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Vortex patterns in rapidly rotating
Rayleigh–Bénard convection under spatial
periodic forcing
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Pattern-forming with externally imposed symmetry is ubiquitous in nature but little
studied. We present experimental studies of pattern formation and selection by spatial
periodic forcing in rapidly rotating convection. When periodic topographic structures are
constructed on the heated boundary, they modulate the local temperature and velocity
fields. Symmetric convection patterns in the form of regular vortex lattices are observed
near the onset of convection, when the periodicity of the external forcing is set close to
the intrinsic vortex spacing. We show that the new patterns arise as a dynamical process
of imperfect bifurcation which is well described by a Ginzburg–Landau-like model. We
explore the phase diagram of buoyancy strength and periodicity of external forcing to
find the optimal experimental settings for which the vortex patterns best match that of the
external forcing.
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1. Introduction

Pattern-forming phenomena are omnipresent in a wide variety of physical, chemical
and biological systems (Zaikin & Zhabotinskii 1970; Murray 1989; Cross & Hohenberg
1993; Gollub & Langer 1999). Nonequilibrium spatiotemporal patterns arise through
symmetry-breaking bifurcations when an initially uniform system is driven internally away
from thermodynamic equilibrium. Many natural systems are, however, often constrained
with non-uniform boundaries having broken symmetry that may reorganize the patterns.
Examples include atmospheric convection rolls forming over mesoscale topography (Tian
& Parker 2003) and the formation of Taylor columns over seamounts that control
the overlying pattern of ice-cover in high-latitude oceans (Martin & Drucker 1997).
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Exploring the interaction between externally imposed symmetries and intrinsic
symmetries preferred by the system may shed new light on the complexity in pattern
formation, and enable us to induce, control or eliminate patterns in various systems (Lowe,
Gollub & Lubensky 1983; Coullet 1986; Ismagilov et al. 2001; McCoy 2007; Seiden et al.
2008; Mau, Hagberg & Meron 2012; Weiss, Seiden & Bodenschatz 2014).

The fundamental physics of pattern formation has been studied over the past few decades
in carefully controlled experimental systems – for example, in rotating Rayleigh–Bénard
convection (RBC) (Cross & Hohenberg 1993; Gollub & Langer 1999; Bodenschatz, Pesch
& Ahlers 2000), i.e. a fluid layer heated from below and rotated about a vertical axis with
angular velocity ΩD. When the temperature difference ΔT exceeds the onset ΔTc(ΩD),
a spatiotemporal convection pattern appears under slow rotations (Chandrasekhar 1961;
Bodenschatz et al. 2000), which becomes unstable to the Küppers–Lortz instability when
ΩD increases (Kuppers & Lortz 1969; Busse & Heikes 1980; Hu, Ecke & Ahlers 1995;
Hu et al. 1998). Square (or hexagonal) patterns may form when the dimensionless rotation
rate, Ω = ΩDH2/ν (ν is the kinematic viscosity), reaches the order of 100 (Goldstein,
Knobloch & Silber 1992; Bajaj et al. 1998). Under sufficiently large rotation rates
(Ω ≥ 104) and buoyancy forcing, the system reaches a flow state of geostrophic convection,
where the flow field near onset is characterized by randomly meandering columnar vortices
(Noto et al. 2019; Chong et al. 2020; Ding et al. 2021), and the spatiotemporal periodicity
of the flow structure is lost. Previous studies have shown that when flow patterns are
modulated by a spatially periodic perturbation, a commensurate state can arise in which
the periodicity of the flow structure accommodates to that of the perturbation (Lowe
et al. 1983; Ismagilov et al. 2001; Seiden et al. 2008). This naturally raises the intriguing
question of whether the randomly distributed vortices can be modulated by external forcing
to form ordered patterns with selected spatial periodicity and symmetry in rapidly rotating
convection.

The flow field in rapidly rotating geostrophic convection is typically organized by the
Coriolis force into columnar vortices. This organizing process is believed to be responsible
for a myriad of phenomena in nature, such as the extreme weather caused by tropic
cyclones in the atmosphere (Roy & Kovordányi 2012), the magnetic field in the Earth’s
outer core (Jones 2011), heat and water exchange in deep oceans (Gascard et al. 2002)
and hazardous climatic effects on Mars (Balme & Greeley 2006). The development of a
methodology of external forcing to manipulate these coherent vortex structures is thus
of fundamental interest and may have implications in geophysics, oceanography and
meteorology (e.g. see Alamaro, Michele & Pudov 2006; Klima et al. 2011; Latham et al.
2012; Jacobson, Archer & Kempton 2014).

