noether current associated with the chiral transformation.
It follows from Eq. (3.9) that the divergence of the axial current (3.10)

is given by

∂µJ
A
µ = 2imψ̄γ5ψ , (3.11)

so that it is conserved in the massless case (m = 0) at the classical level:

∂µJ
A
µ

m=0= 0 . (3.12)

Problem 3.1 Verify Eq. (3.11) using the classical Dirac equation(
∇̂+m

)
ψ(x) = 0 , ∇̂ = γµ∇µ . (3.13)

Solution Calculate the divergence of the axial current (3.10) using Eq. (3.13)
and the conjugate one

ψ̄(x)
(←
∇̂ −m

)
= 0 (3.14)

with
←
∇µ =

←
∂µ + ieAµ(x) . (3.15)

Let us now discuss how the measure in the path integral changes under
the chiral transformation (3.6). The old and new measures are related by

Dψ̄Dψ = Dψ̄′Dψ′ det
[
e2iα(x)γ5δ(d)(x− y)

]
, (3.16)

where the determinant is over the space indices x and y, as well as over
the γ-matrix indices i and j. Note that the determinant, which is nothing
but the Jacobian of the transformation (3.6), emerges for the Grassmann
variables to the positive rather than the negative power as for commuting
variables. This is a known property of the integrals (2.17) over Grassmann
variables [Ber86] which look more like derivatives.
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50 3 Quantum anomalies from path integral

The logarithm of the Jacobian in Eq. (3.16) can be calculated as

ln det
[
e2iα(x)γ5δ(d)(x− y)

]
= Tr ln

(
e2iαγ5
)
= Tr (2iα γ5)

= 2i
∫
ddxα(x) δ(d)(0) sp γ5 = 0 , (3.17)

where sp is the trace only over the γ-matrix indices i and j. The RHS
vanishes naively since the trace vanishes. A subtlety with the appearance
of the infinite factor of δ(d)(0) will be discussed in the next section.
Note that the infinitesimal version of the transformation (3.6) is a par-

ticular case of the more general one

ψ(x) −→ ψ′(x) = ψ(x) + δψ(x) ,

ψ̄(x) −→ ψ̄′(x) = ψ̄(x) + δψ̄(x) ,

}
(3.18)

which is an analog of the transformation (2.25) and leaves the measure
invariant. The calculation given in Eq. (3.17) is an explicit illustration of
this fact.
The general transformation (3.18) leads, when applied to the path in-

tegral in Eq. (3.1), to the Schwinger–Dyson equations(
∇̂+m

)
ψ(x) w.s.=

δ

δψ̄(x)
,

ψ̄(x)
(←
∇̂ −m

)
w.s.=

δ

δψ(x)
,

 (3.19)

which hold in the weak sense, i.e. under the averaging over ψ̄ and ψ.
More restrictive transformations of the same type as (3.6), which are

associated with symmetries of the classical action and result in conserved
currents, lead to some (less restrictive) relations between correlators which
are called Ward identities. This terminology goes back to the 1950s when
a proper relation between the two- and three-point Green functions was
first derived for the gauge symmetry in QED.
The simplest Ward identity, which is associated with the chiral trans-

formation (3.6), is given as

〈 ∂µJAµ (0)ψi(x) ψ̄j(y) 〉
m=0= i δ(d)(x)〈 (γ5ψ)i(0) ψ̄j(y) 〉 − i δ(d)(y)〈ψi(x)

(
ψ̄γ5
)
j
(0) 〉.

(3.20)

It is clear from the way in which Eq. (3.20) was derived, that it is always
satisfied as a consequence of the quantum equations of motion (3.19).
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3.3 Chiral anomaly 51

Problem 3.2 Derive Eq. (3.20) in the operator formalism when the averages
are substituted by the vacuum expectation values of the T -products.

Solution Equation (3.13) acquires an extra −i in Minkowski space, where the
spatial γ-matrices are anti-Hermitian rather than Hermitian as in Euclidean
space, and holds in the quantum case in the weak sense, i.e. when applied to
a state. Using it and the canonical equal-time anticommutation relations for ψ
and ψ̄ with the only nonvanishing anticommutator being

δ(x0 − y0)
{
ψ̄i(y),ψj(x)

}
= δijδ

(d)(x− y) , (3.21)

we reproduce Eq. (3.20) in the operator formalism.

