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In kinematic Global Navigation Satellite Systems (GNSS) navigation, the Kalman Filter
(KF) solution relies, to a great extent, on the quality of the dynamic model that describes the
moving object’s motion behaviour. However, it is rather difficult to establish a precise
dynamic model that only connects the previous state and the current state, since these
high-order quantities are usually unavailable in GNSS navigation receivers. To overcome
such limitations, the Window-Recursive Approach (WRA) that employs the previous
multiple states to predict the current one was developed in Zhou et al., (2010). Its essence is to
adaptively fit the moving object’s motion behaviour using the multiple historical states
in a short time span. Up to now, the WRA method has been performed only using
GNSS pseudorange measurements. However, in GNSS navigation fields, the strength of
pseudorange observation model is usually weak due to various reasons, e.g., multi-path delay,
outliers, insufficient visible satellites. As an important complementary measurement, Doppler
can be used to aid Position and Velocity (PV) estimation. In this contribution,
implementation of WRA will be developed using the pseudorange and Doppler measure-
ments. Its corresponding state transition matrix is constructed based on the Newton’s
Forward Difference Extrapolation (NFDE) and Definite Integral (DI) methods for the
efficient computation. The new implementation of WRA is evaluated using the real kinematic
vehicular GNSS data with two sampling rates. The results show that:

(i) aided by GNSS Doppler measurement, the new implementation of WRA
significantly improves the accuracy compared with the pseudorange-only WRA.

(ii) In high sampling rate, the WRA works best in the case of 2 epochs in time window,
while in the low sampling rate, it obtains better solutions if more epochs involved in
time window.

(iii) Compared with KF with constant velocity dynamic model, the WRA demonstrates
better in the self-adaptation and validity.

(iv) As a benefit of WRA itself, the NFDE/DI-based state transition matrix for WRA can
be previously computed offline without increasing the computation burdens.
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1. INTRODUCTION. The Global Navigation Satellite Systems (GNSS) can
provide real-time Position and Velocity (PV) information suitable for most land,
marine, and aircraft navigation applications (Parkinson and Spilker 1996). In GNSS
kinematic positioning and navigation, the pseudorange measurement is preferred to
the carrier-phase measurement due to its exemption of unknown integer cycle. In
general, the metre and sub-metre level kinematic solutions are achievable from the
single point positioning and the differential GNSS technique, in real time respectively.
As an effective and important complement to GNSS kinematic navigation, the GNSS
Doppler measurements provide the velocity information of moving objects (Parkinson
and Spilker 1996; Bruton et al., 1999; Zhang et al., 2006; Remondi, 2004; Zhou et al.,
2011). In GNSS kinematic navigation and positioning, it still faces many challenges
due to, for instance, the signal degradation, the blockages and the colored noise etc.
Extensive research efforts have been done towards optimizing the solution and
maximizing the reliability in past two decades (Teunissen 1990; Wang 2000; Hewitson
and Wang 2007; Kuusniemi et al., 2004).
As an efficient implementation of the sequential least squares adjustment with

relative constraints between-state, the Kalman Filter (KF) is extensively applied in the
navigation computations assuming that the observational error and the prediction
error are uncorrelated and both normally distributed with zero means (Brown and
Hwang 1997; Simon, 2006). In real applications, the unexpected errors inevitably exist
in either the dynamic model or the observation model. Therefore, to balance the
contributions of the observation and the prediction to the solution, the adaptive and
robust filtering techniques were developed based on the robust M-estimation, optimal
theory and Bayesian estimation (Koch and Yang 1998; Yang et al., 2001, 2003, 2005;
Wang 2000, Hewitson and Wang 2007; Geng and Wang 2008).
The KF approach relies, to a great extent, on the quality of dynamic model that

describes the moving object’s motion behaviour. In the existing literatures, the
Constant Velocity (CV) and the Constant Acceleration (CA) dynamic models are
popularly employed in navigation. However, the CV model is too simple to describe
the motion detail and then suits only for those low-dynamic or high sampling rate
systems. Although the CA model can capture the motion in more details, the
acceleration cannot be directly obtained from the GNSS receivers. Furthermore, both
two models would be problematic to describe the moving object’s manoeuvring that is
a complicated and unpredicted dynamic process. Thorp (1973) proposed to model this
dynamic process of manoeuvring as a stochastic departure from a nominated base
trajectory to obtain the reasonable performances, while Singer (1970) solved for such
dynamic process as a noisy component by using a known exponential auto-correlation
acceleration function. In addition, an extended ‘Singer’ model was then developed
permitting the time-correlation in both the velocity and the acceleration components
(Moore and Wang 2003). Another dynamic model based on ‘kinematic’ method was

