A METRIGAL THEOREM IN DIOPHANTINE APPROXIMATION

WOLFGANG SCHMIDT

Introduction. In this paper we prove a sharpening and generalization of the following Theorem of Khintchine (4):

Let $\psi_{1}(q), \ldots, \psi_{n}(q)$ be n non-negative functions of the positive integer q and assume

$$
\psi(q)=\prod_{i=1}^{n} \psi_{i}(q)
$$

is monotonically decreasing. Then the set of inequalities

$$
\begin{equation*}
0 \leqq q \theta_{i}-p_{i}<\psi_{i}(q) \quad(i=1, \ldots, n) \tag{1}
\end{equation*}
$$

has an infinity of integer solutions $q>0$ and p_{1}, \ldots, p_{n} for almost all or no sets of numbers $\theta_{1}, \ldots, \theta_{n}$, according as $\sum \psi(q)$ diverges or converges.

Actually, Khintchine proved the Theorem with $\left|q \theta_{i}-p_{i}\right|<\psi_{i}(q)$ instead of (1). The first author who used the one-sided inequalities (1) was Cassels (1).
Surprisingly, the following sharpening of the Theorem seems to have escaped attention.

Theorem 1. Make the same assumptions as in Khintchine's Theorem. Let $\epsilon>0$ be arbitrary. Write $N\left(h ; \theta_{1}, \ldots, \theta_{n}\right)$ for the number of solutions of (1) with $1 \leqq q \leqq h$ and put

$$
\begin{align*}
& \Psi(h)=\sum_{q=1}^{h} \psi(q) \tag{2}\\
& \Omega(h)=\sum_{q=1}^{h} \psi(q) q^{-1} . \tag{3}
\end{align*}
$$

Then

$$
\begin{equation*}
N\left(h ; \theta_{1}, \ldots, \theta_{n}\right)=\Psi(h)+O\left(\Psi^{\frac{1}{2}}(h) \Omega^{\frac{1}{2}}(h) \log ^{2+\epsilon} \Psi(h)\right) \tag{4}
\end{equation*}
$$

for almost all sets $\theta_{1}, \ldots, \theta_{n}$.
Note. In this paper, $\log \alpha$ stands as an abreviatson for

$$
\left\{\begin{array}{l}
\text { logarithm } \alpha, \text { if } \alpha \geqq e \\
1, \text { if } \alpha<e .
\end{array}\right.
$$

Only $\log (1+1(1 / q-1))$ in (10) means logarithm, in spite of $1+(1 / q-1)<e$.
Next, we generalize Khintchine's Theorem to linear forms. We use the following notation. Throughout this paper, lower case italics denote rational

Received May 4, 1959.
integers. By Q, R, \ldots, we denote lattice points $Q\left(q_{1}, \ldots, q_{m}\right)$ in $R_{m} . \theta$ denotes points $\left(\theta_{1}, \ldots, \theta_{m}\right)$ in $R_{m} . \rho Q$, where ρ is real, is the point with co-ordinates $\rho q_{1}, \ldots, \rho q_{m}$, and $Q \theta$ is the scalar product $q_{1} \theta_{1}+\ldots+q_{m} \theta_{m}$. We write $d(Q)$ for the number of common divisors of q_{1}, \ldots, q_{m}. Finally, we put $Q \leqq h$ if $q=\max \left(q_{1}, \ldots, q_{m}\right) \leqq h$, and similarly $h<Q$.

