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THE SCHREIER TECHNIQUE FOR SUBALGEBRAS
OF A FREE LIE ALGEBRA

SHMUEL ROSSET AND ALON WASSERMAN

ABSTRACT.  Ingroup theory Schreier’stechnique provides abasisfor asubgroup of
afree group. In this paper an analogue is developed for free Lie algebras. It hinges on
theidea of cutting aHall set into two parts. Using it, we show that proper subalgebras
of finite codimension are not finitely generated and, following M. Hall, that a finitely
generated subalgebrais a free factor of a subalgebra of finite codimension.

1. Introduction. The Schreier techniqueoriginated in Schreier’s([12]) proof of the
Nielsen-Schreier theorem that asubgroup of afreegroupisfree. In this paper wedevelop
asimilar method for free Lie algebras. Let us briefly describe the Schreier technique so
that the similarity will be clear. Given a subgroup H of the free group F(X), Schreier
proves the existence of a collection T of representatives for the cosets Hg of H which
is prefix-closed with respect to the given basis X. Then givent € T and x € X such
that tx & T, there existsat’ € T with Htx = Ht/, so that txt'— € H. The collection
of all these elements gives a free set of generators for H. Hall and Rado6 ([7]) proved
a converse that builds subgroups of F(X) given the combinatorial structure described
above (the collection T and the mapping of tx to t’). Hall ([4]) used this construction to
prove that afinitely generated subgroup of afree group is afree factor of a subgroup of
finite index.

Lewin ([9]) extended the method to one-sided ideals of free associative algebras and
to group algebras of free groups (see also [11] in this connection). In these cases, the
transversal T is replaced with alinear basis for alinear complement of the ideal, which
consists of monomials and is prefix-closed and the element t’ is replaced with a linear
combination of the elements of T.

In Section 2 we recall the definition of Hall sets. Such a set constitutes a linear ba-
sisfor the free Lie algebra L(X) consisting of (parenthesized) monomials. The concept
analogous to prefix-closed sets of monomialsis that of a Hall cut. The concept first ap-
peared in Sirsov’s celebrated paper ([15]), where he used it to obtain a result similar to
Lazard’s elimination theorem. An account of Sirsov’swork appearsin [1]. Sirsov'sideas
were then used by Schiitzenberger in [13] for the construction of certain codes. He calls
Hall cuts “partition de Sirsov”. An account of his work (which includes a proof of our
Theorem 3.6) appearsin [10, Theorem 5.16], where Hall cutsare called “upwards closed
subset”.
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Hall cutsare defined and combinatorially analyzedin Section 3. Thisanalysisleadsin
Section 4 to apreliminary construction of subalgebras. Asaspecial case, weget Lazard's
elimination theorem ([8]). This construction is, however, not general enough to build all
the subalgebras. For that, it is necessary to add the possibility of linear modifications.
In Section 5, the concept of a Schreier system is defined. It is the packet of information
needed for constructing subalgebras. In that section, a construction is described which
associatesto each Schreier system afree subalgebraof L(X) with adesignated base. This
is an analogue of the theorem of Hall and Rad6. Section 6 axiomatizes the concept of a
Hall cut. In Section 7 we prove that every homogeneous subalgebra can be built by the
construction of Section 5. The non-homogeneous case is treated in a standard manner
and one gets the theorem of Sirgov ([15]) and Witt ([16]) that a subalgebraof afree Lie
algebraisfree. Section 8 contains several applications of the technique. We prove that a
non-zero proper subalgebra of L(X) of finite codimensionis not finitely generated. From
this, we conclude Baumslag's theorem ([2]) that a non-zero proper ideal is not finitely
generated as a Lie algebra. Finally, we prove (an analogue of Hall’'s theorem) that a
finitely generated subal gebraof L(X) isafreefactor of asubalgebraof finite codimension.

2. Hall Sets. Inall that follows, we let X be a set (the set of letters). We denote the
free magmaon X by M(X). It isthe set of binary trees whose leaves are marked by letters
of X. Equivalently it isthe set of fully parenthesized words on the alphabet X. Recall that
every element of M(X) \ X can be uniquely written as the product of two elements of
M(X). If uand v arein M(X), we denote by uv" the element

W= (- (V) V).

n V,S
L(X) will denotethe free Lie algebraon X over afield k.
Let usfirst recall the definition of Hall sets. Thisis taken from [10, Chapter 4].

DEFINITION. Let H be asubset of M(X). Then H iscalled aHall set if the following
conditions hold:
e H hasatotal order <.
e Xiscontainedin H.
e Forany treeh = (Wh"”) inH \ X, one has

) h” e Handh < h”.
e For any treeh = (W'h"”) in M(X) \ X, onehash € H iff
) h,h"” e Handh < h”,
and

®©) eitherh’ € Xorh’ = (uv) andv > h".
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Hall setsfirst appearedin [5], wherethe conditionh < h” wasreplaced by the stronger
condition that order respects degree. The present condition appearsin [14], which also
showsthat it isin some sense optimal. For our purposes, use of that weaker conditionis
mandatory.

Every elementin M(X) givesaLie polynomial, inL(X), by interpreting the parentheses
as Liebrackets. The polynomials corresponding to elements of aHall set are called Hall
polynomials. The basic property of these isthe following:

THEOREM 2.1. The Hall polynomials form a basis of the free Lie algebra (as a k-
Vector space).

A proof of this appearsin [10, Theorem 4.9].

3. Combinatoricsof Hall Cuts.

DerINITION. Let H beaHall setin M(X). Then aHall cutin Hisasubset R C H,
which is greater than its complement,i.e.u € Randv € H \ Rimpliesv < u.

DEFINITION. A subset R of M(X) issaid to beright closed if wheneverr = (r'r”’) €
R\ X, onehasr” € R.

LEMmMA 3.1. Let RbeaHall cutinH. Then Risright closed.