296 ZEBO ZHOU AND OTHERS VOL. 66

https://doi.org/10.1017/S0373463312000549 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463312000549


applied in KF, which introduces the variation of moving object’s positions to reflect
the mean velocity in two consecutive epochs (Schwarz et al., 1989).
These dynamic models aforementioned are established based on state of the

previous one epoch only, which is impossible to provide the sufficient information for
describing the moving object’s motion characteristic of current epoch, thus leading to
the increased degradation and instability risks in kinematic solutions. Therefore,
it is necessary to include more historical information in the dynamic model. The
Windowing-Recursive Approach (WRA) provides a new strategy to estimate the state
of vehicles (Zhou et al., 2010). Its basic principle is that the trajectory of a vehicle can
be reasonably fitted by using the positions of latest several epochs in a short time span.
Therefore the position at the current epoch can be predicted more reliably with the
positions of the multiple historical epochs rather than the latest one epoch. In WRA,
the dynamic model of vehicle is adaptively recovered in real time without any
assumption on the dynamic characteristics, like CV model. The WRA is flexible
and can reduce to KF if the window consists only of one epoch. However, in the first
WRA literature of Zhou et al., (2010), the WRA was implemented with the GNSS
pseudorange measurements and the efficient state transition matrix was constructed
only for the case where the state vector consists only of three-dimensional position.
Nevertheless, velocity needs to be estimated in real time besides position in most
of GNSS navigation applications, such as aircrafts and missiles. Therefore, the
implementation of WRA should be extended from the three-dimensional position
state to the six-dimensional PV state to estimate the reliable and accurate real-time
solutions by taking full advantages of velocity information. In this contribution, the
implementation of WRAwith six-dimensional PV state vector will be developed using
the pseudorange and Doppler measurements. Its corresponding state transition matrix
is constructed based on the Newton’s Forward Difference Extrapolation (NFDE) and
Definite Integral (DI) methods for the efficient computation.
The rest of paper is organized as follows. In Section 2, Kalman filtering and the

WRA are introduced in brief. In Section 3, the implementation of WRA is developed
based on the pseudoranges and Doppler measurements. In Section 4, we will construct
the adaptive, efficient and practical state transition matrices for the proposed WRA
implementation based on the NFDE and DI numerical methods. A real vehicular
GNSS experiment is introduced in Section 5 to demonstrate the performance of the
new WRA implementation. Finally, some concluding remarks are given in Section 6.

2. KALMAN FILTERING AND WINDOW-RECURSIVE
APPROACH.

2.1. Kalman Filtering. As an efficient realization of the sequential least-squares
adjustment, the KF has been widely used in the GNSS navigation computations.
A linear dynamic model and an observation model are involved in the KF:

xk = Φk,k−1xk−1 + wk (1a)
lk = Hkxk + εk (1b)

where:

The subscripts denote the epoch number.
x is the state vector to be estimated.
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l is the measurement vector.
w and ε are the process noise in dynamic model and the measurement noise with the
zero means and the covariance matrices of Σw and R, respectively.
Φ is the state transition matrix that transfers the state vector from the (k−1)th epoch
to the kth epoch.
H is the design matrix connecting the state vector with the observation vector.

The sequential formulae in KF are given:

x̄k = Φk,k−1x̂k−1 (2a)

Σ x̄k = Φk,k−1Σ x̂k−1Φ
T
K,k−1 + Σwk (2b)

Kk = Σ x̄kH
T
k HkΣ x̄kH

T
k + Rk

( )−1 (2c)

x̂k = x̄k + Kk lk −Hkx̄k( ) (2d)

Σ x̂k = I − KkHk( )Σ x̄k (2e)
where:

I is the identity matrix with same dimensions of Σ x̄k .
x̄k Σ x̄k denotes the predicted state vector and its covariance matrix, respectively.
Kk is the gain matrix. x̂k and Σ x̂k are the posterior KF estimate and its covariance
matrix.

If the dynamic model or/and observation model is nonlinear, the Extended Kalman
Filtering (EKF) would be applied where these nonlinear models are linearized (Brown
and Hwang 1997; Simon 2006). The EKF can be viewed as the conventional KF in
the first-order approximated linear model. These approximations, however, may
introduce the large errors in the true posterior mean and covariance of the
transformed Gaussian Random Variable (GRV), resulting in the sub-optimal
performance or even filtering divergence. To overcome the pitfalls of EKF, the
sigma-points and Unscented Kalman Filtering (UKF) approaches were developed
(Julier and Uhlmann 1997; Julier et al., 2000; Jwo and Lai 2009) and have been
successfully applied in target tracking field. The state distribution is again represented
by a GRV but specified by using a minimal set of carefully chosen sample points.
These sampled points can adequately capture posterior mean and covariance
accurately to the 3rd order (Taylor series expansion) for any nonlinearity when
propagated through the true non-linear system. Since the nonlinearity of the GNSS
observational model is so weak that we can basically neglect its influence on
estimation accuracy, the EKF is preferable in GNSS navigation (Jwo and Lai 2008).

2.2 A Brief Review on Window-Recursive Approach. In traditional navigation
applications, the dynamic model is established based on the state of the previous one
epoch only, which is impossible to provide the sufficient information for describing the
moving object’s motion characteristics of current epoch, thus leading to the increased
degradation and instability risks in kinematic solutions. To overcome this limitation,
the WRA was proposed in Zhou et al., (2010). Its principle is that the position at the
current epoch is predicted more reliably with the positions of the multiple historical
epochs than with the position only of the latest epoch. Assuming that the time-window
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length contains n epochs, the dynamic model is constructed as:

xk = Φ k,k−n:k−1( )x k−n:k−1( ) + wk (3)
where

x(k−n:k−1) is the vector consisting of the stacked state vectors from the epoch (k−n) to
the epoch (k−1).
Φ(k,k−n:k−1) is the transition matrix that transfers the state information of the previous
n epochs into that of the current one.

