NOTE ON THE NUMBER OF SOLUTIONS OF $f\left(x_{1}\right)=f\left(x_{2}\right)=\cdots=f\left(x_{r}\right)$ OVER A FINITE FIELD

BY

KENNETH S. WILLIAMS
Let $G F(q)$ denote the finite field with $q=p^{n}$ elements and let

$$
\begin{equation*}
f(x)=x^{d}+a_{d-1} x^{d-1}+\cdots+a_{1} x \tag{1}
\end{equation*}
$$

where each $a_{i} \in G F(q)$ and $1<d<p$. For $r=2,3, \ldots, d$ we let n_{r} denote the number of solutions $\left(x_{1}, \ldots, x_{r}\right)$ over $G F(q)$ of

$$
\begin{equation*}
f\left(x_{1}\right)=f\left(x_{2}\right)=\cdots=f\left(x_{r}\right) \tag{2}
\end{equation*}
$$

for which $x_{1}, x_{2}, \ldots, x_{r}$ are all different. Birch and Swinnerton-Dyer [1] have shown that

$$
\begin{equation*}
n_{r}=v_{r} q+O\left(q^{1 / 2}\right), \quad r=2,3, \ldots, d, \tag{3}
\end{equation*}
$$

where each ν_{r} is a nonnegative integer depending on f and q and the constant implied by the O-symbol depends here, and throughout the paper, only on d. It is the purpose of this note to calculate ν_{2} and conjecture the value of ν_{3} in terms of the number of absolutely irreducible factors over $G F(q)$ of

$$
\begin{equation*}
f^{*}(x, y)=\frac{f(x)-f(y)}{x-y} \tag{4}
\end{equation*}
$$

In order to do this we introduce, for $x \in G F(q)$,

$$
\begin{equation*}
n(x)=\sum_{\substack{y=G F^{(q)} \\ f(x)=f(y)}} 1 \tag{5}
\end{equation*}
$$

so that

$$
\begin{equation*}
n_{r}=\sum_{x \in G F(q)}\left\{\prod_{i=1}^{r-1}(n(x)-i)\right\} . \tag{6}
\end{equation*}
$$

In particular

$$
\begin{aligned}
n_{2} & =\sum_{x \in G F(q)}(n(x)-1) \\
& =\sum_{\substack{x, v \in G F(q) \\
f *(x, y)=0}} 1+O(1) \\
& =a q+O\left(q^{1 / 2}\right),
\end{aligned}
$$

appealing to a result based on the deep work of Lang and Weil (see [2, Lemma 8]), where a is the number of absolutely irreducible factors of $f^{*}(x, y)$ over $G F(q)$. Clearly $0 \leq a \leq d-1$. Hence we have proved:

Theorem 1. For $q \geq A_{1}(d)$, where $A_{1}(d)$ is a constant depending only on d,

$$
\begin{equation*}
\nu_{2}=a . \tag{7}
\end{equation*}
$$

A similar result for ν_{3} seems difficult to obtain and we prove only
Theorem 2. For $q \geq A_{2}(d)$, where $A_{2}(d)$ is a constant depending only on d,

$$
\begin{equation*}
a^{2}-a \leq \nu_{3} \leq(d-3)(a+1)+2 \tag{8}
\end{equation*}
$$

We have from (6)

$$
n_{3}=\sum_{x \in G F(q)}(n(x)-1)(n(x)-2)
$$

so that

$$
\sum_{x \in G F(q)}\{n(x)\}^{2}=n_{3}+(3 a+1) q+O\left(q^{1 / 2}\right)
$$

Now

$$
\frac{1}{q}\left\{\sum_{x \in G F(q)} n(x)\right\}^{2} \leq \sum_{x \in G F(q)}\{n(x)\}^{2} \leq \max _{x \in G F(q)} n(x) \cdot \sum_{x \in G F(q)} n(x)
$$

so that

$$
\frac{1}{q}\left\{(a+1) q+O\left(q^{1 / 2}\right)\right\}^{2} \leq n_{3}+(3 a+1) q+O\left(q^{1 / 2}\right) \leq d\left\{(a+1) q+O\left(q^{1 / 2}\right)\right\}
$$

giving

$$
\left(a^{2}-a\right) q+O\left(q^{1 / 2}\right) \leq n_{3} \leq((d-3)(a+1)+2) q+O\left(q^{1 / 2}\right)
$$