Remark on γ5 in d dimensions

Let us recall that
γ5 = γ1γ2 · · · γd (3.22)

only exists for even d when the size of the γ-matrices is 2d/2 × 2d/2. For
this reason the dimensional regularization is not applicable in calculations
of the chiral anomaly.

Remark on gauge-fixing

Note that we did not add a gauge-fixing term to the action (3.4). It is
harmless to do that since the gauge-fixing term does not contribute to
the variation of the action under the chiral transformation. Moreover, all
gauge-invariant quantities do not depend on the gauge-fixing. How one
can quantize a gauge theory without adding a gauge-fixing term will be
explained in Part 2.

3.3 Chiral anomaly

As has already been mentioned, Eq. (3.17) involves the uncertainty

δ(d)(0) · sp γ5 = ∞ · 0 . (3.23)

To regularize δ(d)(0), one needs [Ver78, Fuj79] to regularize the measure
in the path integral over ψ and ψ̄, since this term comes from the change
of the measure under the chiral transformation.
Let us expand the fields ψ and ψ̄ over some set of the orthogonal basis

functions, similarly to Eq. (1.82):

ψi(x) =
∑
n

cinφ
i
n(x) , ψ̄i(x) =

∑
n

c̄inφ
i †
n (x) , (3.24)
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52 3 Quantum anomalies from path integral

where there is no summation over the spinor index i. Here cin and c̄
i
n are

Grassmann variables. The measure is then similar to that of Eq. (1.83)
and reads explicitly as

Dψ̄Dψ =
∞∏
n=1

∏
i

dc̄ in
∞∏

m=1

∏
j

dc jm . (3.25)

The idea of regularizing the measure is to restrict ourselves to a large
but finite number of basis functions. This is analogous to the discretiza-
tion of Sect. 1.4. We therefore define the regularized measure as

(Dψ̄)R(Dψ)R =
M∏
n=1

∏
i

dc̄ in
M∏

m=1

∏
j

dc jm . (3.26)

The change of the measure under the chiral transformation is

(Dψ̄)R(Dψ)R = (Dψ̄′)R(Dψ′)R det
[∫

ddxφk †n (x) e
2iα(x)γkj

5 φjm(x)
]
,

(3.27)

where the determinant is over both the n and m indices and the spinor
indices k and j. This is the regularized analog of the nonregularized
expression (3.16).
Using the orthogonality of the basis functions:∫

ddxφj †n (x)φ
i
m(x) = δnmδ

ij , (3.28)

and Eq. (2.20), we rewrite the determinant on the RHS of Eq. (3.27) for
an infinitesimal parameter α as

det
∫
ddxφk †n (x) e

2iα(x)γkj
5 φjm(x) = 1 + 2i

M∑
n=1

∫
ddxφ†n(x)α(x)γ5φn(x) ,

(3.29)
where the spinor indices are contracted in the usual way.
It is easy to see how this formula recovers Eq. (3.17) since

∞∑
n=1

φin(x)φ
j †
n (y) = δ(d)(x− y) δij (3.30)

in the nonregularized case owing to the completeness of the basis func-
tions.
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3.3 Chiral anomaly 53

In the regularized case, the sum over n on the LHS of Eq. (3.30) is
restricted by M from above so that the RHS is no longer equal to the
delta-function. We substitute

M∑
n=1

φin(x)φ
j †
n (y) = Rij(x, y) , (3.31)

with the RHS being the matrix element of some regularizing operator R.
It can be chosen in many ways. We shall work with several forms:

R = ea
2∇̂2

, (3.32)

or

R =
1

1− a2∇̂2
, (3.33)

or

R =
1

1 + a∇̂
, (3.34)

etc., where again ∇̂ = γµ∇µ. The parameter a is the ultraviolet cutoff.
The cutoff disappears as a→ 0 when Eq. (2.57) holds.
These regularizations (3.32)–(3.34) are nonperturbative, and preserve

gauge invariance since they are constructed from the covariant derivative
∇µ. A consistent regularization occurs when R commutes with ∇̂, which
is obviously true for the regularizations (3.32)–(3.34).∗

Therefore, we find∫
ddxα(x) ∂µJAµ = 2iTr (αγ5R)

= 2i
∫
ddxα(x) sp [γ5R(x, x)] . (3.35)

It is worth noting that the extra R in Eq. (3.35) is a consequence of
the more general formula

TrO −→ TrOR , (3.36)

which describes how to regularize the traces of operators.