In this paper we present a novel experimental observation of orderly flow patterns
consisting of stationary columnar vortices that form under the control of external
topographic forcing in rapidly rotating convection. We show that the new patterns arise
as a dynamical process of imperfect bifurcation, and that the nature of the bifurcation
to finite-amplitude convection can be well understood through a Ginzburg–Landau-like
model. We explore the phase diagram of buoyancy strength and periodicity of external
forcing, and determine the optimal control parameters for which the vortex patterns
accommodate best to that of the imposed topographic structures.

2. The experimental set-up and parameters

We use a convection apparatus that is designed for high-resolution flow structure
measurements in rotating RBC (Shi et al. 2020; Ding et al. 2021). Figure 1(a)
presents a schematic drawing of the set-up. We use a cylindrical cell mounted on a
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(a) (b)

(c)

Figure 1. (a) Schematic of the experimental set-up on the rotating table (not to scale). The various components
are explained in the text. (b,c) Top views of the bottom plate patterned with a square and a hexagonal array of
raised cylinders in the forced cells.

rotating table. It has diameter d = 235.0 mm and height H = 63.0 mm, yielding an aspect
ratio of Γ = d/H = 3.7. The bottom plate of the cell, made of oxygen-free copper, is
heated from below by a uniformly distributed electric wire heater. Seven thermistors are
installed inside the bottom plate, one at the centre and the other six equally spaced on a
circle 210.0 mm in diameter. The top plate of the cell is made of a 5 mm thick sapphire
disc, cooled from above by a circulating water bath. Four thermistors are installed in the
water bath, next to the top side of the sapphire plate. All thermistors installed in the
apparatus are calibrated simultaneously in a separate calibration facility with a precision
of one or two millikelvins against a laboratory standard platinum thermometer traceable
to the ITS-90 temperature scale. In the present study, we construct on the bottom plate an
array of thin cylinders that extend out from the bottom surface. These raised cylinders are
periodically spaced to form a square (figure 1b) or hexagonal (figure 1c) bottom texture.
The diameter of these cylinders, d = 6.0 mm, is approximately equal to the mean diameter
of the vortices (see figure 2a). The cylinder height h = 3.0 mm is chosen as ∼ 5 % of the
fluid depth. The spacing between adjacent cylinders, λ, is varied as a control parameter of
the experiment.

For flow visualization, a particle image velocimetry system is installed on the co-rotating
frame. A thin light-sheet powered by a solid-state laser illuminates the seed particles in a
horizontal plane at a fluid height z = H/4. Images of the particle are captured through
the top sapphire window by a high-resolution camera. Two-dimensional velocity fields
are extracted by cross-correlating two consecutive particle images. To investigate the
long-term stability of the flow pattern near onset (e.g. figures 2b and 2c), we take image
sequences over eight hours at a time interval of 0.5 s.

The experiment is conducted with a constant Prandtl number Pr = ν/κ = 4.38 and in
the range 2.0 × 106 ≤ Ra ≤ 1.0 × 108 of the Rayleigh number Ra = αgΔTH3/κν. Here
g is the gravitational acceleration, while α and κ are respectively the isobaric thermal
expansion coefficient and the thermal diffusivity of the fluid. Deionized water is used
as the working fluid. Rotating angular velocities of 0.6 ≤ ΩD ≤ 2.0 rad s−1 are used;
thus 3.6 × 103 ≤ Ω ≤ 1.2 × 104. The reduced Rayleigh number, ε = (Ra − Rac)/Rac,
spans the range −0.6 ≤ ε ≤ 13.5. The onset value of ΔTc for convection is determined
from the theoretical prediction using an asymptotic method (Niiler & Bisshopp 1965),
i.e. Rac(ΔTc) = aEk−4/3, with a = 8.70 − 9.63Ek1/6 and the Ekman number Ek =
ν/2ΩDH2; and also from the measured intensity of the vorticity field in the cell (see panel
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Figure 2. (a–c) Instantaneous vertical vorticity distribution ω/ωstd , where ωstd is the standard deviation of
ω. Results are for the reference cell (a), the square-patterned cell (b) and the hexagon-patterned cell (c), with
Ω = 1.12 × 104 and ε = 0.49. The spacing of the raised cylinders is λ = 14.14 mm (b) and 17.32 mm (c).
(d–f ) Fourier spectra F(k) of the vorticity field, determined by ω(r) in the central region of 60 × 60 mm2

