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Abstract. We prove that the group of automorphisms of the Lie algebra DerK (Qn)
of derivations of the field of rational functions Qn = K(x1, . . . , xn) over a field of
characteristic zero is canonically isomorphic to the group of automorphisms of the
K-algebra Qn.
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1. Introduction. In this paper, module means a left module, K is a field of
characteristic zero and K∗ is its group of units, and the following notation is fixed:

• Pn := K [x1, . . . , xn] = ⊕
α∈�n Kxα is a polynomial algebra over K where xα :=

xα1
1 · · · xαn

n and Qn := K(x1, . . . , xn) is the field of rational functions,
• Gn := AutK−alg(Pn) and �n := AutK−alg(Qn),
• ∂1 := ∂

∂x1
, . . . , ∂n := ∂

∂xn
are the partial derivatives (K-linear derivations) of Pn,

• Dn := DerK (Pn) = ⊕n
i=1 Pn∂i ⊆ En := DerK (Qn) = ⊕n

i=1 Qn∂i are the Lie
algebras of K-derivations of Pn and Qn, respectively, where [∂, δ] := ∂δ − δ∂,

• �n := AutLie(Dn) and �n := AutLie(En),
• δ1 := ad(∂1), . . . , δn := ad(∂n) are the inner derivations of the Lie algebras Dn

and En where ad(a)(b) := [a, b],
• Dn := ⊕n

i=1 K∂i,
• Hn := ⊕n

i=1 KHi where H1 := x1∂1, . . . , Hn := xn∂n,
• for each natural number n ≥ 2, un := K∂1 + P1∂2 + · · · + Pn−1∂n is the Lie

algebra of triangular polynomial derivations (it is a Lie subalgebra of Dn) and
AutLie(un) is its group of automorphisms.

THEOREM 1.1. �n = Gn.

The above result is due to Rudakov [10] where a detailed sketch of a proof is
given based on his algebro-geometric approach developed in [9] (where the groups
of automorphisms of infinite dimensional Lie algebras of Cartan type are found). A
short proof of Theorem 1.3 is given in [4]. The group of automorphisms of (infinite
dimensional) algebras of generalized Cartan type were studied by Osborn, [8], and
Zhao, [12]. The group of automorphisms of the Virasoro Lie algebra was found in [5].
A lot of information about derivations and automorphisms the interested reader can
find in the following books [7, 6, 11].

The aim of the paper is to prove the following theorem.

THEOREM 1.2. �n = �n.
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Structure of the proof.
(i) �n ⊆ �n via the group monomorphism (Lemma 2.3 and (3))

�n → �n, σ �→ σ : ∂ �→ σ (∂) := σ∂σ−1.

(ii) Let σ ∈ �n. Then ∂ ′
1 := σ (∂1), . . . , ∂ ′

n := σ (∂n) are commuting derivations of
Qn such that En = ⊕n

i=1 Qn∂
′
i (Lemma 2.12.(2)).

(iii)
⋂n

i=1 kerQn (∂ ′
i ) = K (Lemma 2.12.(1)).

(iv) (crux) There exist elements x′
1, . . . , x′

n ∈ Qn such that ∂ ′
i (x

′
j) = δij for i, j =

1, . . . , n (Lemma 2.12.(3)).
(v) σ (xα∂i) = x′α∂ ′

i for all α ∈ �n and i = 1, . . . , n (Lemma 2.12.(6)).
(vi) The K-algebra homomorphism σ ′ : Qn → Qn, xi �→ x′

i, i = 1, . . . , n is an
automorphism such that σ ′(q∂i) = σ ′(q)∂ ′

i for all q ∈ Qn and i = 1, . . . , n
(Lemma 2.12.(7)).

(vii) Fix�n (∂1, . . . , ∂n, H1, . . . , Hn) := {τ ∈ �n | τ (∂i) = ∂i), τ (Hi) = Hi, 1 ≤ i ≤
n} = {e} (Proposition 2.9.(1)). Hence, σ = σ ′ ∈ �n, by (v) and (vi), i.e.
�n = �n. �

THEOREM 1.3. (Theorem 5.3, [3]) The group AutLie(un) of automorphisms of the Lie
algebra un is isomorphic to an iterated semi-direct product of groups �n

� (UAutK (Pn)n �

(�′
n × �n)) where �n is an algebraic n-dimensional torus, UAutK (Pn)n is an explicit factor

group of the group UAutK (Pn) of unitriangular polynomial automorphisms, �′
n and �n

are explicit groups that are isomorphic, respectively, to the groups � and 	n−2 where
� := (1 + t2K [[t]], ·) � K� and 	 := (tK [[t]],+) � K�.

Comparing the groups �n, �n and AutLie(un), we see that the group UAutK (Pn)n

of polynomial automorphisms is a tiny part of the group AutLie(un) but in contrast
�n = Gn and �n = �n.

THEOREM 1.4 ([1]). Every monomorphism of the Lie algebra un is an automorphism.

