THE GROUP OF AUTOMORPHISMS OF THE LIE ALGEBRA OF DERIVATIONS OF A FIELD OF RATIONAL FUNCTIONS

V. V. BAVULA

Department of Pure Mathematics, University of Sheffield, Hicks Building, Sheffield S3 7RH, United Kingdom e-mail: v.bavula@sheffield.ac.uk

(Received 21 May 2015; revised 21 September 2015; accepted 26 September 2015; first published online 10 June 2016)

Abstract. We prove that the group of automorphisms of the Lie algebra $\text{Der}_{K}(Q_{n})$ of derivations of the field of rational functions $Q_n = K(x_1, \ldots, x_n)$ over a field of characteristic zero is canonically isomorphic to the group of automorphisms of the K-algebra Q_n .

2010 Mathematics Subject Classification. 17B40, 17B20, 17B66, 17B65, 17B30.

1. Introduction. In this paper, module means a left module, K is a field of characteristic zero and K^* is its group of units, and the following notation is fixed:

- $P_n := K[x_1, \ldots, x_n] = \bigoplus_{\alpha \in \mathbb{N}^n} K x^{\alpha}$ is a polynomial algebra over K where $x^{\alpha} :=$ $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ and $Q_n := K(x_1, \dots, x_n)$ is the field of rational functions,

- $G_n := \operatorname{Aut}_{K-\operatorname{alg}}(P_n)$ and $\mathbb{Q}_n := \operatorname{Aut}_{K-\operatorname{alg}}(Q_n)$, $\partial_1 := \frac{\partial}{\partial x_1}, \dots, \partial_n := \frac{\partial}{\partial x_n}$ are the partial derivatives (*K*-linear derivations) of P_n , $D_n := \operatorname{Der}_K(P_n) = \bigoplus_{i=1}^n P_n \partial_i \subseteq E_n := \operatorname{Der}_K(Q_n) = \bigoplus_{i=1}^n Q_n \partial_i$ are the Lie algebras of K-derivations of P_n and Q_n , respectively, where $[\partial, \delta] := \partial \delta - \delta \partial$,
- $\mathbb{G}_n := \operatorname{Aut}_{\operatorname{Lie}}(D_n)$ and $\mathbb{E}_n := \operatorname{Aut}_{\operatorname{Lie}}(E_n)$,
- $\delta_1 := \operatorname{ad}(\partial_1), \ldots, \delta_n := \operatorname{ad}(\partial_n)$ are the inner derivations of the Lie algebras D_n and E_n where ad(a)(b) := [a, b],
- $\mathcal{D}_n := \bigoplus_{i=1}^n K \partial_i$,
- $\mathcal{H}_n := \bigoplus_{i=1}^{n} KH_i$ where $H_1 := x_1 \partial_1, \ldots, H_n := x_n \partial_n$,
- for each natural number $n \ge 2$, $u_n := K\partial_1 + P_1\partial_2 + \cdots + P_{n-1}\partial_n$ is the Lie algebra of triangular polynomial derivations (it is a Lie subalgebra of D_n) and $\operatorname{Aut}_{\operatorname{Lie}}(\mathfrak{u}_n)$ is its group of automorphisms.

THEOREM 1.1. $\mathbb{G}_n = G_n$.

The above result is due to Rudakov [10] where a detailed sketch of a proof is given based on his algebro-geometric approach developed in [9] (where the groups of automorphisms of infinite dimensional Lie algebras of Cartan type are found). A short proof of Theorem 1.3 is given in [4]. The group of automorphisms of (infinite dimensional) algebras of generalized Cartan type were studied by Osborn, [8], and Zhao, [12]. The group of automorphisms of the *Virasoro* Lie algebra was found in [5]. A lot of information about derivations and automorphisms the interested reader can find in the following books [7, 6, 11].

The aim of the paper is to prove the following theorem.

Theorem 1.2. $\mathbb{E}_n = \mathbb{Q}_n$.

Structure of the proof.

(i) $\mathbb{Q}_n \subseteq \mathbb{E}_n$ via the group monomorphism (Lemma 2.3 and (3))

$$\mathbb{Q}_n \to \mathbb{E}_n, \ \sigma \mapsto \sigma : \partial \mapsto \sigma(\partial) := \sigma \partial \sigma^{-1}$$

- (ii) Let $\sigma \in \mathbb{E}_n$. Then $\partial'_1 := \sigma(\partial_1), \ldots, \partial'_n := \sigma(\partial_n)$ are commuting derivations of Q_n such that $E_n = \bigoplus_{i=1}^n Q_n \partial'_i$ (Lemma 2.12.(2)).
- (iii) $\bigcap_{i=1}^{n} \ker_{Q_n}(\partial_i) = K$ (Lemma 2.12.(1)).
- (iv) (crux) There exist elements $x'_1, \ldots, x'_n \in Q_n$ such that $\partial'_i(x'_j) = \delta_{ij}$ for $i, j = 1, \ldots, n$ (Lemma 2.12.(3)).
- (v) $\sigma(x^{\alpha}\partial_i) = x'^{\alpha}\partial'_i$ for all $\alpha \in \mathbb{N}^n$ and i = 1, ..., n (Lemma 2.12.(6)).
- (vi) The K-algebra homomorphism $\sigma' : Q_n \to Q_n$, $x_i \mapsto x'_i$, i = 1, ..., n is an automorphism such that $\sigma'(q\partial_i) = \sigma'(q)\partial'_i$ for all $q \in Q_n$ and i = 1, ..., n (Lemma 2.12.(7)).
- (vii) $\operatorname{Fix}_{\mathbb{E}_n}(\partial_1, \ldots, \partial_n, H_1, \ldots, H_n) := \{\tau \in \mathbb{E}_n \mid \tau(\partial_i) = \partial_i\}, \tau(H_i) = H_i, 1 \le i \le n\} = \{e\}$ (Proposition 2.9.(1)). Hence, $\sigma = \sigma' \in \mathbb{Q}_n$, by (v) and (vi), i.e. $\mathbb{E}_n = \mathbb{Q}_n$.

THEOREM 1.3. (Theorem 5.3, [3]) The group $\operatorname{Aut}_{\operatorname{Lie}}(\mathfrak{u}_n)$ of automorphisms of the Lie algebra \mathfrak{u}_n is isomorphic to an iterated semi-direct product of groups $\mathbb{T}^n \ltimes (\operatorname{UAut}_K(P_n)_n \rtimes (\mathbb{F}'_n \times \mathbb{E}_n))$ where \mathbb{T}^n is an algebraic n-dimensional torus, $\operatorname{UAut}_K(P_n)_n$ is an explicit factor group of the group $\operatorname{UAut}_K(P_n)$ of unitriangular polynomial automorphisms, \mathbb{F}'_n and \mathbb{E}_n are explicit groups that are isomorphic, respectively, to the groups \mathbb{I} and \mathbb{J}^{n-2} where $\mathbb{I} := (1 + t^2 K[[t]], \cdot) \simeq K^{\mathbb{N}}$ and $\mathbb{J} := (tK[[t]], +) \simeq K^{\mathbb{N}}$.