shown in (a–c), respectively. The arrow in (d) shows the mean radius k0 of the crater-like structure. The arrows
in (e) and ( f ) represent the characteristic wave vectors kf = ki (i = 1, 2 . . .) of the imposed textures. Movies
for (a–c) are available (see supplementary movies at https://doi.org/10.1017/jfm.2022.780).

c in figure 4). For Ω = 1.12 × 104, the two determinations of ΔTc agree to within 0.02 K.
The Froude number, Fr = Ω2

Dd/2g, covers the range 4.4 × 10−3 ≤ Fr ≤ 0.05.

3. Results and discussions

3.1. Convection patterns
Figure 2 presents the flow patterns at the measured fluid height with Ω = 1.12 × 104 and
ε = 0.49. When a flat bottom plate is used (i.e. the reference cell without external forcing),
the flow fields of the vertical vorticity ω(r) are characterized by columnar vortices, which
exhibit stochastic horizontal motions as reported in previous studies (Chong et al. 2020;
Ding et al. 2021). Despite their random motion, the vortices maintain approximately a
constant distance λ0 = 13.75±1.57 mm from their neighbouring vortices (figure 2a). In
the spatial Fourier spectrum F(k) of the vorticity field calculated in the central region
(figure 2d), a crater-like structure with radius k0 = 2π/λ0(457.1±52.4 m−1) is apparent,
indicating that the vortices are distributed with random orientations but with a preferred
spacing. When periodic topographic structures are constructed on the bottom plate, they
modulate both the local temperature and the shearing interaction of the fluid with the
solid surface, leading to new convection patterns. Figures 2b and 2c show the vorticity
fields when the bottom surface is textured with a square and a hexagonal array of
cylinders, respectively, with their spacing λ chosen close to the intrinsic wavelength of the
vorticity field λ0. Since the fluid overlying the raised cylinders is relatively hotter than the
background fluid at the same fluid height, upwelling vortices, i.e. cyclones when observed
in the lower half of the fluid layer (see e.g. Sakai (1997), King & Aurnou (2012), for
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Vortex patterns in rotating Rayleigh–Bénard convection

illustrations), tend to form above the cylinders, forming a 1 : 1 commensurate structure
with respect to the bottom texture. The downwelling vortices (anticyclones), however,
appear in between the raised cylinders. In the square-patterned cell (figure 2b), both the
cyclones and anticyclones constitute a regular square lattice. The flow pattern induced
by a hexagonal array of cylinders (figure 2c), however, consists of a hexagonal lattice of
anticyclones with a cyclone located at the hexagon centre. Such patterns are stationary and
persist during the experiment. Figures 2e and 2f present the Fourier spectra of the vorticity
fields in the central region of figures 2b and 2c, respectively. In these spectra we see
clear peaks located precisely at the wave vectors kf = ki (i = 1, 2 . . .) of the periodically
imposed textures. These peaks of F(k) are all sharp and their amplitudes are approximately
equal, suggesting that regular patterns with prescribed periodicity and symmetry are
developed. Near the sidewall region (r ≥ 100 mm) where the imposed texture is absent, the
flow field is time-varying and the vortex dynamics is largely influenced by the retrograde
travelling plumes within the region of the boundary zonal flow (de Wit et al. 2020; Zhang
et al. 2020).