Not every epimorphism of the Lie algebra un is an automorphism. Moreover, there
are countably many distinct ideals {Ii | i ≥ 0} such that

I0 = {0} ⊂ I1 ⊂ I2 ⊂ · · · ⊂ Ii ⊂ · · ·
and the Lie algebras un/Ii and un are isomorphic (Theorem 5.1.(1), [2]).

2. Proof of Theorem 1.2. In this section, a proof of Theorem 1.2 is given. The
proof is split into several statements that reflect “Structure of the proof of Theorem
1.2” given in the Introduction.

Let G be a Lie algebra and H be its Lie subalgebra. The centralizer CG(H) := {x ∈
G | [x,H] = 0} of H in G is a Lie subalgebra of G. In particular, Z(G) := CG(G) is the
centre of the Lie algebra G. The normalizer NG(H) := {x ∈ G | [x,H] ⊆ H} of H in G is
a Lie subalgebra of G, it is the largest Lie subalgebra of G that contains H as an ideal.

Let V be a vector space over K . A K-linear map δ : V → V is called a locally
nilpotent map if V = ⋃

i≥1 ker(δi) or, equivalently, for every v ∈ V , δi(v) = 0 for all
i  1. When δ is a locally nilpotent map in V we also say that δ acts locally nilpotently
on V . Every nilpotent linear map δ, that is δn = 0 for some n ≥ 1, is a locally nilpotent
map but not vice versa, in general. Each element a ∈ G determines the derivation of the
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Lie algebra G by the rule ad(a) : G → G, b �→ [a, b], which is called the inner derivation
associated with a. The set Inn(G) of all the inner derivations of the Lie algebra G is a
Lie subalgebra of the Lie algebra (EndK (G), [·, ·]) where [f, g] := fg − gf . We have the
short exact sequence of Lie algebras

0 → Z(G) → G ad→ Inn(G) → 0,

that is Inn(G) � G/Z(G) where ad([a, b]) = [ad(a), ad(b)] for all elements a, b ∈ G. An
element a ∈ G is called a locally nilpotent element (respectively, a nilpotent element) if
so is the inner derivation ad(a) of the Lie algebra G.

The Lie algebra En. Since

En =
n⊕

i=1

Qn∂i =
n⊕

i=1

QnHi (1)

every element ∂ ∈ En is a unique sum ∂ = ∑n
i=1 ai∂i = ∑n

i=1 biHi where ai = xibi ∈ Qn.
The field Qn is the union

⋃
0�=f ∈Pn

Pn,f where Pn,f is the localization of Pn at the powers
of f . The algebra Qn is a localization of Pn,f . Hence Dn,f := DerK (Pn,f ) = ⊕n

i=1 Pn,f ∂i ⊆
En and

En =
⋃

0�=f ∈Pn

Dn,f .

Qn is an En-module. The field Qn is a (left) En-module: En × Qn → Qn, (∂, q) �→ ∂ ∗ q.
In more detail, if ∂ = ∑n

i=1 ai∂i where ai ∈ Qn then

∂ ∗ q =
n∑

i=1

ai
∂q
∂xi

.

The En-module Qn is not a simple module since K is an En-submodule of Qn, and

n⋂
i=1

kerQn (∂i) = K. (2)

LEMMA 2.1. The En-module Qn/K is simple with EndEn (Qn/K) = K id where id is
the identity map.

Proof. We have to show that for each non-scalar rational function, say pq−1 ∈ Qn,
the En-submodule M of Qn/K it generates coincides with the En-module Qn/K . By (2),
ai = ∂i ∗ (pq−1) �= 0 for some i. Then for all elements u ∈ Qn, ua−1

i ∂i ∗ (pq−1 + K) =
u + K . So, Qn/K is a simple En-module. Let f ∈ EndEn (Qn/K). Then applying f to the
equalities ∂i ∗ (x1 + K) = δi1 for i = 1, . . . , n, we obtain the equalities

∂i ∗ f (x1 + K) = δi1 for i = 1, . . . , n.

Hence, f (x1 + K) ∈ ⋂n
i=2 kerQn/K (∂i) ∩ kerQn/K (∂2

i ) = (K(x1)/K) ∩ kerQn/K (∂2
i ) =

K(x1 + K). So, f (x1 + K) = λ(x1 + K) and so f = λid, by the simplicity of the
En-module Qn/K . �
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The Cartan subalgebra Hn of En. A nilpotent Lie subalgebra C of a Lie algebra
G is called a Cartan subalgebra of G if it coincides with its normalizer. We use often
the following obvious observation: An abelian Lie subalgebra that coincides with its
centralizer is a maximal abelian Lie subalgebra.

LEMMA 2.2.
(1) Hn is a Cartan subalgebra of En.
(2) Hn = CEn (Hn) is a maximal abelian Lie subalgebra of En.

Proof. 2. Clearly, Hn ⊆ CEn (Hn). Let ∂ = ∑n
i=1 aiHi ∈ CEn (Hn) where ai ∈ Qn.