Let Σ x̂ k−n:k−1( ) be the covariance matrix of the historical state vector x̂ k−n:k−1( ), the
predicted position vector at epoch k and its corresponding covariance are derived:

x̄k = Φ k,k−n:k−1( )x̂ k−n:k−1( ) (4)
and:

Σ x̄k = Φ k,k−n:k−1( )Σ x̂ k−n:k−1( )Φ
T
k,k−n:k−1( ) + Σwk (5)

respectively.
In the linear(ised) observation Equation (1b) at epoch k, the covariance matrix of

measurements is expressed as Rk=σ0
2Pk

−1. Here, σ0
2 is a known prior variance scalar

and Pk is a weight matrix. By minimizing the weighted quadratic measurement
residual vector vk = Hkx̂k − lk and the weighted quadratic predicted residual vector
v̄xk = x̂k − x̄k, the Bayesian risk function is established by:

min
xk

: vTk Pkvk + v̄Tx̄kPx̄k v̄x̄k (6)

where Px̄k = σ20Σ
−1
x̄k denotes the weight matrix of the predicted state vector.

The solution of minimization problem Equation (6) is:

x̂k = x̄k + Kk lk −Hkx̄k( ) (7)
Σ x̂k = I − KkHk( )Σ x̄k (8)

Kk = Σ x̄kH
T
k HkΣ x̄kH

T
k + Rk

( )−1 (9)
The correlation between x̂k and x̂ k−n:k−1( ) should be rigorously processed when the

time window moves forward. Hereby, the covariance matrix Σ x̂ k−n:k( ) is expressed as:

Σ x̂ k−n:k( ) =
Σ x̂ k−n:k−1( ) ΣT

x̂k x̂ k−n:k−1( )
Σ x̂k x̂ k−n:k−1( ) Σ x̂k

[ ]
(10)

Inserting Equation (4) into Equation (7) yields:

x̂k = I − KkHk( )Φ k,k−n:k−1( )x̂ k−n:k−1( ) + Kklk (11)
The covariance matrix of x̂k and x̂ k−n:k−1( ) is derived from Equation (12) in terms of

the error propagation law as:

Σ x̂k x̂ k−n:k−1( ) = I − KkHk( )Φ k,k−n:k−1( )Σ x̂ k−n:k−1( ) (12)
With the window moving, the new epoch will be introduced and the first epoch of

window will be removed. It is rather easy to update the window vector x̂ k−n+1:k( ) and
its corresponding covariance matrix Σ x̂ k−n+1:k( ) which is a sub-matrix of Equation (10).
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One issue should be pointed out that the WRA can reduce to KF when window length
n=1. The WRA implementation from epoch (k−1) to k is presented in Figure 1.

3. IMPLEMENTATION OF WRA BASED ON PSEUDORANGE
AND DOPPLER MEASUREMENTS. Generally, the GNSS navigation
receivers output PV quantities in real time. By utilising the PV solutions generated
from GNSS receivers and the Equation (3), the WRA can be directly implemented
based on Equations (4)* (12). However, when the number of tracked satellites is less
than four, the GNSS receivers’ built-in software cannot generate epoch-wise PV
solutions anymore. Nevertheless, the raw GNSS measurements (e.g., pseudorange and
Doppler) can still contribute to the PV estimation even if the number of satellites is less
than four (Han and Wang 2012). Moreover, the raw measurements are more efficient
and fundamental in quality control of kinematic system, since raw measurements can
be used to identify and correct the errors of either kinematic model or observational
model based on robust theory in quality control of navigation system (Yang et al.,
2004).
The GNSS pseudorange observable equation is symbolized at epoch t:

Os
r t( ) = pr t( ) − ps t( )∥∥ ∥∥+ c Δtr t( ) − Δts t( )( ) + ΔIonsr t( ) + ΔTropsr t( ) + ΔMpsr t( )

+ εOs
r
t( ) (13)

where:

The superscript s denotes the satellite and the subscript r the receiver.
O is the pseudorange observable.
||pr−ps|| is the satellite-to-receiver distance from satellite s to receiver r.
Δtr and Δts are the receiver and satellite clock offsets with respect to the Global
Positioning System Time (GPST) in case of GPS system/constellation, respectively.
c is the speed of light in vacuum.
ΔIon and ΔTrop reflect signal propagation delays due to the ionosphere and the
troposphere, respectively.
ΔMp is the multi-path effect.
εOs

r
is the un-modelled pseudorange observation error.

The k-th time-window

Observation at epoch k

Prior state vectors and covariance Store the
window state
vectors And
co-variance

Update prior state vectors and covariance
k=k+1

( : 1)
ˆ

k n kx
( : 1)ˆ k n kxΣ

The predicted state and
covariance matrix

kx kx
Σ

Compute kK ˆ
kx ˆkx

Σ
( : 1)ˆ ˆk k n kx xΣ

( 1: )
ˆ

k n kx

( 1: )ˆ k n kxΣ

Figure 1. The computation flowchart of WRA.
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Differentiating the pseudorange Or
s with respect to time t yields the Doppler

observable:

λDs
rk =dOs

r t( )
dt

∣∣∣∣
t=k

= d
dt

pr t( ) − ps t( )
∥∥ ∥∥+ c Δtr t( ) − Δts t( )( )+ ΔIonsr t( ) + ΔTropsr t( ) + ΔMpsr t( ) + εOs

r t( )
( )

|t=k

= (prk − psk)T

prk − psk

∥∥∥ ∥∥∥ vrk − vsk
( )+ c Δṫrk − Δṫsk

( )+ ΔI ȯnsrk + ΔTrȯpsrk + ΔṀpsrk + εȮs
rk

(14)

where:

D is the Doppler observable.
λ is the wavelength of carrier.
v is the velocity vector.