ProoOF. Letr = (r'r”) € R\ X. Thenby (1), onehasr < r”, so by the definition of
aHall cut one cannot haver” € H'\ R. "

DEFINITION. Let H be a Hall set in M(X) and R be a Hall cut in H. An element
ze H\ Riscaled an R-exit if eitherze Xorz= (ZZ') ¢ XandZ' e R.

When there is no danger of confusion, we may drop the R and call zan exit. We give
an equivalent characterization of the exits.

LEMMA 3.2, LetRbeaHall cutin H. Thenan element z € H \ Ris an R-exit iff it
is not a product of two elementsinH \ R.

PrROOF. Letz e H\Rbeanelementwhichisnot aproduct of two elementsinH \ R.
If z € X, then zis an exit. If not, write z= (ZZ"). We have to provethat 2’ € R. By (2),
one hasZ < Z’, so by the definition of aHall cut, if Z/ ¢ R, thenZ ¢ R, sothat zisa
product of two elementsinH \ R.

Conversdly,if ze Xorif z= (ZZ') ¢ Xand Z’ € R, then zclearly is not aproduct of
two elementsof H \ R. "

COROLLARY 3.3. Let RbeaHall cutin H. Then every elementin H \ Risin the
submagma of M(X) generated by the set of R-exits.

PrROOF.  Induction on the degree and use of the lemma. ]

We want to show now that H \ RisaHall set on the set of R-exits. In order to consider
a Hall set on a subset of M(X), we have to show that this subset freely generates a free
submagma of M(X). We thus want to establish a criterion for that to happen.
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PrROPOSITION 3.4. Let Z C M(X) and let (Z) be the submagma of M(X) generated
by Z. Then (Z) is a free submagma with basis Z iff no element in Z is a product of two
elementsin (Z).

PrOOF. Let Z' be asetin bijection with Z. The bijection Z’ — Z can be uniquely
extended to a magma epimorphism ¢: M(Z') — (Z), where M(Z’) is the free magma on
Z'. Itisclear that (Z) isfree with Z asits basisiff ¢ isinjective.

If ze€ Zisaproduct of two elementsin (Z), then clearly zis an image of two distinct
elements of M(Z'), so ¢ is not injective. Therefore the condition is necessary.

On the other hand, let us assumethat ¢ isnot injective and let u € (Z) be an element
of least degree, such that there exist distinct v,w € M(Z') with ¢(v) = ¢(w) = u. If
either vor wisin Z/, then the other must not bein Z’' (because the restriction of ¢ to Z/
isabijection of Z’ with Z) and u (as an image of both v and w) is an element of Z which
is a product of two elements of (Z). Otherwise, we havev = (V'V") andw = (Ww").
Since ¢(v) = @(w), we have (V') = ¢(W') and ¢(V") = ¢(W”). In addition, v # w, so
either V' # w or v/ # w’, so that either ¢(V') or ¢(v") is an element with two distinct
pre-images and with a smaller degree than u, contradicting the choice of u. ]

Let us apply this criterion to the set of R-exits of aHall cut R.

PrOPOSITION 3.5. Let RbeaHall cutin H, and let Z be the set of R-exits. Then (Z)
is a free magma with Z asits basis.

ProOOF. We check the condition of Proposition 3.4.

Let usfirst prove by induction on the degree of elementsin (Z) that (Z) "R = . Zis
digioint from R by definition, so this gives the induction base. Suppose that no product
of degreelessthan n of elementsof Zisin R. Sinceevery elementr = (r'r”) in R\ X has
r' € R (Lemma 3.1), we see that no product of degree n of elementsof Z isin R. Thus,
we have by induction that (Z) "R = 0.

Now, every z = (ZZ") € Z\ XhasZ’ € R, so we see that no element of Z is a product
of two elementsof (Z) and the condition holds. "

Corollary 3.3 and the last proposition enable usto identify (Z) with M(Z) and to view
H \ Rasasubset of the free magmaM(Z).

THEOREM 3.6. Let H beaHall setin M(X) and Ra Hall cut in H. Let Z be the set
of R-exits. Then H \ R, viewed as a subset of the free magma M(Z) and given order asa
subset of the Hall set H, isa Hall set on Z.

PROOF. We verify the demandson aHall set.

Zisincludedin H \ R by definition.

Let usprove (1). If h= (W'h") € H\ Risnotin Z, we haveto provethat h” € H\ R
and h < h”. Since hisnot in Z, we indeed cannot have h” € R. The fact that h < h”
follows since property (1) holdsin H.

Leth = (Wh’) € M(2) \ Z and assume that h € H \ R. We have to prove that
H,h" e H\R i < h” andeither b’ € Zorh’ = (uv) withv > h”. Ash € H, (2) tellsus
that h" and h” arein H and ' < h”. Ash € M(Z) \ Z and by the proof of Proposition 3.5
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(namely, by the fact that (Z) "R = ), we havethat b and h” arenot in R. If W & Z,
thenh’ = (uv) withu,v € H\ Rand v > h”, by property (3) of the Hall set H.

Finaly, leth = (Wh"”) € M(Z) \ Z and assumethat ', h” € H\ R, b/ < h” and either
h € Zorh = (uv) withv > h". We haveto provethath € H\ R. Sinceh” € M(Z), we
cannot have h” € R and therefore h ¢ R (Lemma 3.1). It remains to show that h € H.
Since (2) holds, it remainsto show (3). If " = (uv) withv > h”, then (3) holds. If b’ € Z,
there are two possibilities. If h' € X, then (3) clearly holds. If not, thenh’ € Z \ X, and
thush’ = (uv) withv € R SovisinRandh” isinH\ R, sov > h". Therefore, (3) holds
in that casetoo. L]

It would be convenient to know the form of exits.

ProPosSITION 3.7. Let RbeaHall cutin H and Z be the set of R-exits. ThenZ UR
is the set of all elements of H of the form

(4) Z=<("'(Xrn)"'r2)r1),
wheren>0,ri e Rfori=1,...,n,ry>--->rp>riandx e X.