Then all ai ∈ ∩n
i=1kerQn (Hi) = ∩n

i=1kerQn (∂i) = K , by (2), and so ∂ ∈ Hn. Therefore,
Hn = CEn (Hn) is a maximal abelian Lie subalgebra of En.

1. By statement 2, we have to show that Hn = N := NEn (Hn). Let ∂ = ∑n
i=1 aiHi ∈

N, we have to show that all ai ∈ K . For all j = 1, . . . , n, Hn � [Hj, ∂] = ∑n
i=1 Hj(ai)Hi,

and so Hj(ai) ∈ K for all i and j. These inclusions hold if all ai ∈ K , i.e. ∂ ∈
Hn. Suppose that ai �∈ K for some i, we seek a contradiction. Then necessarily,
ai �∈ K(x1, . . . , x̂j, . . . , xn) for some j. Since Qn = K(x1, . . . , x̂j, . . . , xn)(xj), the result
follows from the following claim.

Claim: If a ∈ K(x)\K then H(a) �∈ K where H := x d
dx . The field K(x) is a subfield of

the series field K((x)) := {∑i>−∞ λixi | λi ∈ K}. Since H(
∑

i>−∞ λixi) = ∑
i>−∞ iλixi,

the Claim is obvious. Then, by the Claim, Hj(ai) �∈ K , a contradiction. �
LEMMA 2.3 ([5]). Let R be a commutative ring such that there exists a derivation

∂ ∈ Der(R) such that r∂ �= 0 for all non-zero elements r ∈ R (eg, R = Pn, Qn and δ = ∂1).
Then the group homomorphism

Aut(R) → AutLie(Der(R)), σ �→ σ : δ �→ σ (δ) := σδσ−1,

is a monomorphism.

Proof. If an automorphism σ ∈ Aut(R) belongs to the kernel of the group
homomorphism σ �→ σ then, for all r ∈ R, r∂ = σ (r∂)σ−1 = σ (r)σ∂σ−1 = σ (r)∂, i.e.
σ (r) = r for all r ∈ R. This means that σ is the identity automorphism. Therefore, the
homomorphism σ �→ σ is a monomorphism. �

The �n-module En. The Lie algebra En is a �n-module,

�n × En → En, (σ, ∂) �→ σ (∂) := σ∂σ−1.

By Lemma 2.3, the �n-module En is faithful and the map

�n → �n, σ �→ σ : ∂ �→ σ (∂) = σ∂σ−1, (3)

is a group monomorphism. We identify the group �n with its image in �n, �n ⊆ �n.
Every automorphism σ ∈ �n is uniquely determined by the elements

x′
1 := σ (x1), . . . , x′

n := σ (xn).

Let Mn(Qn) be the algebra of n × n matrices over Qn. The matrix J(σ ) := (J(σ )ij) ∈
Mn(Qn), where J(σ )ij = ∂x′

j

∂xi
, is called the Jacobi matrix of the automorphism

(endomorphism) σ and its determinant J (σ ) := det J(σ ) is called the Jacobian of

σ . So, the jth column of J(σ ) is the gradient grad x′
j := (

∂x′
j

∂x1
, . . . ,

∂x′
j

∂xn
)T of the rational
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function x′
j. Then the derivations

∂ ′
1 := σ∂1σ

−1, . . . , ∂ ′
n := σ∂nσ

−1

are the partial derivatives of Qn with respect to the variables x′
1, . . . , x′

n,

∂ ′
1 = ∂

∂x′
1

, . . . , ∂ ′
n = ∂

∂x′
n
. (4)

Every derivation ∂ ∈ En is a unique sum ∂ = ∑n
i=1 ai∂i where ai = ∂ ∗ xi ∈ Qn. Let

∂ := (∂1, . . . , ∂n)T and ∂ ′ := (∂ ′
1, . . . , ∂

′
n)T where T stands for the transposition. Then

∂ ′ = J(σ )−1∂, i.e. ∂ ′
i =

n∑
j=1

(J(σ )−1)ij∂j for i = 1, . . . , n. (5)

In more detail, if ∂ ′ = A∂ where A = (aij) ∈ Mn(Qn), i.e. ∂ ′
i = ∑n

j=1 aij∂j. Then for all
i, j = 1, . . . , n,

δij = ∂ ′
i ∗ x′

j =
n∑

k=1

aik
∂x′

j

∂xk

where δij is the Kronecker delta function. The equalities above can be written in the
matrix form as AJ(σ ) = 1 where 1 is the identity matrix. Therefore, A = J(σ )−1.

The maximal abelian Lie subalgebra Dn of En. Suppose that a group G acts on a
set S. For a non-empty subset T of S, StG(T) := {g ∈ G | gT = T} is the stabilizer of
the set T in G and FixG(T) := {g ∈ G | gt = t for all t ∈ T} is the fixator of the set T in
G. Clearly, FixG(T) is a normal subgroup of StG(T). The set Shn := {sλ ∈ �n | sλ(x1) =
x1 + λ1, . . . , sλ(xn) = xn + λn} is a subgroup of �n. Then Shn is also a subgroup of �n

where sλ(q∂i) = sλ(q)∂i for all elements q ∈ Qn and i = 1, . . . , n.