which gives the result.
Theorem 2 gives the exact value of ν_{3} when

$$
a^{2}-a=(d-3)(a+1)+2
$$

that is when

$$
a=d-1
$$

in which case $f^{*}(x, y)$ factorizes completely into linear factors over $G F(q)$. Such a polynomial is extremal of index $d-1$ and has $\nu_{3}=a^{2}-a$ (see [3]). More generally if $f(x)$ is extremal of index $a(0 \leq a \leq d-1)$, that is $f^{*}(x, y)$ in its unique decomposition into irreducible factors has a linear factors and no non-linear absolutely irreducible factors, then $\nu_{3}=a^{2}-a$. If we write l for the number of linear factors of $f^{*}(x, y)$ over $G F(q)$ in the case of extremal polynomials we have $a=l$. Next let
us examine some polynomials of small degree for which $a \neq l$. If $f(x)=x^{3}+c x(c \neq 0)$, $f^{*}(x, y)=x^{2}+x y+y^{2}+c$, which is absolutely irreducible over $G F(q)$ as $p>3$. In this case $a=1, l=0, \nu_{3}=1$. If $f(x)=x^{4}+c x^{2}(c \neq 0), f^{*}(x, y)=(x+y)\left(x^{2}+y^{2}+c\right)$, so that $a=2, l=1, \nu_{3}=3$. Finally if $f(x)=x^{4}+c x^{2}+e x(e \neq 0), f^{*}(x, y)$ is absolutely irreducible over $G F(q)$ as $p>4$, and $a=1, l=0, \nu_{3}=1$. In all these examples we see that $\nu_{3}=a^{2}-l$ and so we make our first conjecture.

Conjecture 1. For $q \geq A_{3}(d)$, where $A_{3}(d)$ is a constant depending only on d,

$$
\begin{equation*}
\nu_{3}=a^{2}-l . \tag{9}
\end{equation*}
$$

It is easy to check that this conjecture is consistent with Theorem 2, we have only to prove that

$$
a^{2}-l \leq(d-3)(a+1)+2 .
$$

As the sum of the degrees of the l linear factors and the $(a-l)$ nonlinear absolutely irreducible factors of f^{*} is at most the degree of f^{*} we have

$$
1 \cdot l+2(a-l) \leq d-1,
$$

that is,

$$
l \geq 2 a-d+1
$$

so that

$$
\begin{aligned}
a^{2}-l & \leq a(a-2)+d-1 \\
& \leq a(d-3)+d-1, \quad \text { as } a \leq d-1, \\
& =(a+1)(d-3)+2,
\end{aligned}
$$

as claimed.
Conjecture 1 could be proved if we could prove
Conjecture 2. If $a(x, y), a^{\prime}(x, y)$ are nonlinear absolutely irreducible factors of $f^{*}(x, y)$ over $G F(q)$ (possibly $a=a^{\prime}$) then the number of solutions (x, y, z) over $G F(q)$ of $a(x, y)=a^{\prime}(x, z)=0$ with $x \neq y, y \neq z, z \neq x$ is $q+O\left(q^{1 / 2}\right)$.

To see this we write (as f^{*} has no squared factors over $G F(q)$).

$$
\begin{equation*}
f^{*}(x, y)=\prod_{i=1}^{l} l_{i}(x, y) \prod_{j=1}^{a-l} a_{j}(x, y) \prod_{k=1}^{m} t_{k}(x, y) \tag{10}
\end{equation*}
$$

where each l_{i} is linear, each a_{j} is nonlinear and absolutely irreducible over $G F(q)$, and each t_{k} is irreducible but not absolutely irreducible over $G F(q)$. Now the number of solutions (x, y, z) over $G F(q)$ with $x \neq y, y \neq z, z \neq x$ of
(i) $l_{i}(x, y)=l_{j}(x, z)=0$ is $q+O(1)$, if $i \neq j$; 0 if $i=j$ (see [3]),
(ii) $l_{i}(x, y)=a_{j}(x, z)=0$ or $a_{j}(x, y)=l_{i}(x, z)=0$ is $q+O\left(q^{1 / 2}\right)$, as a_{j} is absolutely irreducible,
(iii) $a_{i}(x, y)=a_{i}(x, z)=0$ is $q+O\left(q^{1 / 2}\right)$, by Conjecture 2 ,
(iv) $t_{i}(x, y)=a_{j}(x, z)=0$ or $t_{i}(x, y)=l_{j}(x, z)=0$ or $t_{i}(x, y)=t_{j}(x, z)=0$ is $O(1)$ as t_{i} is irreducible but not absolutely irreducible (see [3]).

Hence n_{3}, which is just the number of solutions of $f^{*}(x, y)=f^{*}(x, z)=0$ with $x \neq y, y \neq z, z \neq x$, is given by

$$
\begin{aligned}
\left(l^{2}-l\right)(q+O(1))+2(a-l) l\left(q+O\left(q^{1 / 2}\right)\right)+(a-l)^{2} & \left(q+O\left(q^{1 / 2}\right)\right) \\
& +2 m(a+m) O(1)=\left(a^{2}-l\right) q+O\left(q^{1 / 2}\right)
\end{aligned}
$$

as conjectured.

References

1. B. J. Birch and H. P. F. Swinnerton-Dyer, Note on a problem of Chowla, Acta Arith. 5 (1959), 417-423.
2. J. H. H. Chalk and K. S. Williams, The distribution of solutions of congruences, Mathematika 12 (1965), 176-192.
3. K. S. Williams, On extremal polynomials, Canad. Math. Bull. 10 (1967), 585-594.

Carleton University,
Ottawa, Ontario

