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GENERAL HEREDITY FOR RADICAL THEORY

by R. F. ROSSA and R. L. TANGEMAN
(Received 27th January 1976)

Let W b e a class of not necessarily associative rings which is universal
in the sense that it is closed under homomorphic images and is hereditary
to subrings. All rings considered will be assumed to belong to W. The
notation I < R will mean / is an ideal of R. A relation a on W will be
called an H-relation if a satisfies the properties:

(1) IcrR implies / is a subring of R.
(2) If I<TR and 0 is a homomorphism of R, then I0crR0.
(3) If IaR and J is an ideal of R, then I (IJaJ.

Examples of //-relations are "subring of", "left ideal of" and "ideal
of". A large class of examples is provided by the following propositions,
the proofs of which are elementary.

Proposition 1. Let M C W be closed under homotnorphisms and here-
ditary to ideals. Then the following are H-relations:

(i) {(/, R)\I is an ideal of R and R/I G M}.
(ii) {(/, R)\I is a subring of R and I G M}.

(iii) {(/, R)\I is a subring of R and the ideal G(I, R) of R generated by I
is in M}.

Proposition 2. Any union or intersection of H-relations is again an
H-relation.

Thus for example {(/, R)\I is a commutative left ideal of R} and {(/, R)\
I is an ideal of finite index in R} are //-relations.

If a and T are H-relations, define a ° T as follows: Icr ° TR if and only
if there exists J C.R such that IaJ and JTR. Also define la A TR if and
only if there exists AcrR and BTR such that I = AC\ B.

Proposition 3. If a and T are H-relations, then cr ° T and a A T are also
H-relations.

For example, let a = "is an accessible subring of"; then a = U "=i<3 ".
If M is any subclass of W we denote by LM the lower radical class

determined in W by M. It is proved in (3) that if M is hereditary to ideals,
so is LM. This result is reproved in (4), and it is observed in (7) that with
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slight modifications the latter argument shows that if M is hereditary to left
ideals, right ideals or subrings, then so is LM. A good summary of all these
results may be found in (5).

For our purposes here the lower radical construction of (4) is useful,
and we sketch it for the reader's convenience. Let Mt be the homomorphic
closure of a given class MOW. Suppose /3 is an ordinal greater than one
and that the classes Ma have been defined for all a < /3. If fi is a limit
ordinal, admit R to Mp if and only if R is the union of a chain of ideals
each belonging to one of the classes Ma for a < /3. If f3 - 1 exists, set
Mp = {R\R has an ideal I G Mp-t such that R/I G Mp_J. Then, as is shown
in (4), each class Me is homomorphically closed and LM is the union of all
of them. The argument used in (4) to show that M hereditary implies LM
hereditary easily applies to prove the following more general result.

Theorem 4. Let a be an H-relation and let M C W be a homomor-
phically closed class which is a-hereditary in the sense that R G M and
Io-R imply I G M. Then LM is also a-hereditary.

Each nonempty subclass M of W determines a class

UM = {RG W\I* R^R/Ig M}

The classes M for which UM is a hereditary radical class are characterised in
(2). for each //-relation a the a-hereditary upper radicals are characterised by
the following result. For each class M let SUM denote the class {R G
W\0*I<!R=>Ig UM}.

Theorem 5. The class UM is a a-hereditary radical class in W if and
only if M has the properties.-

(i) / / 0 * R G M, there exists 0 # R/I G SUM.
(ii) If 0 ̂  IaR G W is such that some I/J^ 0 is in M, then there exists

H4R such that 0 * RIH G SUM.
Proof. By (2), UM is a radical class if and only if (i). If UM is

a -hereditary, suppose 0 ̂  IaR and IIJ^ 0 is in M. Then I& UM since UM
is homomorphically closed, so that R£ UM since UM is <r-hereditary. But
then since UM is a radical class, R must have a nonzero L/M-semisimple
homomorphic image. This establishes (ii).

On the other hand if M satisfies (i) and (ii), then let 0 ̂  R E UM and let
O^IaR. If 1$. UM, then there exists IIJ¥ 0 in M, so by (ii) R has a
JJM-semisimple image, i.e. R£ UM. This is a contradiction. Therefore UM
is tr-hereditary.

Another application of the notion of //-relation occurs in relation to the
study of strongly hereditary radical classes, which was introduced in (6).
Let M be a homomorphically closed class such that if J4°4R then the
ideal G(J,R) of R generated by / is again in M. Then Theorem 2.4 of (9)
states that LM has the same property. A one-sided version of this result
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with a different proof appears in (8). This latter proof applies almost word
for word to give the following more general theorem. Most of the results of
(8) can be extended in a similar way.

Theorem 6. Let a be an H-relation such that IaR wherever I is an
ideal of R. Let M CW be homomorphically closed. Suppose that if J < °
crR and J G M, then G( / ,R)£M. Then LM satisfies the same property.