LEMMA 2.4.
(1) CEn (Dn) = Dn and so Dn is a maximal abelian Lie subalgebra of En.
(2) Fix�n (Dn) = Fix�n (∂1, . . . , ∂n) = Shn.
(3) Fix�n = (∂1, . . . , ∂n, H1, . . . , Hn) = {e}.
(4) CEn (Dn + Hn) = 0.

Proof.
1. Statement 1 follows from (2): Clearly, Dn ⊆ CEn (Dn). Let ∂ = ∑

ai∂i ∈ CEn (Dn)
where ai ∈ Qn. Then all elements ai ∈ ⋂n

i=1 kerQn∂i = K , by (2), and so ∂ ∈ Dn.
So, CEn (Dn) = Dn and as a result Dn is a maximal abelian Lie subalgebra
of En.

2. Let σ ∈ Fix�n (Dn) and J(σ ) = (Jij). By (5), ∂ = J(σ )∂, and so, for all i, j =
1, . . . , n, δij = ∂i ∗ xj = Jij, i.e. J(σ ) = 1, or equivalently, by (2),

x′
1 = x1 + λ1, . . . , x′

n = xn + λn

for some scalars λi ∈ K , and so σ ∈ Shn (since x′
i − xi ∈ ⋂n

j=1 kerQn (∂j) = K for
i = 1, . . . , n).
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3. Let σ ∈ Fix�n = (∂1, . . . , ∂n, H1, . . . , Hn). Then σ ∈ Fix�n (∂1, . . . , ∂n) = Shn,
by statement 2. So, σ (x1) = x1 + λ1, . . . , σ (xn) = xn + λn where λi ∈ K . Then
xi∂i = σ (xi∂i) = (xi + λi)∂i for i = 1, . . . , n, and so λ1 = · · · = λn = 0. This
means that σ = e. So, Fix�n = (∂1, . . . , ∂n, H1, . . . , Hn) = {e}.

4. Statement 4 follows from statement 1 and Lemma 2.2.(2).
�

LEMMA 2.5. Let A be a K-algebra, DerK (A) be the Lie algebra of K-derivations of
A and D(A) be the ring of differential operators on A. If the algebra D(A) is simple and
generated by A and DerK (A) then the D(A)-module A is simple.

Proof. Let a be a non-zero D(A)-submodule of A. So, a is an ideal of A such
that ∂(a) ⊆ a for all ∂ ∈ DerK (A). The algebra D := D(A) is generated by A and D.
So, Da ⊆ aD and aD ⊆ Da, i.e. Da = aD is a non-zero ideal of the simple algebra D.
Hence, 1 ∈ Da and so 1 = ∑

i aidi for some elements di ∈ D and ai ∈ a ⊆ D. Then

1 = 1 ∗ 1 =
∑

i

aidi ∗ 1 ∈ a,

hence a = A, i.e. A is a simple D(A)-module. �
THEOREM 2.6.
(1) En is a simple Lie algebra.
(2) Z(En) = {0}.
(3) [En, En] = En.

Proof. 1. (i) n = 1, i.e. E1 = K(x)∂ is a simple Lie algebra: We split the proof into
several steps.

(a) D1 := K [x]∂ and W1 := K [x, x−1]∂ are simple Lie subalgebras of E1 (easy).
(b) For all λ ∈ K , W1(λ) := K [x, (x − λ)−1] is a simple Lie subalgebra of E1, by

applying the K-automorphism sλ : x �→ x − λ of the K-algebra Q1 to W1, i.e.
sλ(W1) = W1(λ).

(c) For any non-empty subset I ⊂ K, W1(I) := W1(I)K := K [x, (x − λ)−1 | λ ∈ I ]∂
is a simple Lie subalgebra of E1: Let a be a non-zero ideal of W1(I) and
0 �= a∂ ∈ a. Then either a∂ ∈ D1 or 0 �= [p∂, a∂] ∈ D1 ∩ a for some p ∈ P1.
Since D1 ⊆ W1(λ) for all λ ∈ I and W1(λ) are simple Lie algebra, a ∩ W1(λ) =
W1(λ). Hence a = W1(I) since

W1(I) =
∑
λ∈I

W1(λ),

i.e. W1(I) is a simple Lie algebra.
(d) If K is an algebraically closed field then E1 is a simple Lie algebra since

E1 = W1(K).
The algebra E1 is the union

⋃
0�=f ∈P1

W1[f −1] of the Lie algebras W1[f −1] :=
P1,f ∂ where P1,f is the localization of P1 at the powers of the element f . Let a be
the ideal of E1 generated by a non-zero element a = pq−1∂ for some pq−1 ∈ Q1

where p, q ∈ P1. Clearly, a ∈ W1[(f q)−1] for all non-zero elements f ∈ P1 and
E1 = ⋃