PROOF. Let z be an element of the given form. To begin with zisin H. Assume
z¢ R If n= 0, then z € X. Otherwise, z = (ZZ") whereZ’ = ry isin R. In both cases,
zc Z

Conversely, let zbein ZUR. Then zisin H and we prove that zis of the form (4)
by induction on the degree of z. If z € X, then defining x = zand n = 0, we see that
zis of the required form. If z & X, write z = (ZZ"). Then Z’ € R. Definer; = Z/. If
Z € X, then defining x = Z we see that z is of the form (4) withn = 1. If Z & X, write
Z = (w). (3) impliesthat v > Z’. Since RisaHall cutand z’ € R, weseethatv € R
ThereforeZ € Z U Rand induction givesZ = ( (X)) - rz), wheren > 1, r1; € Rfor
r=2...,nrp>--->rpandx € X. Recalingthat r, = v> z’ = r;, weseethat zis
indeed of the form (4). ]

Finally, we wish to know how exits are changed when we add an element to the cut.
It is herethat Lazard’s elimination theorem (as defined below) first appears.

PrROPOSITION 3.8. Let RbeaHall cutin H and assumethat H \ R has a maximal
elementr. Then
Zny = {z"|n>0andze Zr\ {r}}.

PROOF. By equation (4) of Proposition 3.7, an element of Zg ;) is of the form

U= ((...(er).--rz)rl),

withm>0,ri € RU{r},rm>--- >rz >rpandx € X. Asr isthe smallest element of
RU {r}, thereexistsann > O, suchthatry =r; = --- =y =randrp,...,Im € R
Define

7= ("‘(er)"‘rn+l)-
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(f m=n,letz= x). Thenu = zr". Notethatif n = 0,thenz=u <randif n > 0,
then (zr) isiin H, so by (2), we again have z < r. Thereforez ¢ RU {r} and using
Proposition 3.7 (or the definition of exits) we concludethat z € Zg \ {r}.

Conversely, letu = zr", withn > 0and z € Zg \ {r}. Then, it is obviousthat u is
of the form (4), so it remains to show that u € H. Thisis proved by induction on n. For
n = 0,wehaveu =z < H. Forn= 1, wehavethat z < r (becausez # r andr is the
maximal element of H \ R) and either z € X or z = (ZZ") with Z’ > r (becausez’ € R
andr € H\ R). Therefore, (2) and (3) hold and (zr) € H. Assuming that z" € H for
somen > 1, we have by (1) that z" < r, so (2) is satisfied for z™. Condition (3) for
that element amountsto the fact r > r, so that z™* € H. n

4. Basic Construction and Examples. Inthis section, we give the basic construc-
tion of subalgebras of L(X) based on the combinatorics of Hall cuts. This constructionis
not general enough to supply all the subalgebras. For this, we shall haveto add additional
information, which will be treated in the next sections. However, the basic construction
carries within it the basic idea. We denote by | the map that associatesto each Hall ele-
ment (in the free magma) the corresponding Hall polynomial (in the free Lie algebra).

THEOREM 4.1. LetH beaHall setin M(X), RaHall cutin H and Z the set of R-exits.
Then the linear subspace spanned by I(H \ R) is a free subalgebra A of L(X) with basis
[(Z2). L(X) is the direct sum (as a k-vector space) of A and the linear subspace spanned
by I(R).

PrROOF. By Theorem 3.6, we know that H \ RisaHall set on Z. Combined with the
basic result on linear bases for free Lie algebras given by Hall sets (Theorem 2.1), we
get the theorem. n

We give some exampl es of subalgebras of L(X) with the basesthat Theorem 4.1 pro-
vides for them.

L et us start with the subalgebragenerated by asubset Y of X. It would of coursenot be
agreat surpriseto get Y asabasisfor that subalgebra. Let H beaHall set on X, such that
every element in (Y) is smaller than every element that contains a letter in X \ Y. Such
aHall set clearly exists. Now let R be the set of elements of H which contain aletter in
X\ Y. Then Ris aHall cut in H. There are no exits of degree more than 1, because if
z= (ZZ') withZ’ € R, then Z’ (and therefore also z) contains a letter in X'\ Y, so that
z € R Therefore, the exitsare the lettersnot in R, i.e. Z = Y. ThusH \ RisaHall set on
Y and the theorem gives usthat | (Y) isafree basis of the subalgebraspanned by I(H \ R).

A more interesting example, which was analyzed by Lazard (see[3]) istheideal gen-
erated by a subset of X. We state the result as a corollary.

COROLLARY 4.2. LetY C X. Let Hy beaHall set on Y. Consider the set
Z={(--(h)---hy) [ xeX\Y,n>0,h eHyandhy > - > hy}.
Then theideal of L(X) generated by X \ Y is a free subalgebra with basis|(Z).

PROOF. LetH beaHall set on X, which includes Hy asthe largest elements. Such a
Hall set clearly exists. Then Hy isaHall cut relative to H. Proposition 3.7 tellsusthat the
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Hy-exits are of the form of the elementsof Z. In view of Theorem 4.1, it remainsto show
that all the elementsof Z areindeed Hy-exits. Letze€ Z. Thenx € Y,s0z ¢ Hy. 1f n=0
thenze X, soz€ HandisaHy-exit. If n > 1, thenz= (ZZ’) withZ’ = h; € Hy, soiit
only remains to show that z € H. Thisfollows by repeated applications of properties (2)
and (3) of Hall sets. ]

It should be noted that the basis Z of Corollary 4.2 is not the one that Bourbaki gives
in[3, 11.2.9, Proposition 10].

Taking Y to be asingleton {a}, we have Hy = {a} and the special case of the last
corollary is the Lazard elimination theorem, which first appeared in [8]. Another proof
appearsin [10] or [14]. Since it lies at the core of the Schreier construction of the fol-
lowing sections, it deserves special mention.