3.2. General features of the patterns in the kf − ε phase diagram
The observed spatial pattern can be quantified by the radial distribution function g(r) of
the vortices, which is defined as the ratio of the actual number of cyclones lying within
an annulus region of r and r + δr, to the expected number for uniform vortex distribution
(Chong et al. 2020). Figure 3(a) shows g(r) for cyclonic distribution for various ε in the
square-patterned cell with λ = 14.14 mm. Near onset (ε = 0.09), multiple sharp peaks
appear in g(r), which are located at distances that match the main and subharmonic
wavelengths rij of the forced square pattern at the bottom plate, fulfilling the condition
rij = λ

√
i2 + j2 (for i, j = 0, 1, 2 . . . and i + j ≥ 1). With increasing ε, the peak amplitudes

in g(r) decrease while the peak widths increase, signifying a less regular flow pattern.
The multiple-peak structure is eventually flattened, and g(r) becomes close to a uniform
distribution for ε ≥ 4.0, where we see the vortices exhibit apparent horizontal motions. We
examine as well the role of the periodicity of external forcing on the convection pattern.
Figure 3(b) presents results for g(r) near onset (ε = 0.49) for various cylinder spacings
λ = 10.00, 14.14, 20.00, 28.28 mm. We see that multiple peaks still appear at the main and
subharmonic wavelengths rij(λ). For λ≥ 20.00 mm, the first peak is found near r = λ0,
which is associated with the intrinsic wavelength of the flow field. When λ is far from λ0,
the maxima of g(r) become less dominant and g(r) approaches the result of the reference
cell.

The degree of matching between the flow pattern and the bottom texture can be
evaluated through the cross-correlation coefficient C of the vorticity field and the bottom
texture, defined as C = 〈(ω(r) − ω̄)(M(r) − M̄)〉/

√
〈(ω(r) − ω̄)2〉〈(M(r) − M̄)2〉, with

M(r) = 0 (or −1) for the flat (or raised) area representing the bottom surface profile.
Angle brackets 〈 · 〉 denote a spatial average. Figure 3(c) summarizes the results for C in
the square-patterned cell for varying ε and wave vector kf = |k1| = |k2| of the external
forcing. In this phase diagram, we see that C(kf , ε) has a single maximum (C ≈ 0.7)
occurring at (km = 0.97k0, εm = 0.09), which implies the optimal conditions for pattern
selection. In the vicinity of (km, εm), the spatial distribution of the vortices closely
conforms to the bottom texture. The coefficient C decreases if the control parameters
(kf , ε) deviate from (km, εm). The decreasing rate of C with increasing ε is lowest when a
near-resonant external forcing (kf ≈ k0) is chosen. The convection pattern and the imposed
texture become essentially uncorrelated (with C ≤ 0.1) when (kf , ε) are set apart from
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Figure 3. (a,b) Radial distribution function g(r) of cyclones in the square-patterned cell. Results are for
various ε with a constant cylinder spacing λ = 14.14 mm in (a), and for various λ with ε = 0.49 in (b). The
red, blue and green arrows in (b) denote the main and subharmonic wavelengths rij/λ0 of the imposed pattern
for λ = 14.14, 20.00 and 28.28 mm, respectively. The dotted line in (b) shows the results for the reference
cell. (c) Contour plot of the cross-correlation coefficient C of the vorticity field and bottom texture in the
kf /k0 − ε phase diagram. Open symbols are data points measured in the square-patterned cell; colour contours
are estimated from interpolation between these points. Results are for Ω = 1.12 × 104.

(km, εm). Interestingly, when kf ≈ km, C remains well above zero for ε < 0, suggesting that
under external forcing, convection sets in with finite amplitude in the subcritical regime.

3.3. Variations of the vorticity field near onset
We measure the time-averaged vorticity modulus 〈|ω|〉 in an area of 65.8 × 54.8 mm2 at
the centre of the cell, while slowly scanning ΔT in the near-onset range −0.4 ≤ ε ≤ 0.4.
Results for 〈|ω|〉(ε) for the reference cell and two forced cells are shown in figure 4.
Overall, these data suggest two distinct types of bifurcations when ε increases from below
and crosses zero. The reference cell data reveal a sharp transition from a non-convection
state with 〈|ω|〉 = 0 for ε ≤ 0, to a convection state in which 〈|ω|〉 increases rapidly for
ε > 0. For both forced cells, however, 〈|ω|〉 remains positive for ε ≥ −0.4 and grows
relatively slowly with increasing ε, suggesting a smooth transition. The three inset panels
in figure 4 present the vorticity fields captured in the three cells with approximately the
same subcriticality (ε ≈ −0.1). They demonstrate that while the fluid is still quiescent
in the reference cell, apparent square and hexagonal lattices of convective vortices have
formed in the forced cells.