0�=f ∈P1
W1[(fg)−1]. So, to finish the proof of (i) it suffices to show that

all the algebras W1[f −1] are simple.
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(e) A := W1[f −1] is a simple Lie algebra for all 0 �= f ∈ P1: Let K ′ := K(ν1, . . . , νs)
be the subfield of the algebraic closure K of K generated by the roots ν1, . . . , νs

of the polynomial f and G = Gal(K ′/K) be the Galois group of the finite Galois
field extension K ′/K (since char(K) = 0). Let K ′ = ⊕d

i=1Kθi for some elements
θi ∈ K ′ and θ1 = 1. By (c),

A′ := K ′[x, f −1]∂ = W1(ν1, . . . , νs)K ′

is a simple Lie K ′-algebra. Let a ∈ A\{0}, a and a′ be the ideals in A and
A′, respectively, that are generated by the element a. Then a′ = A′, by (c).
Notice that A′ = ∑d

i=1 θiA and for a′ = ∑d
i=1 θiai, b = ∑d

i=1 θibi ∈ A′ where
ai, bi ∈ A, [a′, b] = ∑d

i=1 θiθj[ai, bj]. Moreover, every element in A′ = a′ is a
linear combination of several commutators in A′ (where c = ∑d

i=1 θkck ∈ A′

and ck ∈ A),

[a′, [b, . . . [c, a] . . .] =
∑

θi · · · θjθk[ai, [bj, . . . [ck, a]] . . .]. (6)

The symmetrization map Sym : K ′ → K , λ �→ |G|−1 ∑
g∈G g(λ), is a surjection such

that Sym(μ) = μ for all μ ∈ K . Clearly, K ′(x)/K(x) is a Galois field extension with
the Galois group G where the elements of G act trivially on the element x. So, the
symmetrization map Sym can be extended to the surjection K ′(x) → K(x) by the same
rule, and then to the surjection A′ → A, f ∂ �→ Sym(f )∂.

Each element e ∈ A ⊆ A′, can be expressed as a finite sum of elements in (6). Then
applying Sym, we see that e is a linear combination of elements (commutators) from
a, i.e. A is a simple Lie algebra.

(ii) En is a simple Lie algebra for n ≥ 2: Let a ∈ En\{0} and a = (a) be the ideal in
En generated by the element a = ∑n

i=1 ai∂i where ai ∈ Qn.
(a) a ∩ Dn �= 0: If a ∈ Dn then there is nothing to prove. Suppose that a �∈ Dn.

(a1) Suppose that ai ∈ K(xi) for all i. Then ai �∈ K [xi] for some i (since a �∈ Dn), and
so

a � [Hi, a] = Hi(ai)∂i ∈ K(xi)∂i\{0}.

By (i), ∂i ∈ a ∩ Dn.
(a2) Suppose that ai �∈ K(xi) for some i. Then ∂j(ai) �= 0 for some j �= i. Let

q ∈ Pn be the common denominator of the fractions a1, . . . , an, that is
a1 = p1q−1, . . . , an = pnq−1 for some elements pi ∈ Pn. For all n ≥ 2,

Dn ∩ a � [qn∂j, a] = qn∂j(ai)∂i +
∑
k�=i

(. . .)∂k �= 0.

(b) By (a), a ∩ Dn = Dn since Dn is a simple Lie algebra, [4].
(c) a ⊇ K(xi)∂i for i = 1, . . . , n: In view of symmetry it suffices to prove that

a ⊇ K(x1)∂1. Notice that for all u ∈ Qn and i = 2, . . . , n,

a � [u∂1, x1∂i] = u∂i − x1∂i(u)∂1.

Therefore, a + Qn∂1 = En. The field of rational functions Qn = Qn(K) can be
seen as the field of rational functions Qn(K) = Qn−1(K ′) where K ′ = K(x1).
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Then

E′
n−1 := DerK ′ (Qn−1(K ′)) =

n⊕
i=2

Qn−1(K ′)∂i =
n⊕

i=2

Qn∂i.

By Lemma 2.5, the E′
n−1-module Q′

n−1/K ′ = Qn/K(x1) is simple. The Lie
algebra E′

n−1 is a Lie subalgebra of En, and En can be seen as a left E′
n−1-

module with respect to the adjoint action. The ideal a of En is an E′
n−1-

submodule of En. The Lie algebra K(x1)∂1 is simple and a ∩ K(x1)∂1 is
a non-zero ideal of it (by (b)). Therefore, K(x1)∂1 ⊆ a. The E′

n−1-module
En/a = (a + Qn∂1)/a � Qn∂1/a ∩ Qn∂1 is an epimorphic image of the simple
E′

n−1-module Qn/K(x1) via

ϕ : Qn/K(x1) → Qn∂1/a ∩ Qn∂1, u + K(x1) �→ u∂1 + a ∩ Qn∂1,

with 0 �= (Pn + K(x1))/K(x1) ⊆ ker(ϕ). Therefore, Qn∂1 = a ∩ Qn∂1 ⊆ a, and
so En = a + Qn∂1 = a. So, En is a simple Lie algebra.
2 and 3. Statements 2 and 3 follow from statement 1 (since, for all simple Lie
algebras G, Z(G) = 0 and [G,G] = G).