Pseudorange and Doppler observation Equations (13) and (14) can be written in a
matrix form for a single receiver at epoch k as follows:

lk = h xk( ) + εk (15)

where:

lk = Ok

λDk

[ ]
, Ok = Os1

rk Os2
rk . . . O

smO
rk

[ ]T

Dk = Ds1
rk Ds2

rk . . . D
smD
rk

[ ]T
mO and mD are the number of observed pseudorange and Doppler measurements
respectively.
εk is the noise vector of l.

xk = prk
vrk

[ ]
, prk and vrk are the position and velocity vectors, respectively.

h(·) represents the nonlinear relationships Equations (13) and (14) between
pseudorange and xk, and between Doppler and xk, respectively.
Its explicit expression is:

h xk( ) = hO xk( )
hD xk( )

[ ]
(15a)

and:

hO xk( ) =
B1xk − ps1k

∥∥ ∥∥+ c Δtrk − Δts1k
( )+ ΔIons1rk + ΔTrops1rk + ΔMps1rk

..

.

B1xk − p
smO
k

∥∥∥ ∥∥∥+ c Δtrk − Δt
smO
k

( )
+ ΔIon

smO
rk + ΔTrop

smO
rk + ΔMp

smO
rk






(15b)
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hD xk( ) =
(B1xk − ps1k )T
B1xk − ps1k

∥∥ ∥∥ B2xk − vs1k
( )+ c Δṫrk − Δṫs1k

( )+ ΔI ȯns1rk + ΔTrȯps1rk + ΔṀps1rk

..

.

(B1xk − p
smD
k )T

B1xk − p
smD
k

∥∥∥ ∥∥∥ B2xk − v
smD
k

( )
+ c Δṫrk − Δṫ

smD
k

( )
+ ΔI ȯn

smD
rk + ΔTrȯp

smD
rk + ΔṀp

smD
rk







(15c)
with B1 = I3×3 03×3

[ ]
and B2 = 03×3 I3×3

[ ]
, respectively.

It should be pointed out that the systematic errors (such as ionospheric and
tropospheric delays) in Equations (13) and (14) can be processed in two ways:

(i) Correct these systematic errors with their empirical models.
(ii) Use the differenced GNSS model to eliminate these errors.

In this paper, (ii) is employed to eliminate the systematic errors. In addition, considering
the weak nonlinearity of the GNSS observational model, similar to the EKF, the WRA
equations for the GNSS kinematic and observation model can be conducted as follows:

x̂k = x̄k + Kk lk − h x̄k( )[ ] (16)
Σ x̂k = I − KkHk( )Σ x̄k (17)

Kk = Σ x̄kH
T
k HkΣ x̄kH

T
k + Rk

( )−1 (18)
where Hk = ∂h

∂xk

∣∣∣∣
xk=x̄k( )

is the Jacobian matrix.

Without affecting the accuracy of Equation (14),
pr − ps

pr − ps
∥∥ ∥∥ can be replaced by

prk0 − psk
prk0 − psk

∥∥ ∥∥ and prk0 is the approximate position vector of receiver, then Hk is readily

derived:

Hk = HOk 0mP×3

0mD×3 HDk

[ ]
, HOk =

prk0 − ps1k
prk0 − psk

∥∥ ∥∥
( )T

prk0 − ps2k
prk0 − psk

∥∥ ∥∥
( )T

. . .

prk0 − p
smP
k

prk0 − p
smP
k

∥∥ ∥∥
( )T






,

HDk =

prk0 − ps1k
prk0 − psk

∥∥ ∥∥
( )T

prk0 − ps2k
prk0 − psk

∥∥ ∥∥
( )T

. . .

prk0 − p
smD
k

prk0 − p
smD
k

∥∥ ∥∥
( )T







(19)
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where HOk and HDk are the coefficient matrices of pseudorange and Doppler
measurements respectively.
Because of its first-order linearization, the estimate of WRA is theoretically

suboptimal although the second-order term is very small. It is easy to calculate the
covariance matrix of x̂k and x̂ k−n:k−1( ) by:

Σ x̂k x̂ k−n:k−1( ) = I − KkHk( )Φ k,k−n:k−1( )Σ x̂ k−n:k−1( ) (20)

4. STATE TRANSITION MATRIX MODELLING. Different from the
conventional KF model, the WRA use the information of multiple historical epochs
rather than just the latest one in the dynamic model. Thus the state transition matrix is
relatively complicated. To improve the computation efficiency, two different state
transition matrices have been established based on Newton’s Forward Difference
Extrapolation (NFDE) and Polynomial Fitting (PF) numerical methods in the case
when only three-dimensional position is involved in the state vector (Zhou et al.,
2010). Similarly, for the newWRA implementation in this paper, we need of course to
construct their corresponding state transition matrices for efficient computations.
It is emphasized again that in the new implementation, the state vector is of six-
dimensional position and velocity rather than only three-dimensional position.
Here, the establishment of the six-state model will be realized in two steps. First,

since the velocity derived from Doppler is commonly more precise than that
differentiated by position (e.g., the CV model where the velocity is derived based on
the position difference between two consecutive epochs), we employ the velocity
estimated by Doppler to predict the current velocity with the NFDE method in a time
window. Secondly, we utilize the velocity extrapolation function of time in the window
to calculate the position difference between the current epoch and the previous one by
Definite Integral (DI) of that velocity function, and then the current position can be
reckoned by the position of previous one epoch and the position difference.