Comparing the groups \mathbb{G}_n , \mathbb{E}_n and $\operatorname{Aut}_{\operatorname{Lie}}(\mathfrak{u}_n)$, we see that the group $\operatorname{UAut}_K(P_n)_n$ of polynomial automorphisms is a *tiny* part of the group $\operatorname{Aut}_{\operatorname{Lie}}(\mathfrak{u}_n)$ but in contrast $\mathbb{G}_n = G_n$ and $\mathbb{E}_n = \mathbb{Q}_n$.

THEOREM 1.4 ([1]). Every monomorphism of the Lie algebra u_n is an automorphism.

Not every epimorphism of the Lie algebra u_n is an automorphism. Moreover, there are countably many distinct ideals $\{I_i | i \ge 0\}$ such that

 $I_0 = \{0\} \subset I_1 \subset I_2 \subset \cdots \subset I_i \subset \cdots$

and the Lie algebras u_n/I_i and u_n are isomorphic (Theorem 5.1.(1), [2]).

2. Proof of Theorem 1.2. In this section, a proof of Theorem 1.2 is given. The proof is split into several statements that reflect "Structure of the proof of Theorem 1.2" given in the Introduction.

Let \mathcal{G} be a Lie algebra and \mathcal{H} be its Lie subalgebra. The *centralizer* $C_{\mathcal{G}}(\mathcal{H}) := \{x \in \mathcal{G} \mid [x, \mathcal{H}] = 0\}$ of \mathcal{H} in \mathcal{G} is a Lie subalgebra of \mathcal{G} . In particular, $Z(\mathcal{G}) := C_{\mathcal{G}}(\mathcal{G})$ is the *centre* of the Lie algebra \mathcal{G} . The *normalizer* $N_{\mathcal{G}}(\mathcal{H}) := \{x \in \mathcal{G} \mid [x, \mathcal{H}] \subseteq \mathcal{H}\}$ of \mathcal{H} in \mathcal{G} is a Lie subalgebra of \mathcal{G} , it is the largest Lie subalgebra of \mathcal{G} that contains \mathcal{H} as an ideal.

Let V be a vector space over K. A K-linear map $\delta : V \to V$ is called a *locally* nilpotent map if $V = \bigcup_{i \ge 1} \ker(\delta^i)$ or, equivalently, for every $v \in V$, $\delta^i(v) = 0$ for all $i \gg 1$. When δ is a locally nilpotent map in V we also say that δ acts locally nilpotently on V. Every nilpotent linear map δ , that is $\delta^n = 0$ for some $n \ge 1$, is a locally nilpotent map but not vice versa, in general. Each element $a \in \mathcal{G}$ determines the derivation of the Lie algebra \mathcal{G} by the rule $\operatorname{ad}(a) : \mathcal{G} \to \mathcal{G}, b \mapsto [a, b]$, which is called the *inner derivation* associated with *a*. The set $\operatorname{Inn}(\mathcal{G})$ of all the inner derivations of the Lie algebra \mathcal{G} is a Lie subalgebra of the Lie algebra ($\operatorname{End}_K(\mathcal{G}), [\cdot, \cdot]$) where [f, g] := fg - gf. We have the short exact sequence of Lie algebras

$$0 \to Z(\mathcal{G}) \to \mathcal{G} \xrightarrow{\mathrm{ad}} \mathrm{Inn}(\mathcal{G}) \to 0,$$

that is $\operatorname{Inn}(\mathcal{G}) \simeq \mathcal{G}/Z(\mathcal{G})$ where $\operatorname{ad}([a, b]) = [\operatorname{ad}(a), \operatorname{ad}(b)]$ for all elements $a, b \in \mathcal{G}$. An element $a \in \mathcal{G}$ is called a *locally nilpotent element* (respectively, a *nilpotent element*) if so is the inner derivation $\operatorname{ad}(a)$ of the Lie algebra \mathcal{G} .

The Lie algebra E_n . Since

$$E_n = \bigoplus_{i=1}^n Q_n \partial_i = \bigoplus_{i=1}^n Q_n H_i$$
(1)

every element $\partial \in E_n$ is a unique sum $\partial = \sum_{i=1}^n a_i \partial_i = \sum_{i=1}^n b_i H_i$ where $a_i = x_i b_i \in Q_n$. The field Q_n is the union $\bigcup_{0 \neq f \in P_n} P_{n,f}$ where $P_{n,f}$ is the localization of P_n at the powers of f. The algebra Q_n is a localization of $P_{n,f}$. Hence $D_{n,f} := \text{Der}_K(P_{n,f}) = \bigoplus_{i=1}^n P_{n,f} \partial_i \subseteq E_n$ and

$$E_n = \bigcup_{0 \neq f \in P_n} D_{n,f}$$

 Q_n is an E_n -module. The field Q_n is a (left) E_n -module: $E_n \times Q_n \to Q_n$, $(\partial, q) \mapsto \partial * q$. In more detail, if $\partial = \sum_{i=1}^n a_i \partial_i$ where $a_i \in Q_n$ then

$$\partial * q = \sum_{i=1}^{n} a_i \frac{\partial q}{\partial x_i}.$$

The E_n -module Q_n is not a simple module since K is an E_n -submodule of Q_n , and

$$\bigcap_{i=1}^{n} \ker_{\underline{O}_{n}}(\partial_{i}) = K.$$
(2)

LEMMA 2.1. The E_n -module Q_n/K is simple with $\operatorname{End}_{E_n}(Q_n/K) = K$ id where id is the identity map.

Proof. We have to show that for each non-scalar rational function, say $pq^{-1} \in Q_n$, the E_n -submodule M of Q_n/K it generates coincides with the E_n -module Q_n/K . By (2), $a_i = \partial_i * (pq^{-1}) \neq 0$ for some i. Then for all elements $u \in Q_n$, $ua_i^{-1}\partial_i * (pq^{-1} + K) =$ u + K. So, Q_n/K is a simple E_n -module. Let $f \in \text{End}_{E_n}(Q_n/K)$. Then applying f to the equalities $\partial_i * (x_1 + K) = \delta_{i1}$ for i = 1, ..., n, we obtain the equalities

$$\partial_i * f(x_1 + K) = \delta_{i1}$$
 for $i = 1, \dots, n$.

Hence, $f(x_1 + K) \in \bigcap_{i=2}^{n} \ker_{Q_n/K}(\partial_i) \cap \ker_{Q_n/K}(\partial_i^2) = (K(x_1)/K) \cap \ker_{Q_n/K}(\partial_i^2) = K(x_1 + K)$. So, $f(x_1 + K) = \lambda(x_1 + K)$ and so $f = \lambda$ id, by the simplicity of the E_n -module Q_n/K .

V. V. BAVULA

The Cartan subalgebra \mathcal{H}_n of E_n . A nilpotent Lie subalgebra C of a Lie algebra \mathcal{G} is called a *Cartan subalgebra* of \mathcal{G} if it coincides with its normalizer. We use often the following obvious observation: An abelian Lie subalgebra that coincides with its centralizer is a maximal abelian Lie subalgebra.

Lemma 2.2.

(1) \mathcal{H}_n is a Cartan subalgebra of E_n .

(2) $\mathcal{H}_n = C_{E_n}(\mathcal{H}_n)$ is a maximal abelian Lie subalgebra of E_n .