∗ This can be shown by choosing the basis functions to be eigenfunctions of the Hermi-
tian operator i∇̂ (i∇̂φn = Enφn) and applying ∇̂ki(x)[∇̂−1(y)]jl to Eq. (3.31). Then

the LHS does not change (because EnE
−1
n = 1), while 〈x|∇̂R∇̂−1|y〉 appears on the

RHS. It coincides with the RHS of Eq. (3.31) when ∇̂ and R commute.
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54 3 Quantum anomalies from path integral

Remark on regularization of the measure

The regularization of the measure in the path integral using Eq. (3.26)
is equivalent to the point-splitting procedure where the delta-function in
the commutator term is smeared according to Eq. (2.55).
To show this, let us note that the variational derivative can be approx-

imated for a finite number of basis functions by

δ

δψj
R(y)

=
M∑
n=1

φj †n (y)
∑
k

∂

∂ckn
. (3.37)

This definition extends the standard mathematical one∗ to the case of
spinor indices. The sum over k is included in order for the regularized
variational derivative to reflect variations of all the spinor components of
cn when the variation is not diagonal in the spinor indices.
When applied to

ψi
R(x) =

M∑
n=1

cinφ
i
n(x) , (3.38)

it yields

δψi
R(x)

δψj
R(y)

=
M∑
n=1

φin(x)φ
j †
n (y) = Rij(x, y) , (3.39)

or, equivalently,

δijδ(d)(x− y)
reg.
=⇒ Rij(x, y) , (3.40)

which is the fermionic analog of Eq. (2.55).
Thus, we conclude that the regularization of the measure in the path

integral is equivalent to smearing the delta-function in commutator terms.

Remark on regularized Schwinger–Dyson equations

The procedure from the previous Remark results in the following regular-
ized Schwinger–Dyson equations:(

∇̂+m
)
ψ(x) w.s.=

∫
ddy R(x, y)

δ

δψ̄(y)
,

ψ̄(x)
(←
∇̂ −m

)
w.s.=
∫
ddy R(x, y)

δ

δψ(y)
.

 (3.41)

These equations are understood again in the weak sense, i.e. under the
averaging over ψ̄ and ψ and obviously reproduce Eq. (3.19) as a→ 0.

∗ See, for example, the book by Lévy [Lev51].
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3.4 Chiral anomaly (calculation) 55

Problem 3.3 Derive Eq. (3.35) using the regularized Schwinger–Dyson equa-
tion (3.41).

Solution The calculation is similar to that of Problem 3.1 except for the addi-
tional terms arising from the RHS of Eq. (3.41). For m = 0 one finds

∂µJ
A
µ

w.s.= i
∫
ddy

δ

δψ(y)
R(x, y)γ5ψ(x) − iψ̄(x)γ5

∫
ddy R(x, y)

δ

δψ̄(y)
= 2i sp [γ5R(x, x)] , (3.42)

which is equivalent to Eq. (3.35) since there α(x) is an arbitrary function.

3.4 Chiral anomaly (calculation)

In order to derive an explicit expression for the chiral anomaly, we should
calculate the RHS of Eq. (3.35) for some choice of the regularizing oper-
ator R. Let us choose R given by Eq. (3.33). The operator ∇̂2 in the
denominator can be transformed as

∇̂2 = ∇2 + 1
2
[γµ, γν ]∇µ∇ν

= ∇2 − ie
4
[γµ, γν ]Fµν

= ∇2 + e

2
ΣµνFµν , (3.43)

where the trace of the spin matrices

Σµν =
1
2i
[γµ, γν ] (3.44)

is given by

sp (ΣµνΣλργ5) = −4εµνλρ . (3.45)

Expanding in e,

R = R0 +R0 (· · ·)R0 + · · · (3.46)

with

R0 =
1

1− a2∂2
, (3.47)

we find schematically

Tr (αγ5R) = a4 Tr
[
αγ5R0

(
eΣF
2

)
R0

(
eΣF
2

)
R0

]
= −

∫
d4xα (x)

e2

16π2
Fµν F̃µν , (3.48)
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�
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Fig. 3.1. Triangular diagram associated with chiral anomaly in d = 4. The
solid lines correspond to R0 given by Eq. (3.50). The wavy lines correspond to
the field strength.

where
F̃µν =

1
2
εµνλρFλρ (3.49)

is the dual field strength.
The calculation described in Eq. (3.48) is most easily performed in

momentum space where it is associated with one-loop diagrams. The an-
alytic expression to be calculated can be represented in d = 4 graphically
as the triangular diagram in Fig. 3.1. The solid lines are associated with
R0 given by Eq. (3.47), which reads in momentum space as