Theorem 2. Let $\epsilon>0$ be arbitrary. Let $\psi_{1}(Q), \ldots, \psi_{n}(Q)$ be n bounded non-negative functions. We introduce

$$
\begin{aligned}
& \psi(Q)=\prod_{i=1}^{n} \psi_{i}(Q) \\
& \Psi(h)=\sum_{Q \leqq h} \psi(Q) \\
& \chi(h)=\sum_{Q \leqq h} \psi(Q) d(Q)
\end{aligned}
$$

and write $V\left(h ; \Theta_{1}, \ldots, \Theta_{n}\right)$ for the number of simultaneous solutions $Q \leqq h$, p_{1}, \ldots, p_{n} of the system

$$
\begin{equation*}
0 \leqq Q \Theta_{i}-p_{i}<\psi_{i}(Q) \quad(i=1, \ldots, n) \tag{5}
\end{equation*}
$$

Then for almost all n-tuples $\Theta_{1}, \ldots, \Theta_{n}$

$$
\begin{equation*}
N\left(h ; \Theta_{1}, \ldots, \Theta_{n}\right)=\Psi(h)+O\left(\chi^{\frac{1}{2}}(h) \log ^{3 / 2+\epsilon} \chi(h)\right) \tag{6}
\end{equation*}
$$

Note. We need not assume $\psi(Q)$ to be monotonic in any co-ordinate.
This theorem can be interpreted as a generalization of the well-known fact that the points $\left(Q \Theta_{1}, \ldots, Q \Theta_{n}\right)$ are uniformly distributed mod 1 for almost all $\Theta_{1}, \ldots, \Theta_{n}$. (See, for instance, (3, chapter IV).) Indeed, putting $\psi_{i}(Q)=\alpha_{i}$, $\alpha=\Pi \alpha_{i}$, we have $\Psi(h)=\alpha h^{m}$ and

$$
\chi(h)=\alpha \sum_{Q \leqq h} d(Q)=\left\{\begin{array}{l}
O(h \log h), \text { if } m=1 \\
O\left(h^{m}\right), \text { if } m>1
\end{array}\right.
$$

An interesting special case of Theorem 1 is when $\psi(Q)=\psi(q)$, where $q=\max \left(q_{1}, \ldots, q_{m}\right)$. Then

$$
\begin{aligned}
& \chi(h)=O\left(\sum_{d \leqq n} \sum_{\substack{q_{1} \leq n \\
d \mid q_{1} 1}} \sum_{q_{2} \leq q_{1}}^{d \backslash q_{2}} \ldots\right. \\
&=O\left(\sum_{\substack{q_{n} \leq q_{1} \\
d \leq q_{m}}} \psi\left(q_{1}\right)\right) \\
&\left.\sum_{\substack{q_{1} \leq h \\
d \mid q_{1}}} \psi\left(q_{1}\right)\left(\frac{q_{1}}{d}\right)^{m-1}\right) .
\end{aligned}
$$

Thus we have

$$
\chi(h)=O(\Psi(h))
$$

if $m \geqq 3$, or if $m=2$ and $q \psi(q)$ is monotonically decreasing, because in the latter case

$$
\sum_{\substack{q_{1} \leq h \\ d \mid q_{1}}} \psi\left(q_{1}\right) q_{1} \leqq d^{-1} \Psi(h)
$$

For example, if $\psi_{i}(Q)=\psi_{i}(q)=q^{-m / n}, \psi(Q)=q^{-m}, \Psi(h)=m \log h+$ $O(1)$, then for almost all $\theta_{1}, \ldots, \theta_{m}$

$$
N\left(h ; \theta_{1}, \ldots, \theta_{m}\right)=m \log h+O\left(\log ^{\frac{1}{2}} h \log \log ^{\alpha+\epsilon} h\right)
$$

where we may take $\alpha=2$ for $m=1$, according to Theorem 1 , and $\alpha=3 / 2$ for $m>1$, according to Theorem 2 .

For the proof we have to modify the standard proof of Khintchine's Theorem and use some ideas of (2). The new idea in Theorem 1 is to use fractions p / q with g.c.d. $(p, q) \leqq k$ where k is specified later, instead of p / q with g.c.d. $(p, q)=1$, as employed in ($\mathbf{1 ; 3 ; 4}$). Theorems 1 and 2 should be compared with similar results I proved recently in the geometry of numbers (5).