Proof. 2. Clearly, $\mathcal{H}_n \subseteq C_{E_n}(\mathcal{H}_n)$. Let $\partial = \sum_{i=1}^n a_i H_i \in C_{E_n}(\mathcal{H}_n)$ where $a_i \in Q_n$. Then all $a_i \in \bigcap_{i=1}^n \ker_{Q_n}(H_i) = \bigcap_{i=1}^n \ker_{Q_n}(\partial_i) = K$, by (2), and so $\partial \in \mathcal{H}_n$. Therefore, $\mathcal{H}_n = C_{E_n}(\mathcal{H}_n)$ is a maximal abelian Lie subalgebra of E_n .

1. By statement 2, we have to show that $\mathcal{H}_n = N := N_{E_n}(\mathcal{H}_n)$. Let $\partial = \sum_{i=1}^n a_i H_i \in N$, we have to show that all $a_i \in K$. For all j = 1, ..., n, $\mathcal{H}_n \ni [H_j, \partial] = \sum_{i=1}^n H_j(a_i)H_i$, and so $H_j(a_i) \in K$ for all *i* and *j*. These inclusions hold if all $a_i \in K$, i.e. $\partial \in \mathcal{H}_n$. Suppose that $a_i \notin K$ for some *i*, we seek a contradiction. Then necessarily, $a_i \notin K(x_1, ..., \widehat{x}_j, ..., x_n)$ for some *j*. Since $Q_n = K(x_1, ..., \widehat{x}_j, ..., x_n)(x_j)$, the result follows from the following claim.

Claim: If $a \in K(x) \setminus K$ then $H(a) \notin K$ where $H := x \frac{d}{dx}$. The field K(x) is a subfield of the series field $K((x)) := \{\sum_{i>-\infty} \lambda_i x^i \mid \lambda_i \in K\}$. Since $H(\sum_{i>-\infty} \lambda_i x^i) = \sum_{i>-\infty} i\lambda_i x^i$, the Claim is obvious. Then, by the Claim, $H_j(a_i) \notin K$, a contradiction.

LEMMA 2.3 ([5]). Let R be a commutative ring such that there exists a derivation $\partial \in \text{Der}(R)$ such that $r\partial \neq 0$ for all non-zero elements $r \in R$ (eg, $R = P_n$, Q_n and $\delta = \partial_1$). Then the group homomorphism

$$\operatorname{Aut}(R) \to \operatorname{Aut}_{\operatorname{Lie}}(\operatorname{Der}(R)), \ \sigma \mapsto \sigma : \delta \mapsto \sigma(\delta) := \sigma \delta \sigma^{-1},$$

is a monomorphism.

Proof. If an automorphism $\sigma \in \operatorname{Aut}(R)$ belongs to the kernel of the group homomorphism $\sigma \mapsto \sigma$ then, for all $r \in R$, $r\partial = \sigma(r\partial)\sigma^{-1} = \sigma(r)\sigma\partial\sigma^{-1} = \sigma(r)\partial$, i.e. $\sigma(r) = r$ for all $r \in R$. This means that σ is the identity automorphism. Therefore, the homomorphism $\sigma \mapsto \sigma$ is a monomorphism.

The \mathbb{Q}_n **-module** E_n . The Lie algebra E_n is a \mathbb{Q}_n -module,

$$\mathbb{Q}_n \times E_n \to E_n, \ (\sigma, \partial) \mapsto \sigma(\partial) := \sigma \partial \sigma^{-1}.$$

By Lemma 2.3, the \mathbb{Q}_n -module E_n is faithful and the map

$$\mathbb{Q}_n \to \mathbb{E}_n, \ \sigma \mapsto \sigma : \partial \mapsto \sigma(\partial) = \sigma \partial \sigma^{-1}, \tag{3}$$

is a group monomorphism. We *identify* the group \mathbb{Q}_n with its image in \mathbb{E}_n , $\mathbb{Q}_n \subseteq \mathbb{E}_n$. Every automorphism $\sigma \in \mathbb{Q}_n$ is uniquely determined by the elements

$$x'_1 := \sigma(x_1), \ldots, x'_n := \sigma(x_n).$$

Let $M_n(Q_n)$ be the algebra of $n \times n$ matrices over Q_n . The matrix $J(\sigma) := (J(\sigma)_{ij}) \in M_n(Q_n)$, where $J(\sigma)_{ij} = \frac{\partial x'_j}{\partial x_i}$, is called the *Jacobi matrix* of the automorphism (endomorphism) σ and its determinant $\mathcal{J}(\sigma) := \det J(\sigma)$ is called the *Jacobian* of σ . So, the *j*th column of $J(\sigma)$ is the *gradient* grad $x'_j := (\frac{\partial x'_j}{\partial x_1}, \dots, \frac{\partial x'_j}{\partial x_n})^T$ of the rational

function x'_i . Then the derivations

$$\partial_1' := \sigma \partial_1 \sigma^{-1}, \ldots, \ \partial_n' := \sigma \partial_n \sigma^{-1}$$

are the partial derivatives of Q_n with respect to the variables x'_1, \ldots, x'_n ,

$$\partial_1' = \frac{\partial}{\partial x_1'}, \dots, \ \partial_n' = \frac{\partial}{\partial x_n'}.$$
 (4)

Every derivation $\partial \in E_n$ is a unique sum $\partial = \sum_{i=1}^n a_i \partial_i$ where $a_i = \partial * x_i \in Q_n$. Let $\partial := (\partial_1, \ldots, \partial_n)^T$ and $\partial' := (\partial'_1, \ldots, \partial'_n)^T$ where T stands for the transposition. Then

$$\partial' = J(\sigma)^{-1}\partial$$
, i.e. $\partial'_i = \sum_{j=1}^n (J(\sigma)^{-1})_{ij}\partial_j$ for $i = 1, \dots, n.$ (5)

In more detail, if $\partial' = A\partial$ where $A = (a_{ij}) \in M_n(Q_n)$, i.e. $\partial'_i = \sum_{j=1}^n a_{ij}\partial_j$. Then for all i, j = 1, ..., n,

$$\delta_{ij} = \partial'_i * x'_j = \sum_{k=1}^n a_{ik} \frac{\partial x'_j}{\partial x_k}$$

where δ_{ij} is the Kronecker delta function. The equalities above can be written in the matrix form as $AJ(\sigma) = 1$ where 1 is the identity matrix. Therefore, $A = J(\sigma)^{-1}$.

The maximal abelian Lie subalgebra \mathcal{D}_n of E_n . Suppose that a group G acts on a set S. For a non-empty subset T of S, $\operatorname{St}_G(T) := \{g \in G \mid gT = T\}$ is the *stabilizer* of the set T in G and $\operatorname{Fix}_G(T) := \{g \in G \mid gt = t \text{ for all } t \in T\}$ is the *fixator* of the set T in G. Clearly, $\operatorname{Fix}_G(T)$ is a *normal* subgroup of $\operatorname{St}_G(T)$. The set $\operatorname{Sh}_n := \{s_\lambda \in \mathbb{Q}_n \mid s_\lambda(x_1) = x_1 + \lambda_1, \ldots, s_\lambda(x_n) = x_n + \lambda_n\}$ is a subgroup of \mathbb{Q}_n . Then Sh_n is also a subgroup of \mathbb{E}_n where $s_\lambda(q\partial_i) = s_\lambda(q)\partial_i$ for all elements $q \in Q_n$ and $i = 1, \ldots, n$.