One further way to generalise the idea of heredity is to involve a second
class. Let M and N be subclasses of W and let a be an H-relation. We say
that M is a-transfer hereditary to N if R G M and IaR imply / G N.

Proposition 7. If Mi is artransfer hereditary to Nx and M2 is a2-
transfer hereditary to N2, then Mt D M2 is o-\ D a2-transfer hereditary to
Ni fl N2 and M, U M2 is a\ U a2-transfer hereditary to JVi U N2.

Proposition 8. If Mx is a-transfer hereditary to M2 and M2 is <r2-
transfer hereditary to M3 then M, is <r2 ° a\-transfer hereditary to M3.

Theorem 9. Let a be an H-relation and M and N homomorphically
closed classes such that M is a-transfer hereditary to N. Then LM is
a-transfer hereditary to LN.

Proof. We prove by induction that Mp is a-transfer hereditary to Np

for each ordinal )3. The theorem follows easily. The result is true for /3 = 1.
Suppose /3 > 1 and that Ma is cr-transfer hereditary to Na for each a < )3.
Let R G Mp and IaR. First let /3 be a limit ordinal. Then R = U Iy where
{Iy} is a chain of ideals each belonging to some Ma with a < /3. Since IaR,
I (llyaly for each y. Since Iy G Ma for some a < p, the induction hypo-
thesis implies that / n / T £ Na. Thus /, being the union of its chain of ideals
/ n Iy, is a member of N$.

Now suppose /3 - 1 exists. Then R has an ideal / with J and R/J G
Mp-,. Since IHJaJ we have J n / G N p - , . Also (I + J)IJaRU so (/ +
/ ) / / = //(/ D / ) G Np-i. This means / G Np, finishing the proof.

Of course if M = N this reduces to Theorem 4. We list a few other
corollaries as examples of ways in which Theorem 9 can be applied. In
these results rings are restricted to be associative and M is assumed to be a
homomorphically closed class.

Corollary 10. Suppose R&M implies every countable ideal of R is nil.
Then the same is true of LM.

Proof. M is (r-transfer hereditary to the class AT of nil rings, where
a = {(/, R)\I is a countable ideal of R}. Hence LM is cr-transfer hereditary
to LN = N.
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Corollary 11. Suppose R G M implies every nonzero countable ideal of
R is non-nil. Then the same is true of LM.

Proof. Let a = {(/, R)\I is a countable nil ideal of R}. Then a is an
//-relation by Propositions 1 and 2, and M is a-transfer hereditary to the
class {(0)}. Thus so is LM.

Corollary 12. If R&M implies every nil ideal of R is locally nilpotent,
then the same is true of LM.

Proof. Local nilpotence is a radical property.
It is also of interest to consider hypotheses of the form AaR, R G

M => P(A), where P is a predicate. Let A be a subring of a ring R; we
define /(A, R) = {x G R\xA C A and Ax C A}. If R is an associative ring,
I(A, R) is a subring of R called the idealizer of A. The next result,
however, does not assume associativity.

Theorem 13. Let a be an H-relation and M a homomorphically closed
class. Suppose that whenever AaR G M, then I(A,R) = A. Then the same
is true of LM..

Proof. Again we proceed by induction as in the proof of Theorem 4,
showing that I(A, R) = A for each AaR&Mp for each ordinal /3. The
result is true for /3 = 1. Suppose that /3 > 1 and that if a </3 and AaR G
Ma, then I(A,R) = A.

If /3 is a limit ordinal then R = U Jy where {Jy} is a chain of ideals
contained in Ua<p Ma. Since A n JyaJy for each y, I (A D Jy, Jy) = AH Jy by
the inductive hypothesis. Suppose I(A,R)^ A. Then there exists x G R\A
such that xA C A and Ax C A. For some -y0. x G 7TO. Then x(A D /TO) ^ A D
/To or (A Pi /yjx^ AD/ , , since I (A D /w , /w) = A fl /TO. Hence there exists
a G A n / T O such that either xa^ADJ^ or ax^AD/ w . But ax,xaG/TO.
Hence xa or ax^A. This is a contradiction.

If, on the other hand, j8 - 1 exists, there is K<R such that R/K,
KG.Mp-x. By the inductive hypothesis, since (A + K)IKaR/K and AD
KaK, we have /((A + X)/X, /?/X) = (A + K)/X and /(A D X, X) = A D X.
If /(A, R) IA A then there exists x G R\A such that xAUAxQ A. Let x, A
denote the canonical images of x and A in R/K. Then xA U Ax C A. Since
/(A, R) = A, i £ A . Hence xG A + K. But if x£ A, x = a + It with k^O.
Since (a + fc)A U A(a + k)CA implies kA U Ak C A, we may take x G X.
But then xfcKDA and xA U Ax C A, which contradicts I(K C\ A, K) =
KHA.
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