R0(p) =
1

1 + a2p2
. (3.50)

The wavy lines correspond to the field strength. The lower vertex is
associated with αγ5.
The integral over the four-momentum q, which circulates along the tri-

angular loop, can be easily calculated by introducing ω = aq and trans-
forming the integral as∫

d4q f(q) → 1
a4

∫
d4ω f
(ω
a

)
. (3.51)

Note that the integral involves a−4 which cancels a4 coming from the
expansion in e, for which the proper term is given by the intermediate
expression in Eq. (3.48). Therefore, the result is nonvanishing and a-
independent as a→ 0. Higher terms of the expansion in e are proportional
to higher powers in a and vanish as a→ 0.
Finally, from Eqs. (3.35) and (3.48) we obtain

∂µJ
A
µ = − ie

2

8π2
Fµν F̃µν . (3.52)
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3.4 Chiral anomaly (calculation) 57

The anomaly on the RHS is known as the Adler–Bell–Jackiw anomaly. Its
appearance is usually related to the fact that any regularization cannot
be simultaneously gauge and chiral invariant.
Problem 3.4 Calculate the coefficient in Eq. (3.48) and show that it is regula-
tor-independent.
Solution The contribution of the triangular diagram of Fig. 3.1, which repre-
sents the intermediate expression in Eq. (3.48), reads explicitly as

2Tr (αγ5R) = −4e2a4
∫
d4x
∫
d4y
∫
d4z

× α(x)R0(x, y)Fµν(y)R0(y, z)F̃µν(z)R0(z, x) . (3.53)

In momentum space, it becomes

−2e2a4
∫
d4xα(x)

∫
d4k
(2π)4

eikx
∫

d4q1
(2π)4

Fµν(q1)F̃µν(k − q1)

×
∫

d4q
(2π)4

1
(1 + a2q2) (1 + a2(q + q1)2) (1 + a2(q + k)2)

(3.51)
= − 2e2

16π2

∫
d4xα(x)

∫
d4k
(2π)4

eikx

×
∫

d4q1
(2π)4

Fµν(q1)F̃µν(k − q1)

∞∫
0

ω2dω2

(1 + ω2)3
(3.54)

which recovers the RHS of Eq. (3.48).
An analogous calculation can be repeated for other regulators (3.32) and

(3.34). Let us denote

r(a2p2) ≡ R0(p) . (3.55)

Then the only difference with Eq. (3.54) is that the last integral over ω2 is
replaced by

∞∫
0

dω2 ω2r′′(ω2) = r(0) = 1 (3.56)

for reasonable functions r which look like those given by Eqs. (3.32)–(3.34).

An anomaly which is analogous to the Adler–Bell–Jackiw anomaly
(3.52) exists in d = 2 where

∂µJ
A
µ = − e

2π
εµνFµν . (3.57)

This anomaly is given by the diagram depicted in Fig. 3.2. It involves
only two lines with the regulator R0(p) since in d = 2∫

d2q f(q) → 1
a2

∫
d2ω f
(ω
a

)
(3.58)

so that all terms with more lines vanish as a→ 0.
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❄✻q q + k

�

k

αγ5

Fig. 3.2. The diagram associated with the chiral anomaly in d = 2. The solid
lines correspond to R0 given by Eq. (3.50). The wavy line corresponds to the
field strength.

Problem 3.5 Calculate 2Tr (αγ5R) in d = 2.

Solution Proceeding as before, we see that only the diagram of Fig. 3.2 is
essential in d = 2 which yields

2iea2
∫
d2x
∫
d2y α(x)R0(x, y)Fµν(y)εµνR0(y, x)

= 2iea2
∫
d2xα(x)

∫
d2k
(2π)2

eikxFµν(k)εµν
∫

d2q
(2π)2

1
(1 + a2q2) [1 + a2(q + k)2]

(3.58)
= 2

ie
4π

∫
d2xα(x)

∫
d2k
(2π)2

eikxFµν(k)εµν

∞∫
0

dω2

(1 + ω2)2

=
∫
d2xα(x)

ieFµν (x)εµν
2π

. (3.59)

The linear-in-Fµν term is nonvanishing since

sp (Σµνγ5) = 2iεµν (3.60)

in d = 2.
The result is again regulator-independent since the integral over ω is replaced

for an arbitrary R0(p) by

−
∞∫
0

dω2r′(ω2) = r(0) = 1 (3.61)

where Eq. (3.55) has been used.
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3.5 Scale anomaly 59