COROLLARY 4.3. (Lazard's elimination theorem). Let X be a set and a € X. Then
L(X) isthe direct sum (as a k-vector space) of ka and of a Lie subalgebrawhichisfreely
generated, asa Lie algebra, by the elements

(—ad(@)"(9,n > 0,x € X\ {a}.

5. Schreier Systems. The combinatoria structure that holds the information that
enables us to construct subalgebras is the Schreier system. Such a system contains a
Hall cut and we will define a subalgebraby an inductive processthat involves|ooking at
subcutsthat grow towards the given cut. In order to use (transfinite) induction, we shall
assume that the Hall set H is (inversely) well-ordered, i.e. every non-empty subset of
H has a maximum. Every cut R other than H itself is then determined by the maximal
element mg in H \ Rby way of the relation

R={heH|h>ng}.

The order relation on the elements of H can then be identified (after inversion) with the
inclusion order on those cuts of H and when we take into account the trivial cut H, we
see that the type of the order on the set of cuts of H is the inverse of that of H with an
added element that is larger than all the elements. As H is well-ordered, the set of cuts
is well-ordered too. We can thus use induction. If R # H, the cut RU {mg}, which is
the successor of Rwill be denoted by R*. The set of R-exits will be denoted by Zg, the
R*-exits by Z%. For r € H, we denote the cut defined by r by

R ={heH|h>r}.
The set of R -exits is denoted Z,.

DEFINITION. A Schreier system (X, H, R, 7) iscomposed of the following set of data:
e An alphabet X.
e A Hall set Hin M(X).
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e An (inversely) well-ordered Hall cut R € H C M(X). Let us denote by Z the set
of R-exits.

e A map m: ZU R — kR (the modification map), suchthat if ve ZURandr € R
appears with a non-zero coefficient in w(v), then v < r and in addition either
ve Xorv= (VV')withr <V’ (i.e.visan element of Z \ {r}). The coefficient
of r in 7(v) will be denoted by 7(v),.

We now define by transfinite induction on subcuts S of R, the following elements of
L(X):

e For eachv € Zs, an element bs(v).

o If S# R, for eachv € Zg, an element Ig(v).

e If S# R, for eachv € Z¢, an element eg(V).

These elements should satisfy the following stability condition. If T C S C Rare subcuts
of Rand v € Z{NZ;, such that the linear combination 7(v) doesnot contain any element
of theinterval S\ T with anon-zero coefficient, then es(v) = er(v).

The basic idea is that the I-elements should be obtained from the b-elements by a
linear change of basis (hencetheletter 1) and the e-elements should be obtained from the
I-elements by Lazard elimination (hence the letter €).

Now that we know what we seek to define, let us get to the definition itself. First, we
wish to define all these elements for the empty subcut S = (). Clearly Z; = X and for
x € Xwedefineby(x) = X, whereXisthe basiselement of L(X) associated with the letter
X. Assuming that R # (), let a be the largest element in H. Then a must be a letter. We
definely(a) = aand if x € X other than a, let 15(x) = X — m(X)aa. We have

Zy = {xa"|n>0andx € X\ {a}}.

For v = xa", we define gy(v) by inductionon n. If n = 0 (i.e. if v € X\ {a}), let
e)(v) = Iy(X). Suppose that we have defined g;(xa"), let g;(xa™!) = [e;(xa"),a]. This
completes the definition of the three types of elements for the empty subcut.

Suppose that we have defined the elements er(v) (defined when v € Z7) for each
subcut T of Sand let us define the elements associated with the subcut S If Sis the
successor subcut of T (i.e. if S = T*), we define bg(v) = er(v) (note that it is well-
defined). If Sisalimit subcut, let v € Zs. Since w(v) isafinite linear combination, there
existsan's € S such that (v) doesnot contain any elementt in theinterval S\ Ry with a
non-zero coefficient. By the stability condition above, we have e (V) = er (V) for eacht
intheinterval S\ Rs, so that ast decreases, eg (V) becomes stable (after the point s). We
define bs(v) to be that stable element.

Assumenow that S# Randlet r bethe maximal element of H\ S WeletIs(r) = bs(r)
and for v € Zg different from r, welet Is(v) = bs(v) — w(V) bs(r). Finally, we reach the
definition of the €'s. Every v in Z§ is (by Proposition 3.8) of the form v = ur" with
uniqguen > Oand u € Zs\ {r}. We define es(v) by induction on n. For n = 0, that is
whenv € Zs\ {r}, we define eg(v) = Is(v). Supposing that es(ur") has already been
defined, we define es(ur™?t) = [es(ur"), Is(r)].

https://doi.org/10.4153/CJM-1997-028-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-028-8

608 SHMUEL ROSSET AND ALON WASSERMAN

THEOREM 5.1. Let (X,H, R, 7) be a Schreier system. Denote B = {bg(V) | v € Z},
whereZ isthe set of R-exits. Then Bisa free generating set of the subalgebra A generated
byit. Theset {bg (r) | r € R} isalinear basisfor a k-linear complement of Ain L(X).

Proor. For each subcut S C R, we denote

Bs:= {bs(v) | v € Zs}
Ls:={ls(v) | v € Zs}
Es:= {es(v) | ve Z&}
Cs:={br(s)|s€ S}.

L et As be the subalgebra generated by Bs. We prove by transfinite induction on the sub-
cuts Sof Rthat Asisafree Lie algebrawith Bs asabasisand that as a k-vector space, we
have L(X) = As® kCs (with Cs k-linearly independent). ThetheoremisthecaseS= R.

Let usfirst verify this for the empty subcut S = (). By definition we have By = X, s0
Ay = L(X) and indeed Ay is afree Lie algebrawith B, as a basis. Cy is empty, so that
indeed L(X) = Ay @ kCy.