4.1. Velocity Derived from the Doppler Based on the NFDEModel. Similar to the
extrapolation model in Zhou et al., (2009, 2010), the velocity vector v can be assumed
as a function of time t, i.e.,vi=v(ti), where vi denotes the velocity vector at epoch ti. By
neglecting the high-order remainder terms, the velocity at an arbitrary time can be
expressed by the n-th order of NFDE model as:

v tk−n+s, n
( ) =v tk−n + sδt, n( )

=Δ1F0 + s
1!
Δ2F0 + s s− 1( )

2!
Δ3F0 + . . .+ s s− 1( ) . . . s− n+ 2( )

n!
ΔnF0

(21)
where:

δt denotes the time interval between two consecutive epochs.
s is the s-th extrapolated epoch s5n in the time window and n is the order of forward
extrapolation.

ΔmF0 =
∑m−1

i=0
−1( )m−1−iCi

m−1vk−n+i with m[1,\2,\. . .\n, Cn
s = s!

s− n( )!n! and (·)! is the

factorial operator.
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Let s=n, then the velocity at epoch k is conducted as (Zhou et al., 2010):

vk =v tk−n+s, n
( ) = Jv k−n:k−1( ) =

∑n
j=1

Jn−j+1vk−j

Jj =
∑n−1

i=j−1

−1( )i−j+1C j−1
i Ci

n j [ 1, 2, . . . ,n{ }
(22)

where:

v k−n:k−1( ) = vTk−n( ) vTk−n+1( ) . . . vTk−1( )
[ ]T

represents a 3n column vector of vel-
ocities for all n epochs in the window.
J = J1 J2 . . . Jn

[ ]⊗ I 3×3 is a 3×3n constant coefficient matrix with ⊗ being the
Kronecker product.

In real applications, the coefficient matrix J is primarily computed offline and its
elements for 14n45 are presented in Table 1.

4.2 Position Derived from Velocity Based on the DI Method. As is well-known in
mathematics, in general the differential algorithm augments error while the integral
reduces error. Thereby, the definite integral of velocity is introduced to diminish the
position errors. At epoch k, position vector can be expressed by position of epoch k−1
and the position difference from epoch k−1 and k:

pk = pk−1 + Δpk,k−1 (23)
where Δpk,k−1 is the position difference vector from epoch k−1 to k.
It is rather easy to obtain the position difference of two consecutive epochs which

can be recovered by the definite integral of velocity from previous one epoch to current
epoch:

Δpk,k−1 =
∫tk
t k−1( )

v tk−n+s, n
( )

dts =
∫k
k−1

v tk−n+s, n
( )

ds (24)

Inserting Equation (21) into Equation (24), we obtain the linear combination of
velocity vectors in the time window:

Δpk,k−1 = Gv k−n:k−1( ) =
∑n
i=1

Gn−i+1vk−i (25)

Similar to J, the coefficient matrix G is also computed offline and its elements for
14n45 are presented in Table 2.

Table 1. The coefficient matrix J for the different window lengths (n=1 to 5)

n=1 n=2 n=3 n=4 n=5

J1 1 −1 1 −1 1
J2 2 −3 4 −5
J3 3 −6 10
J4 4 −10
J5 5
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Finally, the following dynamic model is established based on Equations (22)
and (23):

pk
vk

[ ]
= pk−1 + Gv k−n:k−1( )

Jv k−n:k−1( )

[ ]
+ wk1

wk2

[ ]
(26)

Let xk = pk
vk

[ ]
, x k−n:k−1( ) = xTk−n xTk−n+1 . . . xTk−1

[ ]T
and wk = wk1

wk2

[ ]
, then

Equation (26) is reformulated as:

xk = Φk, k−n:k−1( )x k−n:k−1( ) + wk (27)
where Φk,(k−n:k−1) denotes the state transition matrix that is dependent on the time
window length n and the time interval δt.
Once the window-length n and δt are given, Φk,(k−n:k−1) will be a constant matrix

defined as:

Φk, k−n:k−1( ) = Φ11 Φ12

Φ21 Φ22

[ ]
= ψ11 ψ12

ψ21 ψ22

[ ]
⊗ I3×3 (28)

where ψ11, ψ12, ψ21 and ψ22 are all (n×n) coefficient matrices.
Their elements for the window length n from 1 to 5 are shown in Table 3.

5. EXPERIMENT AND ANALYSIS . The experiment data were collected
by using two Topcon HiPer-Pro GPS receivers with a sampling interval of 1 second.
Although the maximal distance between the reference and rover stations is shorter
than 3 km (see Figure 2), the various kinematic states are intentionally experienced in
the whole vehicular GPS test. The estimated three-dimensional velocities of the vehicle
by using the Doppler measurements are shown in Figure 3. The double differenced
observation model is used in the experiment and the systematic errors are basically
ignored due to their highly spatial correlation in such a short distance between
reference and rover stations. The C/A code and Doppler D1 measurements were
utilized in the whole test. The results computed by use of the dual-frequency carrier
phase measurements (resolved by Ashtech solution GPS software 2.6) are used as the
reference values to evaluate the accuracies of the developed models.
In the following section, we will investigate the accuracies of our WRA in the cases

of the different window lengths and the different sampling intervals. In our
computation strategy, the weight matrix of double differenced GPS observations
was derived from the C/N0 weighted matrix of undifferenced observations by using the
law of error propagation (Kuusniemi et al., 2004). The researches have indicated that