Lemma 2.4.

- (1) $C_{E_n}(\mathcal{D}_n) = \mathcal{D}_n$ and so \mathcal{D}_n is a maximal abelian Lie subalgebra of E_n .
- (2) $\operatorname{Fix}_{\mathbb{Q}_n}(\mathcal{D}_n) = \operatorname{Fix}_{\mathbb{Q}_n}(\partial_1, \ldots, \partial_n) = \operatorname{Sh}_n$.
- (3) $\operatorname{Fix}_{\mathbb{Q}_n} = (\partial_1, \ldots, \partial_n, H_1, \ldots, H_n) = \{e\}.$
- (4) $C_{E_n}(\mathcal{D}_n + \mathcal{H}_n) = 0.$

Proof.

- Statement 1 follows from (2): Clearly, D_n ⊆ C_{E_n}(D_n). Let ∂ = ∑ a_i∂_i ∈ C_{E_n}(D_n) where a_i ∈ Q_n. Then all elements a_i ∈ ∩ⁿ_{i=1} ker_{Q_n}∂_i = K, by (2), and so ∂ ∈ D_n. So, C_{E_n}(D_n) = D_n and as a result D_n is a maximal abelian Lie subalgebra of E_n.
- 2. Let $\sigma \in \text{Fix}_{\mathbb{Q}_n}(\mathcal{D}_n)$ and $J(\sigma) = (J_{ij})$. By (5), $\partial = J(\sigma)\partial$, and so, for all $i, j = 1, \ldots, n, \delta_{ij} = \partial_i * x_j = J_{ij}$, i.e. $J(\sigma) = 1$, or equivalently, by (2),

$$x_1' = x_1 + \lambda_1, \dots, x_n' = x_n + \lambda_n$$

for some scalars $\lambda_i \in K$, and so $\sigma \in \text{Sh}_n$ (since $x'_i - x_i \in \bigcap_{j=1}^n \ker_{Q_n}(\partial_j) = K$ for i = 1, ..., n).

V. V. BAVULA

- 3. Let $\sigma \in \operatorname{Fix}_{\mathbb{Q}_n} = (\partial_1, \ldots, \partial_n, H_1, \ldots, H_n)$. Then $\sigma \in \operatorname{Fix}_{\mathbb{Q}_n}(\partial_1, \ldots, \partial_n) = \operatorname{Sh}_n$, by statement 2. So, $\sigma(x_1) = x_1 + \lambda_1, \ldots, \sigma(x_n) = x_n + \lambda_n$ where $\lambda_i \in K$. Then $x_i \partial_i = \sigma(x_i \partial_i) = (x_i + \lambda_i)\partial_i$ for $i = 1, \ldots, n$, and so $\lambda_1 = \cdots = \lambda_n = 0$. This means that $\sigma = e$. So, $\operatorname{Fix}_{\mathbb{Q}_n} = (\partial_1, \ldots, \partial_n, H_1, \ldots, H_n) = \{e\}$.
- 4. Statement 4 follows from statement 1 and Lemma 2.2.(2).

LEMMA 2.5. Let A be a K-algebra, $\text{Der}_K(A)$ be the Lie algebra of K-derivations of A and $\mathcal{D}(A)$ be the ring of differential operators on A. If the algebra $\mathcal{D}(A)$ is simple and generated by A and $\text{Der}_K(A)$ then the $\mathcal{D}(A)$ -module A is simple.

Proof. Let a be a non-zero $\mathcal{D}(A)$ -submodule of A. So, a is an ideal of A such that $\partial(\mathfrak{a}) \subseteq \mathfrak{a}$ for all $\partial \in \text{Der}_K(A)$. The algebra $\mathcal{D} := \mathcal{D}(A)$ is generated by A and D. So, $\mathcal{D}\mathfrak{a} \subseteq \mathfrak{a}\mathcal{D}$ and $\mathfrak{a}\mathcal{D} \subseteq \mathcal{D}\mathfrak{a}$, i.e. $\mathcal{D}\mathfrak{a} = \mathfrak{a}\mathcal{D}$ is a non-zero ideal of the simple algebra \mathcal{D} . Hence, $1 \in \mathcal{D}\mathfrak{a}$ and so $1 = \sum_i a_i d_i$ for some elements $d_i \in \mathcal{D}$ and $a_i \in \mathfrak{a} \subseteq D$. Then

$$1 = 1 * 1 = \sum_{i} a_i d_i * 1 \in \mathfrak{a},$$

hence a = A, i.e. A is a simple $\mathcal{D}(A)$ -module.

THEOREM 2.6.

- (1) E_n is a simple Lie algebra.
- (2) $Z(E_n) = \{0\}.$
- $(3) [E_n, E_n] = E_n.$

Proof. 1. (i) n = 1, i.e. $E_1 = K(x)\partial$ *is a simple Lie algebra*: We split the proof into several steps.

- (a) $D_1 := K[x]\partial$ and $W_1 := K[x, x^{-1}]\partial$ are simple Lie subalgebras of E_1 (easy).
- (b) For all λ ∈ K, W₁(λ) := K[x, (x − λ)⁻¹] is a simple Lie subalgebra of E₁, by applying the K-automorphism s_λ : x → x − λ of the K-algebra Q₁ to W₁, i.e. s_λ(W₁) = W₁(λ).
- (c) For any non-empty subset I ⊂ K, W₁(I) := W₁(I)_K := K[x, (x − λ)⁻¹ | λ ∈ I]∂ is a simple Lie subalgebra of E₁: Let a be a non-zero ideal of W₁(I) and 0 ≠ a∂ ∈ a. Then either a∂ ∈ D₁ or 0 ≠ [p∂, a∂] ∈ D₁ ∩ a for some p ∈ P₁. Since D₁ ⊆ W₁(λ) for all λ ∈ I and W₁(λ) are simple Lie algebra, a ∩ W₁(λ) = W₁(λ). Hence a = W₁(I) since

$$W_1(I) = \sum_{\lambda \in I} W_1(\lambda),$$

i.e. $W_1(I)$ is a simple Lie algebra.

(d) If K is an algebraically closed field then E_1 is a simple Lie algebra since $E_1 = W_1(K)$.

The algebra E_1 is the union $\bigcup_{0 \neq f \in P_1} W_1[f^{-1}]$ of the Lie algebras $W_1[f^{-1}] := P_{1,f}\partial$ where $P_{1,f}$ is the localization of P_1 at the powers of the element f. Let a be the ideal of E_1 generated by a non-zero element $a = pq^{-1}\partial$ for some $pq^{-1} \in Q_1$ where $p, q \in P_1$. Clearly, $a \in W_1[(fq)^{-1}]$ for all non-zero elements $f \in P_1$ and $E_1 = \bigcup_{0 \neq f \in P_1} W_1[(fg)^{-1}]$. So, to finish the proof of (i) it suffices to show that all the algebras $W_1[f^{-1}]$ are simple.