We give a detailed proof of Theorem 1 only. For convergent sums $\sum \psi(q)$ Theorem 1 follows from Khintchine's Theorem. Hence in $\S \S 1$ to 4 , which deal with Theorem 1, we assume without explicit mention that $\psi(q)$ is a non-negative, monotonically decreasing function with divergent sum $\sum \psi(q)$. $\Psi(h)$ and $\Omega(h)$ are defined by (2) and (3). The author is much indebted to the referee who discovered a mistake in the original draft and made valuable suggestions.

1. On certain intervals. Let $\omega(h), h \geqq 1$, be a monotonically increasing integral-valued function which tends to infinity. We write $\omega(0)=0$ and define S^{\prime} to be the set consisting of 0 and of all integers $h>0$ such that $\omega(h-1)<\omega(h)$. We define $S^{\prime \prime}$ to be the set of integers $h \geqq 0$ having $\omega(h)<\omega(h+1)$. Finally, S is the set of values of $\omega(h), h \geqq 0$.

Next, we define for fixed $t>0$ intervals of order t to be the half-open intervals

$$
\left(u 2^{t}+v_{1},(u+1) 2^{t}+v_{2}\right],
$$

where u, v_{1}, v_{2} are non-negative integers such that $v_{1}<2^{t}$ and v_{1}, v_{2} are the smallest non-negative integers satisfying $u 2^{t}+v_{1} \in S,(u+1) 2^{t}+v_{2} \in S$. (It is possible, of course, that for given u, t there exists no such v_{1}.) The intervals of order t cover the positive axis exactly once.

Lemma 1. Every interval $(0, x], x \in S$, can be expressed as union of intervals $\cup I_{i}$ of the type described above, where no two of the intervals I_{i} are of the same order.

Proof. Write x in the binary scale,

$$
x=\sum_{i=0}^{w} t_{i} 2^{i}
$$

where t_{i} equals 0 or 1 , but $t_{w}=1$. There exists an interval $\left(0, j_{1}\right]$ of order w with $j_{1} \leqq x$. If $j_{1}=x$, then we are through. If not, and if

$$
j_{1}=\sum_{i=0}^{w} t_{i}^{(2)} 2^{i},
$$

then $t_{w}{ }^{(2)}=t_{w}=1$ and there exists a largest integer w_{2} having

$$
t_{w_{2}}^{(2)}<t_{w_{2}}
$$

Hence there exists an interval $\left(j_{1}, j_{2}\right]$ of order $w_{2}, j_{2} \leqq x$. If $j_{2}=x$, then $(0, x]=\left(0, j_{1}\right] \cup\left(j_{1}, j_{2}\right]$. Otherwise, if

$$
j_{2}=\sum_{i=0}^{w} t_{i}^{(3)} 2^{i}, \quad t_{w}^{(3)}=t_{w}=1, \ldots, t_{w 2}^{(3)}=t_{w 2}=1,
$$

then there exists a largest $w_{3}, w_{3}<w_{2}$, having

$$
t_{w_{3}}^{(3)}<t_{w_{3}} .
$$

We proceed as before. Since $j_{1}<j_{2}<\ldots$, we finally arrive at $j_{f}=x$ and $(0, x]=\left(0, j_{1}\right] \cup \ldots \cup\left(j_{f-1}, j_{f}\right]$. The orders of the intervals are $w>w_{2}$ $>\ldots>w_{f}>0$.
2. Sums involving a function $\phi(k, q)$. Let k, q be positive and write $\phi(k, q)$ for the number of integers $x, 0 \leqq x<q$, so that g.c.d. $(x, q) \leqq k$.

Lemma 2.

$$
\sum_{q=1}^{v} \phi(k, q) q^{-1}=v+O\left(v k^{-1}+\log v \log k\right)
$$

Note. Here and throughout the paper, the inequality indicated by the O-symbol holds for all values of all variables involved.