Suppose that the inductive claim has been proven for every proper subcut T C Sand
let us prove it for the subcut S. Let us first assume that Sis the successor subcut to T
(i.e. S=T" = TU{t}). By theinduction hypothesis, Ar isafree Lie algebraon Br and
L(X) = At @ kCy. The set Ly is obtained from By by changing some of the elements
(not including br(t)) with a multiple of br(t). Thus it is clear that Lt also is a basis
of Ar. By the definition of Er, Er is obtained from Lt by applying Lazard elimination
relative to the element I+(t) (= br(t)). In addition, we have Er = Bs. Therefore, by
Lazard's elimination theorem (Theorem 4.3), As isafree Lie algebrawith Bs as a basis
and Ar = As @ kbr(t). Since Cs = Cr U {br(t)}, we get the required result.

In order to treat the case of alimit subcut, we need to further examine the decompo-
sition At = As @ kbr(t) in the successor case. Let | € Ar. Then| is asum of monomials
(with coefficients) in the generators Br. Let us assumethat | is amonomial of degreen
of theform

| =by--- by,

with by € By and with some parentheses which we can harmlessly omit. Let us first
assume that none of the letters by is equal to by(t). Then for each i there is a coefficient
a; € k, suchthat bj — ajbr(t) isin As. Now we have

by -+ by = ( (b — cabr(®) +aabr(®) -+ ((bn — cbr()) + cbr(t)).

Expanding this expression yields a sum of 2" monomials in the elements of L, the first
of which is the origina monomial (but with by — «o;bt(t) substituted for b;j) and such
that all the other monomials contain br(t). Therefore, after the Lazard elimination, we
get amonomial like the original monomial (but with the new basis elements) and addi-
tional monomials (in the elements of Ey) which are of adegreelessthan n (since Lazard
elimination reduces the degree of every monomial that includesthe eliminated letter). If

https://doi.org/10.4153/CJM-1997-028-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-028-8

SCHREIER TECHNIQUE IN LIE ALGEBRAS 609

n = 1, we may also get a multiple of by(t). Notice that if al the «;’s are zero, then no
change occurs. If one of the letters by is equal to br(t), then similar considerations give
us a sum of monomials al of which are of a degree less than n in the elements of Er
(unlessn = 1 in which case we get a multiple of br(t)).

Now let S be a limit subcut. Bs generates As by definition. We want to show that
Bs is Lie-independent. Let bg(v1), ..., bs(vh) with vy,..., v, € Zs be any n elements of
Bs. Then there exist subcuts Ty, ..., Ty, such that bg(v;) = by(v;) for every cut T with
T, C T C S Taking a proper subcut T of Sthat includes all the T;, we get that the
bs(vi) are elements of a basis of At so they are Lie-independent. We thus get that As is
free Lie algebra with Bs as a basis. It remains to be shown that L(X) = As ® kCs. The
linear independence of Cs modulo As follows again from the finite character of linear
independence. Let us show that L(X) = As+ KCs. Let | € L(X). Then, by the induction
hypothesis, for every proper subcut T of S, thereis an expression

©) | =ar+cr

with ar € Ar and cr € kCr. We shall seethat there exists a proper subcut T (depending
onl), suchthat ar € As, so that the expression (5) stabilizes at this subcut (i.e. it remains
constant for subcuts between T and S) and we havel € As + kCy. We may assume by
induction that thisis true for every limit proper subcut of S, so that every change in the
expression (5) occurs at successor steps. From the discussion of the successor case it
followsthat the degree of the element ar (as an expressionin the elements of By) can not
grow and therefore it stabilizes at a certain point. Moreover, the number of monomials
(relative to some fixed Hall set) occurring in the leading term of ar does not grow either
so that it too stabilizes. Let by - - - by, be amonomial in the leading term of ar after the
point of stabilization of the degree and number of monomials of the leading term. Then
each of the b’s correspondsto an element of Zg (otherwiseit would disappear in the point
of elimination of by). If v is the element of Zs corresponding to some by, then 7(v) is a
finitelinear combination and we may takethe cut T to contain all the elementsof Swhich
appear with a non-zero coefficient in 7(v). At this point br(v) = bg(Vv), and taking the
subcut T to be solargethat it containsall those elementsfor al the different by’sin al the
monomials of the leading term, we reach a point at which the leading term stabilizesand
isin As. We may now perform this for the element of the next degree and then continue
with decreasing degrees. After afinite number of steps, we get aproper subcut T of Sat
which point the expression (5) stabilizes, as required. ]

ThealgebraAwill bedenoted by A(X, H, R, 7). Let usnotethat if 7 preservesdegrees,
that isif whenever r appears with a non-zero coefficient in 7(v), r and v have the same
degree, then we get a base of homogeneous elements and the complement also consists
of homogeneous elements. The Schreier systemis called homogeneousin this case.

6. Potential Hall Cuts. We start with some motivation. Let R be aHall cut in H.
Proposition 3.7 implies that the elements of ZU R are the elements of H of the form (4).
However, let usassumethat the set H is unknown and that we only know Rwith its order.
Thisinformation is sufficient in order to define the R-exits, that is to determine when an
element of the form (4) isin H.
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LEMMA 6.1. Let RbeaHall cutinH. Let

7= ((...(Xrn)...rz)rl)

withn>0,rce Rfork=1,....,nrp,>--->rp>rjandxe X. Fork=1,...,n,
denote

U = ( .. (Xrn) - rk+1)_
We agreethat u, = X. Thenz € Hiff for eachk = 1, ..., nthefollowing condition holds:

(Ry): either uy ¢ Roru, € Rand ug < ry.

PROOF. Assumethat z € H. Then by (2), each uy isin H and ux < ry for every k
whether uy isin Ror not.