3.4. A theoretical model of the bifurcation dynamics
In an effort to understand the ε-dependence of 〈|ω|〉 near onset, we propose a
phenomenological Ginzburg–Landau-like model for the convection amplitude Aj of
rotating RBC in the presence of external periodic forcing (Kelly & Pal 1978; Coullet 1986;
McCoy 2007; Seiden et al. 2008):

∂tAj = εAj + ξ2
0 ∇2Aj −

n∑
i=1

gij
0|Ai|2Aj + g j

2δjA∗m−1
j . (3.1)
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Figure 4. Bifurcation curves of 〈|ω|〉(ε) near onset. The circles represent the data of the reference cell. The
squares and triangles represent respectively data for the square-patterned cell with λ = 14.14 mm and the
hexagon-patterned cell with λ = 17.32 mm. Error bars denote the standard deviation. The dotted line shows
the fitted square-root law for the reference cell, and the solid lines are the predicted imperfect bifurcation
curves for the forced cells. Inset panels: time-averaged vorticity fields of the three cells for ε ≈ −0.1. Data are
for Ω = 1.12 × 104.

In this model we describe the influence of the imposed bottom texture on the
multiple-mode flow pattern by mapping the bottom surface profile to a temperature
modulation of the bottom plate (Kelly & Pal 1978; Seiden et al. 2008). The quantity
gij

0 is the nonlinear coupling coefficient between the Fourier modes i and j of the flow
pattern (Scheel, Mutyaba & Kimmel 2010); n is the number of dominant modes, i.e.
n = 2 (3) for the square (hexagonal) pattern; and δj = cjh/H represents the strength of the

external forcing, with the coefficient cj = (1/LxLy)
∫ Lx/2
−Lx/2

∫ Ly/2
−Ly/2 2M(x, y) cos(2πk j

xx +
2πk j

yy) dx dy representing the bottom surface profile (Kelly & Pal 1978; Seiden et al.
2008). We use an area of 60 × 60 mm2 (Lx = Ly = 60 mm) to evaluate cj, and we
obtain cj = 0.226 and 0.172 for the square and hexagonal bottom textures, respectively.
The quantity Aj is the normalized complex amplitude, which satisfies the relationship∑n

j=1|Aj|2 = (Nu − 1)Ra/Rac (Cross 1980; Cross & Hohenberg 1993), with the Nusselt
number Nu = QH/λΔT representing the global heat transport. Here Q is the heat flux
through the fluid layer and λ is the thermal conductivity of the fluid. The quantity A∗

j is the
complex conjugate of Aj. The integer m denotes the degree of resonance, and we consider
here resonant forcing (kf ≈ k0 and m = 1). The coefficients ξ0 and g j

2 represent the spatial
variation of Aj and the degree of imperfection, which depend on kf and Ω .

In view of the symmetry of the flow patterns shown in figures 2b and 2c, one may
reconstruct the square pattern with two plane waves with their characteristic wave vectors
(k1, k2) perpendicular to each other (figure 2e), and the hexagonal pattern using three
wave vectors (k1, k2, k3) equally spaced (figure 2f ). Since these convection modes are
stationary, with the amplitude of each Fourier mode being equal to that of the others,
we have Ai = Aj, and the measured amplitude is the superposition of the convection
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amplitudes in all modes: A = ∑n
i=1Ai = nAi. The coupling coefficient gij

0 = g0 and the
imperfection coefficient g j

2 = g2 are set to constants for all modes (i, j).
We consider here a stationary solution for the near-onset flow regime. For each

modulation mode the spatial variation of A is negligible since the flow field is nearly
periodic (figures 2b and 2c). Accounting for a shift ε0 of the onset owing to a local increase
of the temperature gradient over the bottom texture (McCoy 2007; Seiden et al. 2008) and
for each imposed pattern kf /= k0 (Cross 1980), we arrive at an amplitude equation for
the forced cells: (ε + ε0)A − g0|A|2A/n + g2δ = 0, with δ = ∑n

j=1 δj. When the external
forcing is absent, δ = 0 and kf = k0. The amplitude equation for the reference cell is thus
reduced to εA − gr

0A3 = 0, with gr
0 being the nonlinear coupling constant for the reference

cell.
In rapidly rotating RBC, the columnar vortices possess similar spatial profiles of

temperature, vertical velocity and vertical vorticity (Portegies et al. 2008; Grooms et al.
2010). The amplitude A is thus related to the mean vertical vorticity modulus 〈|ω|〉 through
a scale factor S, A = S〈|ω|〉, yielding the following bifurcation equations for 〈|ω|〉:

(ε + εs
0)〈|ω|〉 − gs

0S2〈|ω|〉3/2 + gs
2δ

s/S = 0 (3.2)

for the square-patterned cell,

(ε + εh
0)〈|ω|〉 − gh

0S2〈|ω|〉3/3 + gh
2δ

h/S = 0 (3.3)

for the hexagon-patterned cell, and

ε〈|ω|〉 − gr
0S2〈|ω|〉3 = 0 (3.4)

for the reference cell. Here the superscripts s, h denote coefficients for the square
and hexagonal patterns, respectively. We fitted the experimental data for 〈|ω|〉(ε) to
the theoretical predictions of (3.2)–(3.4) for the forced cells and the reference cell,
respectively. In figure 4, both the experimental data and the theoretical curve show
clearly the signature of a forward bifurcation near ε = 0 in the reference cell when the
external forcing is absent. Meanwhile the pronounced rounding of the transition in the
two forced cells suggests an imperfect bifurcation, for which we find the values of the
bifurcation terms gs

2δ
sS−1 = 4.38 × 10−4(s−1) and gh

2δ
hS−1 = 5.00 × 10−4(s−1). The

offsets of the convection onset are found to be εs
0 = 1.0 × 10−3 and εh

0 = 1.26 × 10−2,
signifying that the bottom textures increase the local temperature gradient and destabilize
the convection system. Moreover we obtain the coefficient of the coupling terms as
g0S2 = (2.60 × 102, 4.16 × 102, 6.81 × 102)(s2) for the reference cell, square-patterned
cell and hexagon-patterned cell, respectively.

We consider a dimensionless bifurcation parameter, G = √
g0g2, which reveals the

transitional property of the bifurcation curve 〈|ω|〉(ε) near onset. For the two forced cells

we find Gs = √
gs

0gs
2 = 0.416, Gh =

√
gh

0gh
2 = 0.530; both are independent of the scale

factor S. Although there exists to date no complete theory of near-onset bifurcation for
rotating convection with external forcing, the amplitude equation of RBC subject to a
spatially periodic modulation has been formulated (Kelly & Pal 1978; McCoy 2007); these
papers show that the external forcing results in an imperfection term with a coefficient
g∗

2 = 0.144, and a coupling coefficient in the cubic term g∗
0 = 13.05, in their chosen units.

Therefore, the theoretically predicted value of the bifurcation parameter for non-rotating
convection, G∗ = √

g∗
0g∗

2 = 0.520, appears close to our results for Gs and Gh for the
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square- and hexagon-patterned cells in rotating convection. Lastly, the agreement between
the experimental and theoretical results shown in figure 4 suggests that the physics of
external modulation near the onset of rotating convection is well described by the present
Ginzburg–Landau-like model.

4. Concluding remarks

The flow pattern in geostrophic convection is characterized by columnar vortices
exhibiting stochastic horizontal motion (see e.g. Noto et al. 2019; Chong et al. 2020;
Ding et al. 2021). We have shown that when a periodically topographic structure is
introduced on the heated surface, these vortex motions can be strictly controlled to form
stationary convection patterns with prescribed symmetries. We demonstrate that the new
patterns arise through a dynamical process of imperfect bifurcation, with the nature of
the bifurcation to finite-amplitude convection well described by a Ginzburg–Landau-like
model. It is reported that these coherent vortex structures play a crucial role in heat and
mass transport in rotating convection (Veronis 1959; Julien et al. 1999; King & Aurnou
2012) and have significant influence on geophysical and astrophysical phenomena (Balme
& Greeley 2006; Jones 2011, et al.). Our findings of a parameter regime in the vicinity
of convection onset (ε ≤ 10) to manipulate these vortices through topographical forcing
may enable a new experimental methodology to control and exploit local heat and energy
exchange through rotating flows. There are still experimental challenges in extending
investigations of spatial forcing on rotating convection to geophysically relevant ranges
of parameters. The richness of patterns in modulated rotating convection observed in
this study may stimulate further theoretical and numerical investigations, and contribute
to our understanding of non-equilibrium systems constrained by non-uniform boundary
conditions.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.780.
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