�
LEMMA 2.7. For all non-zero elements q ∈ Qn and i = 1, . . . , n, CEn (qPn∂i) = {0}.
Proof. Let c ∈ CEn (qPn∂i). Then for all elements p ∈ Pn,

0 = [c, qp∂i] = c(p) · q∂i + p[c, q∂i] = c(p) · q∂i.

Then c(p) = 0 for all p ∈ Pn, and so c = 0. �
PROPOSITION 2.8. ([4]) Fix�n (∂1, . . . , ∂n, H1, . . . , Hn) = {e}.
Let d1, . . . , dn be a commuting linear maps acting in a vector space E.

Let NilE(d1, . . . , dn) := {e ∈ E | dj
i e = 0 for all i = 1, . . . , n and some j = j(e)}. Let

NilEn (Dn) := NilEn (δ1, . . . , δn). Clearly, NilEn (Dn) = Dn is a Lie subalgebra of En.

PROPOSITION 2.9.
(1) Fix�n (∂1, . . . , ∂n, H1, . . . , Hn) = {e}.
(2) Fix�n (∂1, . . . , ∂n) = Shn.

Proof.
1. Let σ ∈ F := Fix�n (∂1, . . . , ∂n, H1, . . . , Hn). We have to show that σ = e. Then

σ−1 ∈ F and σ±1(NilEn (Dn)) ⊆ NilEn (Dn), i.e. σ (Dn) = Dn since NilEn (Dn) = Dn.
So, σ |Dn ∈ Fix�n (∂1, . . . , ∂n, H1, . . . , Hn) = {e} (Proposition 2.8), i.e. σ (∂) = ∂

for all ∂ ∈ Dn. Let 0 �= δ ∈ En. Then δ = q−1∂ for some 0 �= q ∈ Pn and ∂ ∈
Dn. Now, [q2p∂i, δ] = ∂ ′ ∈ Dn for all p ∈ Pn. Applying σ to the equality yields
the equality [q2p∂i, σ (δ)] = ∂ ′. By taking the difference, we obtain σ (δ) − δ ∈
CEn (q2Pn∂i) = {0}, by Lemma 2.7, hence σ = e.

2. Clearly, Shn ⊆ F := Fix�n (∂1, . . . , ∂n). Let σ ∈ F and H ′
1 := σ (H1), . . . , H ′

n :=
σ (Hn). Applying the automorphism σ to the commutation relations [∂i, Hj] =
δij∂i gives the relations [∂i, H ′

j ] = δij∂i. By taking the difference, we see that
[∂i, H ′

j − Hj] = 0 for all i and j. Therefore, H ′
i = Hi + di for some elements
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di ∈ CEn (Dn) = Dn (Lemma 2.4.(1)), and so di = ∑n
j=1 λij∂j for some elements

λij ∈ K . The elements H ′
1, . . . , H ′

n commute, hence

[Hj, di] = [Hi, dj] for all i, j,

or equivalently,

λij∂j = λji∂i for all i, j.

This means that λij = 0 for all i �= j, i.e.

H ′
i = Hi + λii∂i = (xi + λii)∂i = sλ(Hi)

where sλ ∈ Shn, sλ(xi) = xi + λii for all i. Then s−1
λ σ ∈

Fix�n (∂1, . . . , ∂n, H1, . . . , Hn) = {e} (statement 1), and so σ = sλ ∈ Shn.

�

The automorphism ν. Let ν be the K-automorphism of Qn given by the rule ν(xi) =
x−1

i for i = 1, . . . , n. Then

ν(∂i) = −xiHi, ν(Hi) = −Hi, ν(xiHi) = −∂i, i = 1, . . . , n. (7)

By (7), the elements X1 := x1H1, . . . , Xn := xnHn commute and the next lemma follows
from Lemma 2.4 and Proposition 2.9 since Xn := ν(Dn) = ⊕n

i=1 KXi.

LEMMA 2.10.

(1) CEn (Xn) = Xn is a maximal abelian Lie subalgebra of En.
(2) Fix�n (X1, . . . , Xn) = Fix�n (X1, . . . , Xn) = Shn.
(3) Fix�n (X1, . . . , Xn, H1, . . . , Hn) = Fix�n (X1, . . . , Xn, H1, . . . , Hn) = {e}.

The following lemma is well known and easy to prove.

LEMMA 2.11. Let ∂ be a locally nilpotent derivation of a commutative K-algebra A
such that ∂(x) = 1 for some element x ∈ A. Then A = A∂ [x] is a polynomial algebra over
the ring A∂ := ker(∂) of constants of the derivation ∂ in the variable x.

The next lemma is the core of the proof of Theorem 1.2.