Remark on the non-Abelian chiral anomaly

Equation (3.52) also holds in the case of a non-Abelian gauge group where
F a
µν is the non-Abelian field strength

F a
µν(x) = ∂µA

a
ν(x)− ∂νA

a
µ(x) + gfabcAb

µ(x)A
c
ν(x) . (3.62)

Here fabc are the structure constants of the gauge group and g is the
coupling constant. The non-Abelian analog of Eq. (3.52) for the axial
current, which is a singlet with respect to the gauge group, is given by∗

∂µJ
A
µ = − ig

2

8π2
∑
a

F a
µν F̃

a
µν . (3.63)

The d = 2 anomaly (3.57) exists for the singlet axial current only in
the Abelian case.
A description of the chiral anomaly in non-Abelian gauge theories is

given, for example, in Chapter 22 of the book by Weinberg [Wei98].

3.5 Scale anomaly

The scale transformation is defined by

xµ −→ x′µ = ρ xµ , (3.64)

ϕ(x) −→ ϕ′(x′) = ρlϕϕ
(
x′
)
. (3.65)

The index lϕ is called the scale dimension of the field ϕ. The value of lϕ
in a free theory is called the canonical dimension, which equals (d− 2)/2
for bosons (scalar or vector fields) and (d−1)/2 for the spinor Dirac field,
i.e. 1 and 3/2 in d = 4, respectively. Sometimes lϕ is called, for histori-
cal reasons, the anomalous dimension. More often the term “anomalous
dimension” is used for the difference between lϕ and the canonical value.
The proper Noether current, which is called the dilatation current, is

expressed via the energy–momentum tensor θµν as

Dµ = xνθµν (3.66)

so that its divergence equals the trace of the energy–momentum tensor
over the spatial indices:

∂µDµ = θµµ , (3.67)

∗ The coefficient in this formula is the same as in Eq. (3.52) and is twice as large as the
conventional one. This is owing to our normalization, which is described in Sect. 5.1.
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since the energy–momentum tensor is conserved. For the action (3.4) one
finds

θµµ = −mψ̄ψ (3.68)

at the classical level.
The above formulas can be obtained from the Noether theorems which

state

δS =
∫
ddx ρ(x) ∂µDµ(x) (3.69)

or

∂µDµ(x) =
δS

δρ(x)
. (3.70)

In the massless case, m = 0, the RHS of Eq. (3.68) vanishes and the di-
latation current is conserved. This is a well-known property of electrody-
namics with a massless electron that is scale invariant at the classical level.
A generic scale-invariant theory does not depend on parameters of the di-
mension of mass or length. This usual dimension is to be distinguished
from the scale dimension which is defined by Eq. (3.65). The dimensional
parameters do not change under the scale transformation (3.64).
In the quantum case, the scale invariance is broken by the (dimensional)

cutoff a. The energy–momentum tensor is no longer traceless owing to
loop effects. The relation (3.67) holds in the quantum case in the weak
sense, i.e. for the averages〈

∂µDµF [A,ψ, ψ̄]
〉
=
〈
θµµF [A,ψ, ψ̄]

〉
, (3.71)

where F [A,ψ, ψ̄] is a gauge-invariant functional of A, ψ and ψ̄.
For a renormalizable theory such as QED, the RHS of Eq. (3.71) is

proportional to the Gell-Mann–Low function B(e2) which is defined by

−ade
2

da
= B
(
e2
)
. (3.72)

A nontrivial property of a renormalizable theory is that the RHS in this
formula is a function solely of e2 – the bare charge.
The meaning of the renormalizability is very simple: physical quantities

do not depend on the cutoff a, provided the bare charge e is chosen to
be cutoff-dependent according to Eq. (3.72). This dependence of e on a
effectively accounts for distances smaller than a, which are excluded from
the theory.
The precise relation between the trace of the energy–momentum tensor

and the Gell-Mann–Low function is given by

θµµ
w.s.=

B
(
e2
)

4e2
F 2µν , (3.73)
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where the equality is understood again in the weak sense. This formula
was first obtained in [Cre72, CE72] to leading order in e2 and proven
in [ACD77] to all orders in e2.
Note that this formula holds in the operator formalism only when ap-

plied to a gauge-invariant state. The reason is that otherwise a contribu-
tion from a gauge-fixing term in the action would be essential. It does not
contribute, however, to gauge-invariant averages which can be formally
proven using the gauge Ward identity.