Conversely, assumethat (R) holds for every k. We prove by decreasing induction on
k that uy isin H. For k = n, u, = x whichisin X (and thus in H). Assume that uy is
inH. If uc ¢ R then ug < r¢ becauseRisaHall cut. If u, € R, then by (Ry), ux < r.
Therefore, in any case, Uk < r, so that (2) holds for (ugrk) = Ux_1. Fork = n, u, € X
and for k < n, rq > 1y, so that (3) holdstoo. Thus u,_; isin H and the induction is
complete. ]

Thus we see that in order to identify the R-exits, we only need to know the alphabet
X and the set R with its order. We axiomatize the structure that carries this information
(in the free magmaagain).

DEFINITION. Let R be asubset of M(X). Then Ris called a potential Hall cut if the
following conditions hold:
e Rhasatotal order <.
e Forany treer = (r'r”) in R\ X, one has

(6) r" e Randr <r”.

e Everyr € Risof theform

r= (( s (Xrp) - rz)fl),

withn>0,r, e Rfork=1,...,n,rn, > --- >r, >ry and x € X, suchthat for
every 1 < k < n, condition (Ry) holds.

Aswe saw, every Hall cut isa potential Hall cut. We will seethat the converseisalso
true, in the sense that every potential Hall cut can be completed to a Hall setin which it
isaHall cut. Thisis done (by a converseto Theorem 3.6) by adding aHall set on the set
of exits. Let usfirst define these.

DEFINITION. Let Rbeapotential Hall cut. An element z € M(X) is called an R-exit
if z¢ R, butisof theform (4) withn > 0,r, € Rfork=1,...,n,rp > -+ > 132 > 13,
x € Xand (Ry) holdsforevery 1 < k <n.

Asin Section 3, we first want to show that the exits are a basis for a free submagma
of M(X).
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PROPOSITION 6.2.  Let Rbe a potential Hall cut and Z the set of R-exits. Then (Z) is
a free magma with Z asits basis.

ProoF.  The proof follows the lines of the proof of Proposition 3.5. First, we prove
by induction on the degree of elements in (Z) that (Z) "R = (. The induction base
follows from the fact that, by definition, elements of Z are not in R. For each element
r=('r")inR\ X,onehasr” € R, soif we know that products of degree less than n
arenotin R, it follows that products of degree n arealso not in R. Therefore, no element
of Z is aproduct of two elementsin (Z), becausefor eachz = (ZZ") in Z \ X, one has
Z’ € R. Now apply Proposition 3.4. "

Proposition 6.2 allows us to consider a Hall set on Z as a subset of M(X). We now
wish to show that given a potential Hall cut, we can completeit to a Hall set by adding
aHall set on the exits.

THEOREM 6.3. LetR C M(X) beapotential Hall cut on X. Let Z bethe set of R-exits.
Let Hz be an arbitrary Hall set on Z (considered as a subset of M(X)). OnH = H UR,
we define a total order, so that it extends the given orderson R (as a potential Hall cut)
and on Hz (as a Hall set) and such that any element of R is larger than any element of
Hz. ThenH isa Hall set on X.

PrROOF. We verify the demandson aHall set.

If x € X, then either xisin R (and thusin H), or isan R-exit and thusin Z C Hz C H.

Leth = ('h”) € H\ X. We wish to prove that in this case, h” € Hand h < h”. If
h e R thenh” € Randh < h” by (6). If h € Z, thenh” € Rand h < h” by the definition
of Zand theorder (h € Hz andh” € R, soh < h”). Findly, if he Hz \ Z, thenh” € H;
and h < h” by property (1) of Hz asaHall seton Z.

Leth = (h'h"”) € M(X) \ X and supposethat h € H. We have to prove (2) and (3). If
h € ZUR, then hisof theform (4). Wethus seethat h' = (- -- (xry) - - - 2) isalso of the
form (4) withry e Ryrp > -+ >rp,xe Xand(R) fork=2,...,n,sothaah € ZUR.
The condition h’ < h” holdsin this case by condition (Ry). If " & X (i.e. if n > 1), then
h = (uary) withry > r1. Thuswe have (2) and (3) if he ZUR. If h € Hz \ Z, then (2)
and (3) hold by the corresponding properties of the hall set Hz.

Let us now assumethat h = (W'h”) € M(X) \ X, suchthat h’,h” € H, b’ < h" and
either " € Xor b’ = (uv) withv > h”. We haveto showthath € H. If h' € Hz \ Z,
thenh’ = (uv) with v € Hz. Sincev > h” and by the definition of the order on H, we see
that h"” € Hz. Therefore h € Hz, by the corresponding property of the hall set Hz. The
remaining caseiswhenh’ € ZUR. If h € Hz, then becauseh’ < h”, wehaveh’ € Z,
so that (2) and (3) hold for h (relative to the alphabet Z) and h € Hz. Suppose now that
h" € R. By the definitions of apotential Hall cut and of exits, ' = (- - (xrn) - - - I2) with
n>1rceRfork=2,...,n,rp>--- >r,x€ Xand (R fork = 2,...,n. Defining
ri = h",weseethatif n > 2,thenr, = v>h" = ri. Moreover,u; = h <h” =rq, s0
that (R;) holds and we see that h € ZU R. Therefore, in that casetoo, h € H and since
we considered all the possible cases, the proof is complete. ]
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COROLLARY 6.4. Let Rbea potential Hall cut on X and Z be the set of R-exits. Let
Y C Zandlet YUR havean order that extendsthe order on R and so that every element
of Y issmaller than every element of R. Then Y U Ris a potential Hall cut on X.

Proor. Choose a Hall set Hz on Z, such that Y is a Hall cut in Hz and on Y the
order isthat restricted from YUR. Since Y isa subset of Z, thisclearly is possible. Then
Theorem 6.3 impliesthat H; U RisaHall set on X and Y U Ris an ordinary Hall cut in
it and therefore a potential Hall cut. ]

Examining the definition of Schreier systemsin Section 5, we seethat in the definition
and in the constructions, we use only the cut with its order and the exits. Now that we
know that any potential Hall cut isindeed a Hall cut of some Hall set, we can dispense
with H and for the cut, we may be content with a potential Hall cut.