Table 2. The coefficient matrix G for the different window lengths (n=1 to 5)

n=1 n=2 n=3 n=4 n=5

G1 1δt −1δt/2 5δt/12 −3δt/8 1
G2 3δt /2 −4δt /3 37δt/24 −637δt/360
G3 23δt/12 −59δt/24 109δt/30
G4 55δt/24 −1387δt/360
G5 1901δt/720

305A WINDOW-RECURSIVE APPROACH FOR GNSS KINEMATICNO. 2

https://doi.org/10.1017/S0373463312000549 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463312000549


Table 3. The coefficient matrix Ψ for the different window lengths (n=1 to 5)

n=1 n=2 n=3 n=4 n=5

Ψ11(1) 1 0 0 0 0
Ψ11(2) −1δt /2 5δt/12 −3δt/8 3131δt/720
Ψ11(3) 0 0 0
Ψ11(4) 37δt/24 −637δt/360
Ψ11(5) 0
Ψ12(1) δt 1 −4/3δt 0 109δt/30
Ψ12(2) 3δt/2 1 −59δt/24 0
Ψ12(3) 23δt/12 1 −1387δt/360
Ψ12(4) 55δt/24 1
Ψ12(5) 1901δt/720
Ψ21 (1) 0 0 0 0 0
Ψ21 (2) −1 1 −1 1
Ψ21 (3) 0 0 0
Ψ21 (4) 4 −5
Ψ21 (5) 0
Ψ22 (1) 1 0 −3 0 10
Ψ22 (2) 2 0 −6 0
Ψ22 (3) 3 0 −10
Ψ22 (4) 4 0
Ψ22 (5) 5

Figure 2. The horizontal (East –North) trajectory of vehicle.
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the stochastic model of wk is also an important issue to affect the solution. Therefore,
to obtain the optimal solution, the reasonable stochastic model should be determined
in real-time (Wang 2000; Moore and Wang 2003, Hewitson and Wang 2007; Geng
andWang 2008; Yang and Gao 2005). In this paper, without affecting the validity and
efficiency of our WRA, for simplification, the covariance matrix Σw was selected as a
(6×6) matrix with spectral density of 0·2m2s−3 as follows (Schwarz et al., 1989):

Σwk =
1
3
δt3

1
2
δt2

1
2
δt2 δt





⊗Q (29)

where:

Q is a 3×3 diagonal matrix with the elements of spectral density for velocities.
δt denotes the sampling time interval.

The initial position and velocity variances were cautiously chosen as 1 m2 and
0·1 m2/s2 respectively. The transition matrix of the dynamic model established in
Section 4 was used.
For the sampling rate of 1 s that is referred to as the high sampling rate, the

differences of Least Squares (LS) solutions and WRA (n=1) with/without Doppler
measurements from reference values are shown in Figure 4. The accuracy statistics of
LS andWRA (n=1) solutions are presented in Table 4. It is easy to theoretically prove
that the solution of WRA with n=1 is exactly equivalent to the KF solution with CV
dynamic model. Hence, herein they are not particularly compared with each other.

Figure 3. Velocities of X, Y and Z components.
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Figure 5 shows the number of observed satellites (blue dashed line) and the Position
Dilution Of Precision (PDOP) (red solid line). It can be seen from the Table 4 and
Figure 4*5 that:

(i) the poor solutions are generally assigned to the larger PDOP values, especially
during the observation epochs from 2000 and 3000, which is mainly caused by
the rapidly decreasing of observed satellites.

Table 4. RMSE (m) of WRA with and without Doppler implementations (n=1) (1 s)

WRA without Doppler WRA with Doppler

RMS(X ) 0·483 0·491
RMS(Y ) 0·638 0·568
RMS(Z ) 0·527 0·424
RMS(POS) 0·958 0·862

Figure 4. Differences of LS and WRA (n=1) solutions from the reference values for sampling
interval of 1 s (top: Differences of LS from the reference values; bottom: Differences of WRA
without Doppler implementation).

Figure 5. The number of observed satellites and PDOP during kinematic GNSS navigation.
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(ii) LS outperformsWRA (n=1) without Doppler, because the kinematic model of
WRA (n=1) cannot accurately describe the moving object’s manoeuvring
motions, for instance, turning, accelerating and braking.

(iii) Aided by the kinematic model of the vehicle, compared with LS, WRA can
improve the positioning accuracies in the case of the number of observed
satellites sharply decreasing.

(iv) Since the Doppler measurements provide the accurate velocity quantities,
WRA with Doppler is obviously better than that without Doppler, especially
in poor observation conditions.

We also calculated the differences of the Doppler-aided WRA solutions based on
the six-state model from reference values, which are illustrated in Figure 6. Moreover,
the efficiency of constructed dynamic models of WRA is examined in the window
length n from 1 to 5. The Root-Mean-Squared Error (RMSE) of three position
components and position are computed by Equations (30) and (31) respectively:

RMS X( ) =
������������∑q

i=1 ΔX
2
i

q

√
RMS Y( ) =

������������∑q
i=1 ΔY

2
i

q

√
RMS Z( ) =

������������∑q
i=1 ΔZ

2
i

q

√
(30)

RMS POS( ) =
��������������������������������������
RMS X( )2+RMS Y( )2+RMS Z( )2

√
(31)

where:

ΔX, ΔY and ΔZ represent the three position difference components between our WRA
solutions and the referenced ones.
RMS(·) denotes the RMSE of position and the symbol POS denotes the point
position.