Problem 3.6 Prove the relation (3.73).

Solution Let us absorb the coupling e into Aµ introducing

Aµ = eAµ ,

Fµν = eFµν .

}
(3.74)

The Lagrangian density of massless QED then reads as

L = ψ̄
(
∂̂ − i Â

)
ψ +

1
4e2
F2. (3.75)

To prove Eq. (3.73), let us use the chain of Eqs. (3.67) and (3.70). It is crucial
that in the absence of other dimensional parameters the derivative ∂/∂ρ can be
replaced by ∂/∂a, since all dimensionless quantities in a theory with a cutoff
depend only on ratios of the type x/a.∗ Since the dependence on the cutoff a
enters in Eq. (3.75) formally only via e−2 in front of F2

µν , Eq. (3.73) can be
proven heuristically by first differentiating with respect to a and then expressing
the result via Fµν again. Here we have used the fact that Fµν is invariant under
the renormalization-group transformation and, therefore, does not depend on a.

In the path-integral approach, a contribution to the scale anomaly
comes from the regularized quantum measure. Proceeding as in Sect. 3.3,
we obtain

∂µDµ(x) = −sp [R(x, x)] (3.76)

which determines the scale anomaly.

Problem 3.7 Derive Eq. (3.76) using the regularized Schwinger–Dyson equa-
tions (3.41).

Solution The energy–momentum tensor of QED is given by

θµν = FµλFνλ −
1
4
δµνF

2
ρλ +

1
4

(
ψ̄γµ

↔
∇νψ + ψ̄γν

↔
∇µψ

)
. (3.77)

Taking the trace, one obtains

θµµ =
1
2
ψ̄γµ

↔
∇µψ . (3.78)

∗ This is the reason why the Callan–Symanzik equations, which are nothing but the
dilatation Ward identities, coincide with the renormalization-group equations.
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Fig. 3.3. The diagrams which contribute to the scale anomaly in d = 4. The
wavy line corresponds to the field strength.

Using Eq. (3.41), it can be transformed as

θµµ = −mψ̄ψ +
1
2

[∫
ddy R(x, y)

δ

δψ(y)
ψ(x)− ψ̄(x)

∫
ddy R(x, y)

δ

δψ̄(y)

]
= −mψ̄ψ − sp [R(x, x)] , (3.79)

which reproduces Eq. (3.76) as m→ 0.

To calculate the scale anomaly we should therefore perform a one-loop
calculation of

sp [R(x, x)] = sp

〈
x

∣∣∣∣∣ 1

1 + a2(i∇̂2)

∣∣∣∣∣x
〉

= sp

〈
x

∣∣∣∣∣ 1
1 + a2 (i∂µ + eAµ)

2 − 1
2a
2eΣµνFµν

∣∣∣∣∣x
〉

(3.80)

which is again most convenient to do in momentum space. The prop-
agator is given by Eq. (3.47), while the vertices, which emerge in the
corresponding Feynman rules for the expansion in e, come from the op-
erators

−2iea2Aµ∂µ , −e2a2A2µ , 1
2ea

2ΣµνFµν .

The only diagrams which survive as a → 0 in d = 4 are depicted in
Fig. 3.3. The calculation of the diagram of Fig. 3.3a is the same as in
Sect. 3.3 while the diagram of Fig. 3.3b gives a total derivative which does
not contribute to the scale anomaly.
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The calculation of the diagram of Fig. 3.3a yields

sp [R(x, x)] = −
e2F 2µν(x)
24π2

. (3.81)

The one-loop Gell-Mann–Low function can now be calculated using
Eqs. (3.76) and (3.73), which reproduces the known result for QED. The
higher-order corrections in e do not vanish for the scale anomaly.

Remark on the non-Abelian scale anomaly

Equation (3.73) holds in the non-Abelian Yang–Mills theory as well if Fµν
is substituted by the non-Abelian field strength F a

µν given by Eq. (3.62).
The corresponding formula, is given as

θµµ
w.s.=

B
(
g2
)

4g2
∑
a

F a
µνF

a
µν . (3.82)

A heuristic proof, presented in Problem 3.6 for the Abelian case, can
be repeated. The equality is again understood in the weak sense when
averaged between gauge-invariant states. The contribution of gauge-fixing
and ghost terms are then canceled owing to the gauge Ward identity which
is called in this case the Slavnov–Taylor identity. The proof of Eq. (3.82)
was given in [CDJ77, Nie77].
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