(e) $A := W_1[f^{-1}]$ is a simple Lie algebra for all $0 \neq f \in P_1$: Let $K' := K(v_1, \ldots, v_s)$ be the subfield of the algebraic closure \overline{K} of K generated by the roots v_1, \ldots, v_s of the polynomial f and G = Gal(K'/K) be the Galois group of the finite Galois field extension K'/K (since char(K) = 0). Let $K' = \bigoplus_{i=1}^d K\theta_i$ for some elements $\theta_i \in K'$ and $\theta_1 = 1$. By (c),

$$A' := K'[x, f^{-1}] \partial = W_1(\nu_1, \dots, \nu_s)_{K'}$$

is a simple Lie K'-algebra. Let $a \in A \setminus \{0\}$, \mathfrak{a} and \mathfrak{a}' be the ideals in A and A', respectively, that are generated by the element a. Then $\mathfrak{a}' = A'$, by (c). Notice that $A' = \sum_{i=1}^{d} \theta_i A$ and for $a' = \sum_{i=1}^{d} \theta_i a_i, b = \sum_{i=1}^{d} \theta_i b_i \in A'$ where $a_i, b_i \in A$, $[a', b] = \sum_{i=1}^{d} \theta_i \theta_j [a_i, b_j]$. Moreover, every element in $A' = \mathfrak{a}'$ is a linear combination of several commutators in A' (where $c = \sum_{i=1}^{d} \theta_k c_k \in A'$ and $c_k \in A$),

$$[a', [b, \dots [c, a] \dots] = \sum \theta_i \cdots \theta_j \theta_k [a_i, [b_j, \dots [c_k, a]] \dots].$$
(6)

The symmetrization map Sym : $K' \to K$, $\lambda \mapsto |G|^{-1} \sum_{g \in G} g(\lambda)$, is a surjection such that Sym $(\mu) = \mu$ for all $\mu \in K$. Clearly, K'(x)/K(x) is a Galois field extension with the Galois group G where the elements of G act trivially on the element x. So, the symmetrization map Sym can be extended to the surjection $K'(x) \to K(x)$ by the same rule, and then to the surjection $A' \to A, f\partial \mapsto \text{Sym}(f)\partial$.

Each element $e \in A \subseteq A'$, can be expressed as a finite sum of elements in (6). Then applying Sym, we see that e is a linear combination of elements (commutators) from \mathfrak{a} , i.e. A is a simple Lie algebra.

(ii) E_n is a simple Lie algebra for $n \ge 2$: Let $a \in E_n \setminus \{0\}$ and $\mathfrak{a} = (a)$ be the ideal in E_n generated by the element $a = \sum_{i=1}^n a_i \partial_i$ where $a_i \in Q_n$.

- (a) $\mathfrak{a} \cap D_n \neq 0$: If $a \in D_n$ then there is nothing to prove. Suppose that $a \notin D_n$.
- (a1) Suppose that $a_i \in K(x_i)$ for all *i*. Then $a_i \notin K[x_i]$ for some *i* (since $a \notin D_n$), and so

$$\mathfrak{a} \ni [H_i, a] = H_i(a_i)\partial_i \in K(x_i)\partial_i \setminus \{0\}.$$

By (i), $\partial_i \in \mathfrak{a} \cap D_n$.

(a2) Suppose that $a_i \notin K(x_i)$ for some *i*. Then $\partial_j(a_i) \neq 0$ for some $j \neq i$. Let $q \in P_n$ be the common denominator of the fractions a_1, \ldots, a_n , that is $a_1 = p_1 q^{-1}, \ldots, a_n = p_n q^{-1}$ for some elements $p_i \in P_n$. For all $n \ge 2$,

$$D_n \cap \mathfrak{a} \ni [q^n \partial_j, a] = q^n \partial_j(a_i) \partial_i + \sum_{k \neq i} (\ldots) \partial_k \neq 0.$$

(b) By (a), $\mathfrak{a} \cap D_n = D_n$ since D_n is a simple Lie algebra, [4].

(c) $a \supseteq K(x_i)\partial_i$ for i = 1, ..., n: In view of symmetry it suffices to prove that $a \supseteq K(x_1)\partial_1$. Notice that for all $u \in Q_n$ and i = 2, ..., n,

$$\mathfrak{a} \ni [u\partial_1, x_1\partial_i] = u\partial_i - x_1\partial_i(u)\partial_1.$$

Therefore, $\mathfrak{a} + Q_n \partial_1 = E_n$. The field of rational functions $Q_n = Q_n(K)$ can be seen as the field of rational functions $Q_n(K) = Q_{n-1}(K')$ where $K' = K(x_1)$.

Then

$$E'_{n-1} := \operatorname{Der}_{K'}(Q_{n-1}(K')) = \bigoplus_{i=2}^n Q_{n-1}(K')\partial_i = \bigoplus_{i=2}^n Q_n\partial_i.$$

By Lemma 2.5, the E'_{n-1} -module $Q'_{n-1}/K' = Q_n/K(x_1)$ is simple. The Lie algebra E'_{n-1} is a Lie subalgebra of E_n , and E_n can be seen as a left E'_{n-1} -module with respect to the adjoint action. The ideal \mathfrak{a} of E_n is an E'_{n-1} -submodule of E_n . The Lie algebra $K(x_1)\partial_1$ is simple and $\mathfrak{a} \cap K(x_1)\partial_1$ is a non-zero ideal of it (by (b)). Therefore, $K(x_1)\partial_1 \subseteq \mathfrak{a}$. The E'_{n-1} -module $E_n/\mathfrak{a} = (\mathfrak{a} + Q_n\partial_1)/\mathfrak{a} \simeq Q_n\partial_1/\mathfrak{a} \cap Q_n\partial_1$ is an epimorphic image of the simple E'_{n-1} -module $Q'_n/K(x_1)$ via

$$\varphi: Q_n/K(x_1) \to Q_n \partial_1/\mathfrak{a} \cap Q_n \partial_1, \quad u + K(x_1) \mapsto u \partial_1 + \mathfrak{a} \cap Q_n \partial_1,$$

with $0 \neq (P_n + K(x_1))/K(x_1) \subseteq \ker(\varphi)$. Therefore, $Q_n \partial_1 = \mathfrak{a} \cap Q_n \partial_1 \subseteq \mathfrak{a}$, and so $E_n = \mathfrak{a} + Q_n \partial_1 = \mathfrak{a}$. So, E_n is a simple Lie algebra.

2 and 3. Statements 2 and 3 follow from statement 1 (since, for all simple Lie algebras \mathcal{G} , $Z(\mathcal{G}) = 0$ and $[\mathcal{G}, \mathcal{G}] = \mathcal{G}$).

LEMMA 2.7. For all non-zero elements $q \in Q_n$ and i = 1, ..., n, $C_{E_n}(qP_n\partial_i) = \{0\}$.

Proof. Let $c \in C_{E_n}(qP_n\partial_i)$. Then for all elements $p \in P_n$,

$$0 = [c, qp\partial_i] = c(p) \cdot q\partial_i + p[c, q\partial_i] = c(p) \cdot q\partial_i.$$

Then c(p) = 0 for all $p \in P_n$, and so c = 0.

PROPOSITION 2.8. ([4]) Fix_{G_n}($\partial_1, ..., \partial_n, H_1, ..., H_n$) = {*e*}.