Figure 6. The differences of the WRA solutions from the reference values for sampling interval
of 1 s.
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Here q is the number of all observed epochs.

The computed RMSE statistics are shown in Table 5. Based on experimental results
so far in Table 5 and Figure 6, it is concluded that:

(i) In the case of n=2, the WRA solution is obviously superior to the solution of
n=1.

(ii) With the window length n increasing (n>2), the accuracies decrease but the
extent is not so obvious.

(iii) For those vehicles with high sampling rate (δt<1 s) or manoeuvrability, the
window length should not exceed 5 epochs. It is worth pointing out that the
dynamic model in WRA of n=2 actually works as the CA model and is also
compatible with the CV model.

However, those dynamic models with larger windows (n>2) do not achieve the
expected solutions for two reasons:

(i) the dynamic characteristics are over modelled when n>2.
(ii) The errors of NFDE and DI combined dynamic model sharply augmented with

the window length n increasing, therefore the window length should be carefully
chosen according to different application scenarios.

We further tested the performances of the Doppler-aided WRA in the lower
sampling rate. The data is thinned in the sampling interval of 3 s and the computation
strategy is the same as in the former experiment. The differences between the WRA
solutions and the reference values are illustrated in Figure 7. The RMSE statistics
computed in terms of Equations (30) and (31) are shown in Table 6. It is observed that:

(i) The RMSE statistics of WRA with different window lengths in Table 6 are
generally greater than those in Table 5.

(ii) Some simple assumptions on the dynamic model of moving objects e.g. vehicle,
CV (n=1) and CA (n=2), are not appropriate any more.

(iii) As the window length n increases, our WRA performs better and its accuracy is
improved.

(iv) Compared with CV and CA dynamic models, those higher-order dynamic
models (n>2) accurately describe the characteristics of vehicle’s motion and
thus improve the navigation solutions in lower sampling rate scenario.

6. CONCLUSIONS. In summary, the implementation of Window-Recursive
Approach (WRA) based on pseudorange and Doppler measurements has been

Table 5. RMSE (m) of WRA with different window lengths (n=1 to 5) in GPS navigation (1 s)

n=1 n=2 n=3 n=4 n=5

RMS(X ) 0·491 0·354 0·353 0·356 0·363
RMS(Y ) 0·568 0·529 0·540 0·545 0·551
RMS(Z ) 0·424 0·333 0·339 0·336 0·339
RMS(POS) 0·862 0·718 0·728 0·732 0·741
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developed for GNSS navigation. A state transition matrix was constructed based on
the Newton’s Forward Difference Extrapolation (NFDE) and Definite Integral (DI)
methods for efficient computation. Real vehicular GPS experiments were carried out
to evaluate the specified implementation of WRA in two sampling data scenarios. The
results show that:

(i) in the high sampling rate, the low-order models can describe the motion states
adequately and achieve the optimal results in the window length less than 5
epochs. Conversely, in the low sampling rate, the low order models cannot
specify the motion states well enough. Therefore, high-order models with
longer window length are necessary to achieve better performances.

(ii) WRA is flexible and efficient in Global Navigation Satellite Systems (GNSS)
navigation computation. It reduces to a Kalman filter if window length n is
set to 1.

(iii) The varying velocity and acceleration of a vehicle’s motions can be
automatically specified in the high-order models of WRA, therefore it does
not need to construct the velocity and acceleration dynamic models for
predicting the Position and Velocity (PV) state epoch by epoch.

Figure 7. The differences of the WRA solutions from the reference values for sampling interval
of 3 s.

Table 6. RMSE (m) of WRA with different window lengths (n=1 to 5) in GPS navigation (3 s)

n=1 n=2 n=3 n=4 n=5

RMS(X ) 1·439 0·657 0·554 0·507 0·485
RMS(Y ) 1·183 0·731 0·694 0·677 0·665
RMS(Z ) 1·216 0·648 0·541 0·474 0·454
RMS(POS) 2·225 1·178 1·040 0·969 0·940
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In the future, we will further investigate the issues of WRA potential implementation
fields, including optimal window length determination, nonlinear transformation
problem and quality control framework etc. In addition, our WRA for GNSS
kinematic navigation provides highly precise position and velocity information, which
can also be implemented to accurately estimate Inertial Navigation System (INS)
errors in GNSS/INS navigation or to detect faults in integrated navigation systems as
a trajectory constraint condition.

ACKNOWLEDGEMENTS

The work is supported by the Fundamental Research Funds for the Central Universities (Grant
No. ZYGX2010J114) and Natural Science Foundations of China (Grant No. 41074018), and
partially supported by Kwang-Hua Fund for College of Civil Engineering, Tongji University
and the fund from the State Key Laboratory of Information Engineering in Surveying, Mapping
and Remote Sensing, Wuhan University (Grant No. 10P01).

REFERENCES

Brown, R. and Hwang, P. Y. C. (1997). Introduction to Random Signals and Applied Kalman Filtering.
Wiley, New York.

Bruton, A.M., Glennie, C. L. and Schwarz, K. P. (1999). Differentiation for High-Precision GPS Velocity
and Acceleration Determination. GPS Solutions, 2(4), 7–21.