LEMMA 2.12. Let σ ∈ �n, ∂ ′
1 := σ (∂1), . . . , ∂ ′

n := σ (∂n) and δ′
1 := ad(∂ ′

1), . . . , δ′
n :=

ad(∂ ′
n). Then
(1) ∂ ′

1, . . . , ∂
′
n are commuting derivations of Qn such that

⋂n
i=1 kerQn (∂ ′

i ) = K.
(2) En = ⊕n

i=1 Qn∂
′
i .

(3) For each i = 1, . . . , n, σ (xi∂i) = x′
i∂

′
i for some elements x′

i ∈ Qn. The elements
x′

1, . . . , x′
n are algebraically independent and ∂ ′

i (x
′
j) = δij for i, j = 1, . . . , n.

(4) NilQn (∂ ′
1, . . . , ∂

′
n) = P′

n where P′
n := K [x′

1, . . . , x′
n].

(5) NilEn (δ′
1, . . . , δ

′
n) = ⊕n

i=1 P′
n∂

′
i .

(6) σ (xα∂i) = x′α∂ ′
i for all α ∈ �n and i = 1, . . . , n.

(7) σ ′ : Qn → Qn, xi �→ x′
i, i = 1, . . . , n is a K-algebra homomorphism (statement

3) such that σ ′(a∂i) = σ ′(a)σ (∂i).
(8) The K-algebra homomorphism σ ′ is an automorphism.
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Proof.

1. The elements ∂1, . . . , ∂n are commuting derivations, hence so are ∂ ′
1, . . . , ∂

′
n. Let

λ ∈ ⋂n
i=1 kerQn (∂ ′

i ). Then

λ∂ ′
1 ∈ CEn (∂ ′

1, . . . , ∂
′
n) = σ (CEn (∂1, . . . , ∂n)) = σ (CEn (Dn)) = σ (Dn)

= σ (
n⊕

i=1

K∂i) =
n⊕

i=1

K∂ ′
i ,

since CEn (Dn) = Dn, Lemma 2.4.(1). Then λ ∈ K since otherwise the infinite
dimensional space

⊕
i≥0 Kλi∂ ′

1 would be a subspace of the finite dimensional
space σ (Dn).

2. It suffices to show that the elements ∂ ′
1, . . . , ∂

′
n of the n-dimensional (left) vector

space En over the field Qn are Qn-linearly independent (the key reason for
that is statement 1). Let V = ∑n

i=1 Qn∂
′
i . Suppose that m := dimQn (V ) < n, we

seek a contradiction. Up to order, let ∂ ′
1, . . . , ∂

′
m be a Qn-basis of V . Then

∂ ′
m+1 = ∑m

i=1 ai∂
′
i for some elements ai ∈ Qn. By applying δ′

j (j = 1, . . . , n),
we see that 0 = ∑m

i=1 ∂ ′
j (a)∂ ′

i , and so ai ∈ ⋂n
i=1 kerQn (∂ ′

j ) = K , by statement
1. This means that the elements ∂ ′

1, . . . , ∂
′
m are K-linearly dependent, a

contradiction.
3. Let H ′

i := σ (xi∂i) for i = 1, . . . , n. By statement 2, H ′
i = ∑n

i=1 aij∂
′
j for some

elements aij ∈ Qn. Applying the automorphism σ to the relations δij∂j = [∂j, Hi]
yields the relations

δij∂
′
i =

n∑
i=1

∂ ′
j (aik)∂ ′

k.

Let x′
i := aii. Then ∂ ′

j (x
′
i) = δji and ∂ ′

j (aik) = 0 for all k �= i. By statement 1,
aik ∈ K for all i �= k. Now,

H ′
i := x′

i∂
′
i +

∑
j �=i

aij∂
′
j .

The elements H ′
1, . . . , H ′

n commute, hence for all i �= j, 0 = [H ′
i , H ′

j ] = −aji∂
′
i +

aij∂
′
j , and so aij = 0. Therefore, H ′

i = x′
i∂

′
i .

The equalities ∂ ′
i (x

′
j) = δij imply that the elements x′

1, . . . , x′
n ∈ Qn are

algebraically independent over K : Suppose that f (x′
1, . . . , x′

n) = 0 for some non-
zero polynomial f (x1, . . . , xn) ∈ K [x1, . . . , xn]. We can assume that the (total)
degree deg(f ) is the least possible. Clearly, f �∈ K , hence ∂f

∂xi
�= 0 for some i and

deg( ∂f
∂xi

) < deg(f ) and so 0 �= ∂f
∂xi

(x′
1, . . . , x′

n) = ∂ ′
i (f (x′

1, . . . , x′
n)) = ∂ ′

i (0) = 0, a
contradiction.