Let d_1, \ldots, d_n be a commuting linear maps acting in a vector space E. Let $\operatorname{Nil}_E(d_1, \ldots, d_n) := \{e \in E \mid d_i^j e = 0 \text{ for all } i = 1, \ldots, n \text{ and some } j = j(e)\}$. Let $\operatorname{Nil}_{E_n}(\mathcal{D}_n) := \operatorname{Nil}_{E_n}(\delta_1, \ldots, \delta_n)$. Clearly, $\operatorname{Nil}_{E_n}(\mathcal{D}_n) = D_n$ is a Lie subalgebra of E_n .

PROPOSITION 2.9.

(1) $\operatorname{Fix}_{\mathbb{E}_n}(\partial_1, \ldots, \partial_n, H_1, \ldots, H_n) = \{e\}.$ (2) $\operatorname{Fix}_{\mathbb{E}_n}(\partial_1, \ldots, \partial_n) = \operatorname{Sh}_n.$

Proof.

- 1. Let $\sigma \in F := \operatorname{Fix}_{\mathbb{E}_n}(\partial_1, \ldots, \partial_n, H_1, \ldots, H_n)$. We have to show that $\sigma = e$. Then $\sigma^{-1} \in F$ and $\sigma^{\pm 1}(\operatorname{Nil}_{E_n}(\mathcal{D}_n)) \subseteq \operatorname{Nil}_{E_n}(\mathcal{D}_n)$, i.e. $\sigma(D_n) = D_n$ since $\operatorname{Nil}_{E_n}(\mathcal{D}_n) = D_n$. So, $\sigma|_{D_n} \in \operatorname{Fix}_{\mathbb{G}_n}(\partial_1, \ldots, \partial_n, H_1, \ldots, H_n) = \{e\}$ (Proposition 2.8), i.e. $\sigma(\partial) = \partial$ for all $\partial \in D_n$. Let $0 \neq \delta \in E_n$. Then $\delta = q^{-1}\partial$ for some $0 \neq q \in P_n$ and $\partial \in D_n$. Now, $[q^2p\partial_i, \delta] = \partial' \in D_n$ for all $p \in P_n$. Applying σ to the equality yields the equality $[q^2p\partial_i, \sigma(\delta)] = \partial'$. By taking the difference, we obtain $\sigma(\delta) - \delta \in C_{E_n}(q^2P_n\partial_i) = \{0\}$, by Lemma 2.7, hence $\sigma = e$.
- 2. Clearly, $\operatorname{Sh}_n \subseteq F := \operatorname{Fix}_{\mathbb{E}_n}(\partial_1, \ldots, \partial_n)$. Let $\sigma \in F$ and $H'_1 := \sigma(H_1), \ldots, H'_n := \sigma(H_n)$. Applying the automorphism σ to the commutation relations $[\partial_i, H_j] = \delta_{ij}\partial_i$ gives the relations $[\partial_i, H'_j] = \delta_{ij}\partial_i$. By taking the difference, we see that $[\partial_i, H'_j H_j] = 0$ for all *i* and *j*. Therefore, $H'_i = H_i + d_i$ for some elements

 $d_i \in C_{E_n}(\mathcal{D}_n) = \mathcal{D}_n$ (Lemma 2.4.(1)), and so $d_i = \sum_{j=1}^n \lambda_{ij} \partial_j$ for some elements $\lambda_{ij} \in K$. The elements H'_1, \ldots, H'_n commute, hence

$$[H_i, d_i] = [H_i, d_i]$$
 for all i, j ,

or equivalently,

$$\lambda_{ii}\partial_i = \lambda_{ii}\partial_i$$
 for all i, j .

This means that $\lambda_{ij} = 0$ for all $i \neq j$, i.e.

$$H'_{i} = H_{i} + \lambda_{ii}\partial_{i} = (x_{i} + \lambda_{ii})\partial_{i} = s_{\lambda}(H_{i})$$

where $s_{\lambda} \in \text{Sh}_n$, $s_{\lambda}(x_i) = x_i + \lambda_{ii}$ for all *i*. Then $s_{\lambda}^{-1}\sigma \in \text{Fix}_{\mathbb{E}_n}(\partial_1, \ldots, \partial_n, H_1, \ldots, H_n) = \{e\}$ (statement 1), and so $\sigma = s_{\lambda} \in \text{Sh}_n$.

The automorphism ν . Let ν be the *K*-automorphism of Q_n given by the rule $\nu(x_i) = x_i^{-1}$ for i = 1, ..., n. Then

$$\nu(\partial_i) = -x_i H_i, \quad \nu(H_i) = -H_i, \quad \nu(x_i H_i) = -\partial_i, \quad i = 1, \dots, n.$$
(7)

By (7), the elements $X_1 := x_1 H_1, \dots, X_n := x_n H_n$ commute and the next lemma follows from Lemma 2.4 and Proposition 2.9 since $\mathcal{X}_n := \nu(\mathcal{D}_n) = \bigoplus_{i=1}^n K X_i$.

Lemma 2.10.

(1) $C_{E_n}(\mathcal{X}_n) = \mathcal{X}_n$ is a maximal abelian Lie subalgebra of E_n .

(2) $\operatorname{Fix}_{\mathbb{Q}_n}(X_1,\ldots,X_n) = \operatorname{Fix}_{\mathbb{E}_n}(X_1,\ldots,X_n) = \operatorname{Sh}_n$.

(3) $\operatorname{Fix}_{\mathbb{Q}_n}(X_1, \ldots, X_n, H_1, \ldots, H_n) = \operatorname{Fix}_{\mathbb{E}_n}(X_1, \ldots, X_n, H_1, \ldots, H_n) = \{e\}.$

The following lemma is well known and easy to prove.

LEMMA 2.11. Let ∂ be a locally nilpotent derivation of a commutative K-algebra A such that $\partial(x) = 1$ for some element $x \in A$. Then $A = A^{\partial}[x]$ is a polynomial algebra over the ring $A^{\partial} := \text{ker}(\partial)$ of constants of the derivation ∂ in the variable x.

The next lemma is the core of the proof of Theorem 1.2.

LEMMA 2.12. Let $\sigma \in \mathbb{E}_n$, $\partial'_1 := \sigma(\partial_1), \ldots, \partial'_n := \sigma(\partial_n)$ and $\delta'_1 := \operatorname{ad}(\partial'_1), \ldots, \delta'_n := \operatorname{ad}(\partial'_n)$. Then

- (1) $\partial'_1, \ldots, \partial'_n$ are commuting derivations of Q_n such that $\bigcap_{i=1}^n \ker_{Q_n}(\partial'_i) = K$.
- (2) $E_n = \bigoplus_{i=1}^n Q_n \partial_i'$.
- (3) For each i = 1, ..., n, $\sigma(x_i \partial_i) = x'_i \partial'_i$ for some elements $x'_i \in Q_n$. The elements $x'_1, ..., x'_n$ are algebraically independent and $\partial'_i(x'_i) = \delta_{ij}$ for i, j = 1, ..., n.
- (4) $\operatorname{Nil}_{Q_n}(\partial'_1, \ldots, \partial'_n) = P'_n$ where $P'_n := K[x'_1, \ldots, x'_n]$.
- (5) Nil_{*E_n*($\delta'_1, \ldots, \delta'_n$) = $\bigoplus_{i=1}^n P'_n \partial'_i$.}
- (6) $\sigma(x^{\alpha}\partial_i) = x'^{\alpha}\partial'_i$ for all $\alpha \in \mathbb{N}^n$ and i = 1, ..., n.
- (7) $\sigma': Q_n \to Q_n, x_i \mapsto x'_i, i = 1, ..., n$ is a K-algebra homomorphism (statement 3) such that $\sigma'(a\partial_i) = \sigma'(a)\sigma(\partial_i)$.
- (8) The K-algebra homomorphism σ' is an automorphism.