The following property will be useful for applications.

THEOREM 6.5. Let H be a Hall set and let R be a subset of H, such that whenever
(( -+ (Xry) -+ r2)r1) € Rwithx € X, onehasry,...,r, € R Then R (with the induced
order) is a potential Hall cut.

PROOF. Examining the definition of apotential Hall cut, we seethat all the demands
on the order are satisfied becauseH isaHall set. n

7. Analyzing Subalgebras. Thetarget of this sectionisto show that the subalgebra
construction method describedin Section 5isgeneral enoughto giveinformation on sub-
algebras of L(X). We shall see that the method builds all the homogeneous subalgebras.
An easy and standard method reduces the general case to the homogeneousone.

THEOREM 7.1. Let X be an alphabet, L(X) be the free Lie algebraon X and A C
L(X) be a homogeneous subalgebra. Then there exists a homogeneous Schreier system
(X, R, m) (where Ris a potential Hall cut on X) suchthat A = A(X, R, 7).

PrOOF. Let A = §°,A and L = &2, L; be the decompositions of A and of L to
homogeneous components. We shall inductively define Schreier systems (X, R,, ) (the
set of Ry-exits will be denoted Z,,), such that:

1. Ri-1 C Ry C Ry-1UZy_g isasubcut (i.e. every element of R, \ Ry_1 issmaller
than every element of R,_1).
. All the elements of R, \ R,_1 are of degreen.
., extends m,_1 on elements of degreeless than n.
4. 7y, preserves degree, that is whenever u € R, U Z, and v appearsin mp(u) with a
non-zero coefficient, the degrees of u and v are equal.
5. AX, Ry, m) = A+L™L whereL™! = @, L isthe (n+1)-thideal in the lower
central series.
Note that every R,-exit of degreen or lessis an Ry-exit for every m > n and that m,(v)
can be non-zero only for v of degree n or less. Thus the meaning of condition 3 is that
the value of 7 on elements of degree n is determined at the n-th stage in the induction
process.

w N
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Suppose that we have defined these. We claim that the Schreier system (X, R, ) de-
fined as the union of the systems (X, R,, mn) is the desired Schreier system. The algebra
A(X, R, 7) is homogeneous. In order to show that it is equal to A, one must show that the
n-th componentsare identical for every n. By the conditions above, the set of generators
of degreeless than or equal to n becomes stable after the n-th stage, so the n-th compo-
nent of A(X, R, ) is equal to the n-th component of A(X, R,, mn) which by condition 5is
the n-th component of A.

So all that remains is to perform the inductive construction. The induction base is
achieved by taking Ry = 0. It is easy to verify the conditions. Suppose that we have
already constructed R,_1 and 1. Thenweknow that A+L" = A(X, R,—1, mh—1). Theo-
rem 5.1 suppliesuswith aset B of free generatorsfor A+L" in one-to-one correspondence
with Z,_;. Theform of the Schreier system impliesthat they are homogeneouselements,
so we can write B = UB;, where B; is the set of generators of degreei. Let A’ be the
subalgebra generated by By U - -+ U Bn_3. It is clear that A’ C A. Let A}, be the n-th
homogeneous component of A’. Since B is abasis of A + L", whose n-th component is
Ly, it follows that L, = A/, & kBp,. Choose (by Zorn's lemma) a subset Y C By that is
linearly independent modulo A, and maximal with respect to that property. Let U be the
elementsof Z,_; which correspondto the elementsof Y and let VV bethe elementsof Z,,_;
of degree n which are not in U. Order U with an arbitrary (inverse) well-ordering and
define R, = U U R,_1, with an order that extends those of U and R,_; and such that the
elements of U are smaller than those of R,_;. R, isapotential Hall cut by Corollary 6.4.

L et usdescribethe set of R,-exits. The exits of degreelessthan n are the R,—;-exits of
degree less than n, because on those degrees nothing changed. The exits of degreen are
the elements of Z,_; of degreen, which arenot in U (i.e. the set V). The exits of degree
more than n will not concern us. We define m,, to extend 7,1 on the exits of degree less
than n and to be zero on the exits of degreemorethan n. If zisan R,-exit of degreen, then
the corresponding element isnot in Y and therefore (by the maximality of Y) it islinearly
dependent modulo A, on Y. Therefore, there existsalinear combination of elementsin’Y
which is equal to zmodulo A. We take 7n(2) to be the corresponding linear combination
of the elements of U. The difference between the elements of Y and the corresponding
linear combinations are elements of A,. Denoting them by F, we seethat kB, = kF @ kY.
Therefore L, = A}, ® kF @ kY, with A, & kF C A, and Y linearly independent modulo
An. Therefore A, & kF = A,

Let A” = A(X, R, ). Then A” isahomogeneoussubalgebra. Theorem 5.1 describes
alinear complement of A”. Thestructure of the Schreier system (X, Ry, ) impliesthat all
the elements of this complement are of degreen or less. Therefore, A” includesthe ideal
L™L, A” coincideswith A(X, R,_1, mn—1) on degreeslessthan n, therefore the component
at those degrees coincide with those of A. The construction of R, and 7, ensurethat the
n-th component is A, & kF which is equal to A,. Callecting all of this information, we

have A” = A+L™1, .
The general (not necessarily homogeneous) case can be reduced to the homogeneous
case.
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PrROPOSITION7.2. Let Abeasubalgebraof L(X). Let A’ bethe subalgebragenerated
by the leading ter ms of elements of A. Supposethat Y’ is a homogeneousbasis of A’ and
C a homogeneous linear complement. Suppose that Y C A, such that the mapping that
associateswith each element its leading termis a one-to-one correspondence between Y
andY’. Then AisafreeLiealgebrawith Y asa basis and C as a complement.