4. Let D′
n = ∑n

i=1 K∂ ′
i and N = NilQn (D′

n). By statement 3 and Lemma 2.11,

N = ND′
n [x′

1, . . . , x′
n] = K [x′

1, . . . , x′
n]

since K ⊆ ND′
n ⊆ QD′

n
n = K (by statement 1).

https://doi.org/10.1017/S0017089516000306 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000306


GROUP OF AUTOMORPHISMS OF THE LIE ALGEBRA 523

5. Let ∂ = ∑n
i=1 ai∂

′
i ∈ N := NilEn (δ′

1, . . . , δ
′
n) where ai ∈ Qn (statement 2). For all

α ∈ �n,

δ′α(∂) =
n∑

i=1

∂ ′α(ai)∂ ′
i

where δ′α := ∏n
i=1 δ′αi

i , δ′
i = ad(∂ ′

i ) and ∂ ′α := ∏n
i=1 ∂ ′αi

i . So, δ′α(ai) = 0 iff
∂ ′α(ai) = 0 for i = 1, . . . , n (statement 2). Now, statement 5 follows from
statement 4.

6. By statement 3,

∂ ′
i (x

′
j) = δij and σ (Hi) = σ (xi∂i) = x′

i∂
′
i := H ′

i .

We prove statement 6 by induction on |α|. The initial cases when |α| = 0, 1 are
obvious (statement 3). So, let |α| ≥ 2 and we assume that statement 6 holds for
all α′ with |α′| < |α|. Then

[∂ ′
j , σ (xα∂i) − x′α∂ ′

i ] = σ ([∂j, xα∂i]) − αjx′α−ej ∂ ′
i = σ (αjxα−ej ∂i) − αjx′α−ej ∂ ′

i

= αjx′α−ej ∂ ′
i − αjx′α−ej ∂ ′

i = 0.

Hence, σ (xα∂i) − x′α∂ ′
i ∈ CEn (D′

n) = D′
n, Lemma 2.4.(1). Therefore, σ (xα∂i) =

x′α∂ ′
i + ∑

λij∂
′
j for some scalars λij = λij(α) ∈ K . We have to show that all λij = 0.

Applying the automorphism σ to the equalities (αj − δij)xα∂i = [Hj, xα∂i] we
have (notice that xα∂i �= Hi since |α| ≥ 2)

(αj − δij)(x′α∂ ′
i +

n∑
k=1

λik∂
′
k) = σ ((αj − δij)xα∂i)

= σ ([Hj, xα∂i]) = [H ′
j , x′α∂ ′

i +
n∑

k=1

λik∂
′
k]

= (αj − δij)x′α∂ ′
i − λij∂

′
j ,

and so (αj − δij + 1)λij = 0 and (αj − δij)λik = 0 for all k �= j.
If n = 1 then α1 ≥ 2 and the first equation (αj − δij + 1)λij = 0 takes the form
(α1 − 1 + 1)λ11 = 0, and so λ11 = 0. We can assume that n ≥ 2. For all i �= j, the
first equation (αj − δij + 1)λij = 0 yields λij = 0. Fix an index j such that αj ≥ 1.
Then, for i = j the first equation (αj − δij + 1)λij = 0 yields λjj = 0. Finally for
all i = k �= j, the second equation (αj − δij)λik = 0 yields λii = 0. This means
that all λst = 0.

7. By statement 3, σ ′ is a K-algebra homomorphism such that im(σ ′) = Q′
n :=

K(x′
1, . . . , x′

n). By statement 3, for all elements a ∈ Qn,

∂ ′
i σ

′(a) = σ ′∂i(a)

since ∂ ′
i acts as ∂

∂x′
i

on Q′
n.

Let a = pq−1 �= 0 where p, q ∈ Pn. Then, for all r ∈ q2Pn, [a∂i, r∂i] = (a∂i(r) −
∂i(a)r)∂i ∈ Pn∂i. By applying σ and using statement 6, we have the equality

[σ (a∂i), σ ′(r)∂ ′
i ] = σ ′(a∂i(r) − ∂i(a)r)∂ ′

i .
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On the other hand,

[σ ′(a)∂ ′
i , σ

′(r)∂ ′
i ] = (σ ′(a)∂ ′

i σ
′(r) − ∂ ′

i σ
′(a)σ ′(r))∂ ′

i

= (σ ′(a)σ ′∂i(r) − σ ′∂i(a)σ ′(r))∂ ′
i

= σ ′(a∂i(r) − ∂i(a)r)∂ ′
i .

Hence,

σ (a∂i) − σ ′(a)∂ ′
i ∈ CEn (σ ′(q2Pn)∂ ′

i ) = CEn (σ (q2Pn∂i))

= σ (CEn (q2Pn∂i)) = σ (0) = 0,

by Lemma 2.7. Therefore, σ (a∂i) = σ ′(a)σ (∂i).
8. Since σ (Qn∂i) = σ ′(Qn)∂ ′

i for all i = 1, . . . , n (statement 7), we must have
σ ′(Qn) = Qn, by statement 2, and so σ ′ ∈ �n.

�
Proof of Theorem 1.2. Let σ ∈ �n. By Lemma 2.12.(8), we have the automorphism

σ ′ ∈ �n such that, by Lemma 2.12.(3,6), σ ′−1σ ∈ Fix�n (∂1, . . . , ∂n, H1, . . . , Hn) = {e}
(Proposition 2.9). Therefore, σ = σ ′ and so �n = �n. �
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