V. V. BAVULA

Proof.

1. The elements $\partial_1, \ldots, \partial_n$ are commuting derivations, hence so are $\partial'_1, \ldots, \partial'_n$. Let $\lambda \in \bigcap_{i=1}^n \ker_{Q_n}(\partial'_i)$. Then

$$\begin{split} \lambda \partial_1' \in C_{E_n}(\partial_1', \dots, \partial_n') &= \sigma(C_{E_n}(\partial_1, \dots, \partial_n)) = \sigma(C_{E_n}(\mathcal{D}_n)) = \sigma(\mathcal{D}_n) \\ &= \sigma(\bigoplus_{i=1}^n K \partial_i) = \bigoplus_{i=1}^n K \partial_i', \end{split}$$

since $C_{E_n}(\mathcal{D}_n) = \mathcal{D}_n$, Lemma 2.4.(1). Then $\lambda \in K$ since otherwise the infinite dimensional space $\bigoplus_{i\geq 0} K\lambda^i\partial'_1$ would be a subspace of the finite dimensional space $\sigma(\mathcal{D}_n)$.

- 2. It suffices to show that the elements $\partial'_1, \ldots, \partial'_n$ of the *n*-dimensional (left) vector space E_n over the field Q_n are Q_n -linearly independent (the key reason for that is statement 1). Let $V = \sum_{i=1}^n Q_n \partial'_i$. Suppose that $m := \dim_{Q_n}(V) < n$, we seek a contradiction. Up to order, let $\partial'_1, \ldots, \partial'_m$ be a Q_n -basis of V. Then $\partial'_{m+1} = \sum_{i=1}^m a_i \partial'_i$ for some elements $a_i \in Q_n$. By applying δ'_j $(j = 1, \ldots, n)$, we see that $0 = \sum_{i=1}^m \partial'_j(a)\partial'_i$, and so $a_i \in \bigcap_{i=1}^n \ker_{Q_n}(\partial'_j) = K$, by statement 1. This means that the elements $\partial'_1, \ldots, \partial'_m$ are K-linearly dependent, a contradiction.
- 3. Let $H'_i := \sigma(x_i \partial_i)$ for i = 1, ..., n. By statement 2, $H'_i = \sum_{i=1}^n a_{ij} \partial'_j$ for some elements $a_{ij} \in Q_n$. Applying the automorphism σ to the relations $\delta_{ij} \partial_j = [\partial_j, H_i]$ yields the relations

$$\delta_{ij}\partial'_i = \sum_{i=1}^n \partial'_i(a_{ik})\partial'_k$$

Let $x'_i := a_{ii}$. Then $\partial'_j(x'_i) = \delta_{ji}$ and $\partial'_j(a_{ik}) = 0$ for all $k \neq i$. By statement 1, $a_{ik} \in K$ for all $i \neq k$. Now,

$$H'_i := x'_i \partial'_i + \sum_{j \neq i} a_{ij} \partial'_j.$$

The elements H'_1, \ldots, H'_n commute, hence for all $i \neq j$, $0 = [H'_i, H'_j] = -a_{ji}\partial'_i + a_{ij}\partial'_i$, and so $a_{ij} = 0$. Therefore, $H'_i = x'_i\partial'_i$.

The equalities $\partial'_i(x'_j) = \delta_{ij}$ imply that the elements $x'_1, \ldots, x'_n \in Q_n$ are algebraically independent over K: Suppose that $f(x'_1, \ldots, x'_n) = 0$ for some non-zero polynomial $f(x_1, \ldots, x_n) \in K[x_1, \ldots, x_n]$. We can assume that the (total) degree deg(f) is the least possible. Clearly, $f \notin K$, hence $\frac{\partial f}{\partial x_i} \neq 0$ for some i and deg $(\frac{\partial f}{\partial x_i}) < \text{deg}(f)$ and so $0 \neq \frac{\partial f}{\partial x_i}(x'_1, \ldots, x'_n) = \partial'_i(f(x'_1, \ldots, x'_n)) = \partial'_i(0) = 0$, a contradiction.

4. Let $\mathcal{D}'_n = \sum_{i=1}^n K \partial'_i$ and $N = \operatorname{Nil}_{\mathcal{Q}_n}(\mathcal{D}'_n)$. By statement 3 and Lemma 2.11,

$$N = N^{\mathcal{D}'_n}[x'_1, \dots, x'_n] = K[x'_1, \dots, x'_n]$$

since $K \subseteq N^{\mathcal{D}'_n} \subseteq Q_n^{\mathcal{D}'_n} = K$ (by statement 1).

5. Let $\partial = \sum_{i=1}^{n} a_i \partial'_i \in N := \operatorname{Nil}_{E_n}(\delta'_1, \dots, \delta'_n)$ where $a_i \in Q_n$ (statement 2). For all $\alpha \in \mathbb{N}^n$,

$$\delta^{\prime lpha}(\partial) = \sum_{i=1}^n \partial^{\prime lpha}(a_i) \partial_i^\prime$$

where $\delta'^{\alpha} := \prod_{i=1}^{n} \delta_{i}^{\alpha_{i}}, \ \delta_{i}' = \operatorname{ad}(\partial_{i}')$ and $\partial'^{\alpha} := \prod_{i=1}^{n} \partial_{i}^{\alpha_{i}}$. So, $\delta'^{\alpha}(a_{i}) = 0$ iff $\partial'^{\alpha}(a_{i}) = 0$ for $i = 1, \ldots, n$ (statement 2). Now, statement 5 follows from statement 4.

6. By statement 3,

$$\partial'_i(x'_i) = \delta_{ij}$$
 and $\sigma(H_i) = \sigma(x_i\partial_i) = x'_i\partial'_i := H'_i$

We prove statement 6 by induction on $|\alpha|$. The initial cases when $|\alpha| = 0, 1$ are obvious (statement 3). So, let $|\alpha| \ge 2$ and we assume that statement 6 holds for all α' with $|\alpha'| < |\alpha|$. Then

$$\begin{split} [\partial_j', \sigma(x^{\alpha}\partial_i) - x'^{\alpha}\partial_i'] &= \sigma([\partial_j, x^{\alpha}\partial_i]) - \alpha_j x'^{\alpha - e_j}\partial_i' = \sigma(\alpha_j x^{\alpha - e_j}\partial_i) - \alpha_j x'^{\alpha - e_j}\partial_i' \\ &= \alpha_j x'^{\alpha - e_j}\partial_i' - \alpha_j x'^{\alpha - e_j}\partial_i' = 0. \end{split}$$