ProOF. First, it is clear that every homogeneous element of A’ is aleading term of
an element of A. Therefore, the set Y always exists. Let H be aHall set on an alphabet
in bijection with Y (and Y’). Then for each h € H, the leading term of the substitution
in h of the elements of Y is the substitution in h of the elements of Y’. Therefore, they
are linearly independent, so that Y generates a free Lie subalgebraB of A. We claim that
B = A. If not, choose an element of A\ B of least degree. Then its leading term is an
element of A’, which can thus be expressed as a combination of Hall expressionsin the
basis Y’. Subtracting the corresponding expression in the basis Y yields an element of
A\ B of smaller degree and we get a contradiction.

If A+C # L(X), then choosing an element in L(X) \ (A+C) of least degree and using
asimilar argument to the above gives a contradiction. In asimilar fashion, assuming that
ANC # 0and choosinganon-zero element of ANC of least degreegivesacontradiction.m

Combining the last two theoremswith the fact (proved in Section 5) that a subalgebra
associated with a Schreier system is free, we get the SirSov-Witt theorem.

THEOREM 7.3. Every subalgebra of a freeLie algebraisfree.

Motivated by the last result, we wish to slightly modify the Schreier construction so
that it would build all the subalgebras (and not just the homogeneous ones).

DerINITION. A modified homogeneous Schreier system consists of a homogeneous
Schreier system together with a mapping m: Z — L(X), such that if z € Z of degreen,
then m(2) is an element of L(X) of degreelessthan n.

Given amodified homogeneous Schreier system, we define the subalgebra associated
to it in the usual manner, except that to each element of the basis (which corresponds
to an exit z) we add the element m(Z). In this way, by the previous discussion, we can
construct al the subalgebras of L(X).

8. Applications. In afinitely generated free group, subgroups of finite index are
finitely generated. Lazard’s result [8] already indicates that in free Lie algebras the sit-
uation is quite the opposite and this is the contents of the next theorem. In the follow-
ing, notice that though the situation here is the opposite of that in free group theory, the
method of proof is similar.

THEOREM 8.1. Let L(X) bethefreeLiealgebraon a set X with |X| > 2 and let A be
a proper subalgebra of finite codimension. Then A is (free) of infinite rank.

PROOF. By Proposition 7.2, we may assumethat A is homogeneous. Then by Theo-
rem 7.1 there exists a Schreier system (X, R, ), suchthat A = A(X, R, 7). Since R stands
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in one-to-one correspondencewith alinear basis of acomplement of A, we seethat Ris
anon-empty finite set. Let a bethe largest elementin R. Then a € X. Let b be any letter
in X'\ {a}. Then all the elementsba” arein Z U R. Since only finitely many of them can
bein R, we concludethat Z isinfinite. As Z stands in one-to-one correspondencewith a
basis of A, the theorem follows. n
We can now apply thisin order to get asimple proof of aresult of B. Baumslag [2].

THEOREM 8.2. Let L(X) be the free Lie algebra on a set X and let | be a proper
non-zero ideal of L(X). Then | is not finitely generated asa Lie algebra.

ProOOF. Choose an element a ¢ 1. Consider | + ka. Since | isanideal, | + kaisa
subalgebraof L(X) and | is a subalgebra of it of codimension one. Using Theorem 8.1,
we get the resullt. n

We recall that the idealizer of a subalgebrais the largest subalgebrain which it isan
ideal. The last theorem is easily seen to be equivalent to the following.

COROLLARY 8.3. Let A bea non-zerofinitely generated subalgebra of L(X). Then A
isits own idealizer.

Another result which can be deduced from the Schreier technique is the existence of
aHall complement.

THEOREM 8.4. Let Abeafinitely generated subalgebra of L(X) and let Y be afinite
subset of L(X) whichislinearly independent modulo A. Then there exists a subalgebra B
of finite codimension in L(X), which contains A as a free factor (i.e. B hasa basiswhich
contains a basis of A), such that Y islinearly independent modulo B.

ProOF. The proof goes along the lines of the proof of the analogous result for free
groups. For the sake of simplicity, wefirst assumethat Y is empty. By Theorem 7.1 and
Proposition 7.2, there exists a modified homogeneous Schreier system (X, R, 7, m), such
that A isthe subalgebraassociated to that system. Since A isfinitely generated, the set Z
of exitsisfinite. Every exit in Z defines (via the mapping ) a basis element of A. This
definition is achieved by a certain induction and involves afinite number of elements of
R. Let ustake all the elements of R which are involved in the definition of all the basis
elements. Thisis afinite set. Let us now enlarge it, so that if ( (X)) - rg)r1> isin
thisset, thenry, r,, ..., rn € R Thiscan be doneby adding to the set some of the subtrees
of elements of the set which arein R. Thus, we have afinite set of elements of R, which
includesall the elementsinvolved in the definition of the basiselementsof Aandwhichis
closed as described above. By Theorem 6.5, it isa potential Hall cut R'. All the elements
of Z are exitswith respect to R’ and we may construct a modified homogeneous Schreier
system (based on the information in the original system) with R’ as the cut, such that
all the basis elements of A are basis elements of the subalgebra B associated to the new
system. SinceR' isfiniteand since R’ correspondsto alinear basisof alinear complement
of B, we conclude that B is a subalgebra of L(X) of finite codimension and that B has a
basis which contains a basis of A, as required.
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Suppose now that we wish to ensure that Y is linearly independent modulo B. Each
of the elements of Y can be (by Theorem 5.1) written as a sum of an element of A and a
linear combination of elementswhich correspond to elementsof R (bg, (r) in the notation
of Theorem 5.1). These linear combinations are linearly independent by assumption. In
order to makethe elementsof Y linearly independent modul o B, we need only make sure
that all these elements would correspond to elements of R’ and this may be ensured by
enlarging R’ by some finite subset of R. ]

Following M. Hall ([6]), on the free Lie algebra, we consider the topology defined
by the basis consisting of the subalgebras of finite codimension. Then the last theorem
implies that every finitely generated subalgebrais closed in that topology.
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