Geng, Y and Wang, J. (2008). Adaptive Estimation of Multiple Fading Factors in Kalman Filter for
Navigation Applications. GPS Solutions, 12(4), 273–279.

Han, S. and Wang, J. (2012). Integrated GPS/INS Navigation System with Dual-Rate Kalman Filter. GPS
Solutions, 16(3), 389–404.

Hewitson, S. and Wang, J. (2007). GNSS Receiver Autonomous Integrity Monitoring (RAIM) with a
Dynamic Model. The Journal of Navigation, 60(2), 247–263.

Julier, S. J. and Uhlmann, J. K. (1997). A New Extension of Kalman filter to Nonlinear Systems.
Proceedings of the 11th International Symposium on Aerospace/Defense Sensing, Simulation and Controls,
54–65.

Julier, S. J., Uhlmann, J. K. and Durrant-Whyte, H. F. (2000). A New Method for the Nonlinear
Transformation of Means and Covariances in Filters and Estimators. IEEE Transactions on Automatic
Control, 45(3), 477–482.

Jwo, D. and Lai, C. (2008). Unscented Kalman Filter with Nonlinear Dynamic Process Modeling for GPS
Navigation. GPS Solutions, 12(4), 249–260.

Jwo, D and Lai, S. (2009). Navigation Integration Using the Fuzzy Strong Tracking Unscented Kalman
Filter. The Journal of Navigation, 62(2), 303–322.

Koch, K and Yang, Y. (1998). Robust Kalman Filter for Rank Deficient Observation Models. Journal of
Geodesy, 72(7–8), 436–441.

Kuusniemi, H., Lachapelle, G. and Takala, J. H. (2004). Positioning and Velocity Reliability Testing in
Degraded GPS Signal Environments. GPS Solutions, 8(4), 226–237.

Moore, M. and Wang, J. (2003). An Extended Dynamic Model for Kinematic Positioning. The Journal of
Navigation, 56(1), 79–88.

Parkinson, B.W. and Spilker, J. J. (1996). Global Positioning System: Theory and Application, Vol 1 and 2,
AIAA Publication, Washington, D. C.

Remondi, B.W. (2004). Computing Satellite Velocity Using the Broadcast Ephemeris. GPS Solutions, 8(3),
181–183.

Schwarz, K. P., Cannon, M. E. and Wong, R. V. C. (1989). A Comparison of GPS Kinematic Models for
Determination of Position and Velocity Along a Trajectory. Manuscripta Geodaetica, 14(2), 345–353.

Simon, D. (2006). Optimal State Estimation, Kalman, H∞ and Nonlinear Approaches. Wiley, New York.
Singer, R. A. (1970). Estimating Optimal Tracking Filter Performance for manned Maneuvering Targets.
IEEE Transactions on Aerospace and Electronic Systems, 6(4), 473–483.

312 ZEBO ZHOU AND OTHERS VOL. 66

https://doi.org/10.1017/S0373463312000549 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463312000549


Teunissen, P. J. G. (1990). Quality Control in Integrated Navigation Systems. IEEE Aerospace and
Electronics Systems Magazine, 5(7), 35–41.

Thorp, J. S. (1973). Optimal Tracking of Maneuverings Targets. IEEE Transactions on Aerospace and
Electronic Systems, 9(4), 512–519.

Wang, J. (2000). Stochastic Modeling for RTK GPS/GLONASS Positioning. Journal of the US Institute of
Navigation, 46(4), 297–305.

Yang, Y., Cui, X. and Gao, W. (2004). Adaptive Integrated Navigation for Multi-Sensor Adjustment
Outputs. The Journal of Navigation, 57(2), 287–295.

Yang, Y., He, H. and Xu, G. (2001). A New Adaptively Robust Filtering for Kinematic Geodetic
Positioning. Journal of Geodesy, 75(2), 109–116.

Yang, Y. and Xu, T. (2003). An Adaptive Kalman Filter Based on Sage Windowing Weights and Variance
Components. The Journal of Navigation, 56(2), 231–240.

Yang, Y. and Gao, W. (2005). Comparison of Adaptive Factors in Kalman Filter on Navigation Results.
The Journal of Navigation, 58(3), 471–478.

Zhang, J., Zhang, K., Grenfell, R. and Deakin, R. (2006). Short Note: On the Relativistic Doppler Effect
for Precise Velocity Determination Using GPS. Journal of Geodesy, 80(2), 104–110.

Zhou, Z., Li, Y., Rizos, C. and Shen, Y. (2009). A Robust Integration of GPS and MEMS-INS Through
Trajectory-Constrained Adaptive Kalman Filtering. Proceedings of ION GNSS 2009, September 22–25,
Savannah, Georgia, 995–1003.

Zhou, Z., Shen, Y. and Li, B. (2010). A Windowing-Recursive Approach for GPS Real-Time Kinematic
Positioning. GPS solutions, 14(4), 365–373.

Zhou, Z., Shen, Y. and Li, B. (2011). Moving Time-Window Based Real-Time Estimation Algorithm for the
Stochastic Model of GPS/Doppler Navigation. Acta Geodaetica et Cartographica Sinica, 40(2), 220–225.

313A WINDOW-RECURSIVE APPROACH FOR GNSS KINEMATICNO. 2

https://doi.org/10.1017/S0373463312000549 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463312000549