Hence, $\sigma(x^{\alpha}\partial_i) - x'^{\alpha}\partial'_i \in C_{E_n}(\mathcal{D}'_n) = \mathcal{D}'_n$, Lemma 2.4.(1). Therefore, $\sigma(x^{\alpha}\partial_i) = x'^{\alpha}\partial'_i + \sum \lambda_{ij}\partial'_j$ for some scalars $\lambda_{ij} = \lambda_{ij}(\alpha) \in K$. We have to show that all $\lambda_{ij} = 0$. Applying the automorphism σ to the equalities $(\alpha_j - \delta_{ij})x^{\alpha}\partial_i = [H_j, x^{\alpha}\partial_i]$ we have (notice that $x^{\alpha}\partial_i \neq H_i$ since $|\alpha| \geq 2$)

$$\begin{aligned} (\alpha_j - \delta_{ij})(x'^{\alpha}\partial_i' + \sum_{k=1}^n \lambda_{ik}\partial_k') &= \sigma((\alpha_j - \delta_{ij})x^{\alpha}\partial_i) \\ &= \sigma([H_j, x^{\alpha}\partial_i]) = [H'_j, x'^{\alpha}\partial_i' + \sum_{k=1}^n \lambda_{ik}\partial_k'] \\ &= (\alpha_j - \delta_{ij})x'^{\alpha}\partial_i' - \lambda_{ij}\partial_j', \end{aligned}$$

and so $(\alpha_j - \delta_{ij} + 1)\lambda_{ij} = 0$ and $(\alpha_j - \delta_{ij})\lambda_{ik} = 0$ for all $k \neq j$. If n = 1 then $\alpha_1 \ge 2$ and the first equation $(\alpha_j - \delta_{ij} + 1)\lambda_{ij} = 0$ takes the form $(\alpha_1 - 1 + 1)\lambda_{11} = 0$, and so $\lambda_{11} = 0$. We can assume that $n \ge 2$. For all $i \neq j$, the first equation $(\alpha_j - \delta_{ij} + 1)\lambda_{ij} = 0$ yields $\lambda_{ij} = 0$. Fix an index j such that $\alpha_j \ge 1$. Then, for i = j the first equation $(\alpha_j - \delta_{ij} + 1)\lambda_{ij} = 0$ yields $\lambda_{ij} = 0$. Finally for all $i = k \neq j$, the second equation $(\alpha_j - \delta_{ij})\lambda_{ik} = 0$ yields $\lambda_{ii} = 0$. This means that all $\lambda_{st} = 0$.

7. By statement 3, σ' is a *K*-algebra homomorphism such that $im(\sigma') = Q'_n := K(x'_1, \ldots, x'_n)$. By statement 3, for all elements $a \in Q_n$,

$$\partial_i'\sigma'(a) = \sigma'\partial_i(a)$$

since ∂'_i acts as $\frac{\partial}{\partial x'_i}$ on Q'_n .

Let $a = pq^{-1} \neq 0$ where $p, q \in P_n$. Then, for all $r \in q^2 P_n$, $[a\partial_i, r\partial_i] = (a\partial_i(r) - \partial_i(a)r)\partial_i \in P_n\partial_i$. By applying σ and using statement 6, we have the equality

$$[\sigma(a\partial_i), \sigma'(r)\partial_i'] = \sigma'(a\partial_i(r) - \partial_i(a)r)\partial_i'.$$

On the other hand,

$$\begin{aligned} [\sigma'(a)\partial_i', \sigma'(r)\partial_i'] &= (\sigma'(a)\partial_i'\sigma'(r) - \partial_i'\sigma'(a)\sigma'(r))\partial_i' \\ &= (\sigma'(a)\sigma'\partial_i(r) - \sigma'\partial_i(a)\sigma'(r))\partial_i' \\ &= \sigma'(a\partial_i(r) - \partial_i(a)r)\partial_i'. \end{aligned}$$

Hence,

$$\sigma(a\partial_i) - \sigma'(a)\partial'_i \in C_{E_n}(\sigma'(q^2P_n)\partial'_i) = C_{E_n}(\sigma(q^2P_n\partial_i))$$

= $\sigma(C_{E_n}(q^2P_n\partial_i)) = \sigma(0) = 0,$

by Lemma 2.7. Therefore, $\sigma(a\partial_i) = \sigma'(a)\sigma(\partial_i)$.

8. Since $\sigma(Q_n \partial_i) = \sigma'(Q_n) \partial'_i$ for all i = 1, ..., n (statement 7), we must have $\sigma'(Q_n) = Q_n$, by statement 2, and so $\sigma' \in \mathbb{Q}_n$.

Proof of Theorem 1.2. Let $\sigma \in \mathbb{E}_n$. By Lemma 2.12.(8), we have the automorphism $\sigma' \in \mathbb{Q}_n$ such that, by Lemma 2.12.(3,6), $\sigma'^{-1}\sigma \in \operatorname{Fix}_{\mathbb{E}_n}(\partial_1, \ldots, \partial_n, H_1, \ldots, H_n) = \{e\}$ (Proposition 2.9). Therefore, $\sigma = \sigma'$ and so $\mathbb{E}_n = \mathbb{Q}_n$. \square

ACKNOWLEDGEMENTS. The work is partly supported by the Royal Society and EPSRC.

REFERENCES

1. V. V. Bavula, Every monomorphism of the Lie algebra of triangular polynomial derivations is an automorphism, C. R. Acad. Sci. Paris, Ser. I, 350(11-12) (2012), 553-556. (Arxiv:math.AG:1205.0797)

2. V. V. Bavula, Lie algebras of triangular polynomial derivations and an isomorphism criterion for their Lie factor algebras, Izvestiya: Math. 77(6) (2013), 3-44. (Arxiv:math.RA:1204.4908)

3. V. V. Bavula, The groups of automorphisms of the Lie algebras of triangular polynomial derivations, J. Pure Appl. Algebra 218 (2014), 829–851. (Arxiv:math.AG/1204.4910)

4. V. V. Bavula, The group of automorphisms of the Lie algebra of derivations of a polynomial algebra, Arxiv:math.RA:1304.6524. J. Algebra and Its Appl. (2016), to appear.

5. V. V. Bavula, The groups of automorphisms of the Witt W_n and Virasoro Lie algebras, Arxiv:math.RA:1304.6578. Chech. J. Math. (2016), to appear.

6. G. Freudenburg, Algebraic theory of locally nilpotent derivations, Encyclopaedia of Mathematical Sciences, vol. 136. Invariant Theory and Algebraic Transformation Groups, VII (Springer-Verlag, Berlin, 2006), 261.

7. A. Nowicki, Polynomial derivations and their rings of constants (Uniwersytet, Mikolaja Kopernika, Torun, 1994).

8. J. M. Osborn, Automorphisms of the Li algebras W^* in characteristic zero, Can. J. Math. 49 (1997), 119-132.

9. A. N. Rudakov, Automorphism groups of infinite-dimensional simple Lie algebras, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 748-764.

10. A. N. Rudakov, Subalgebras and automorphisms of Lie algebras of Cartan type, Funktsional. Anal. i Prilozhen. 20(1) (1986), 83-84.

11. A. van den Essen, Polynomial automorphisms and the Jacobian conjecture, Progress in Mathematics, vol. 190 (Birkhäuser Verlag, Basel, 2000), 329.

12. K. Zhao, Isomorphisms between generalized Cartan type W Lie algebras in characteristic zero, Can. J. Math. 50 (1998), 210-224.