Proof. Clearly,

$$
\phi(k, q)=\sum_{\substack{w \backslash q \\ w \leqq k}} \phi\left(\frac{q}{w}\right),
$$

where $\phi(x)$ is the Euler ϕ-function. Using the well-known relation

$$
\phi(x)=x \sum_{y \mid x} \mu(y) y^{-1},
$$

we obtain

$$
\begin{aligned}
\sum_{q=1}^{v} & \phi(k, q) q^{-1} \\
& =\sum_{q=1}^{v} q^{-1} \sum_{\substack{w \mid q \\
w \leqq k}} q w^{-1} \sum_{y \mid q w^{-1}} \mu(y) y^{-1} \\
& =\sum_{u=1}^{\min (k, v)} w^{-1} \sum_{y=1}^{[(v / w)]} \mu(y) y^{-1} \sum_{y=1}^{[(v, q v)]} 1,
\end{aligned}
$$

where $[\alpha]$ is the integral part of α. Thus

$$
\begin{aligned}
\sum_{q=1}^{v} \phi & \phi(k, q) q^{-1} \\
& =v \sum_{w=1}^{\min (k, v)} w^{-2} \sum_{y=1}^{[(v / w)]} \mu(y) y^{-2}+O(\log v \log k) \\
& =v \sum_{w=1}^{\min (k, v)} w^{-2} \xi(2)^{-1}+O\left(\sum_{w=1}^{\min (k, v)} w^{-1}\right)+O(\log v \log k) \\
& =v+O\left(v k^{-1}+\log v \log k\right) .
\end{aligned}
$$

Lemma 3.

$$
\sum_{q=1}^{v} \psi(q) \phi(k, q) q^{-1}=\Psi(v)+O\left(\Psi(v) k^{-1}+\Omega(v) \log k\right) .
$$

Proof. Put $\Pi(k, 0)=0$ and

$$
\Pi(k, r)=\sum_{q=1}^{r} \phi(k, q) q^{-1}
$$

for $r \geqq 1$. Lemma 2 yields

$$
\begin{equation*}
\Pi(k, r)=r+O\left(r k^{-1}+\log r \log k\right) . \tag{7}
\end{equation*}
$$

Using partial summation we obtain

$$
\begin{align*}
\sum_{q=1}^{v} \psi(q) & \phi(k, q) q^{-1} \\
& =\sum_{q=1}^{v} \psi(q)(\Pi(k, q)-\Pi(k, q-1)) \\
& =\sum_{q=1}^{v-1} \Pi(k, q)(\psi(q)-\psi(q+1))+\Pi(k, v) \psi(v) \tag{8}\\
& =\sum_{q=1}^{v-1} q(\psi(q)-\psi(q+1))+v \psi(v)+R(k, v) \\
& =\Psi(v)+R(k, v),
\end{align*}
$$

where, according to (7),

$$
\begin{align*}
& R(k, v) \\
& \begin{aligned}
&= O\left(\sum _ { q = 1 } ^ { v - 1 } \left(q k^{-1}\right.\right. \\
&\quad+\log q \log k)(\psi(q)-\psi(q+1)) \\
& \quad O\left(v k^{-1}+\log v \log k\right) \psi(v)
\end{aligned} \tag{9}\\
& =O\left(\Psi(v) k^{-1}+\log k \sum_{q=2}^{v} \psi(q)(\log q-\log (q-1))+\log k \psi(1)\right) .
\end{align*}
$$

Now

$$
\begin{align*}
\sum_{q=2}^{v} \psi(q) & (\log q-\log (q-1)) \\
& =O\left(\sum_{q=2}^{v} \psi(q) \log \left(1+\frac{1}{q-1}\right)\right) \tag{10}\\
= & O(\Omega(v))
\end{align*}
$$

Lemma 3 is a consequence of (8), (9), and (10).
3. Bounds for certain integrals. We introduce the following functions and integrals.

$$
\begin{aligned}
\beta(q, \theta) & =\left\{\begin{array}{l}
1, \text { if } 0 \leqq \theta<\psi(q) \\
0 \text { otherwise, }
\end{array}\right. \\
\gamma(q, \theta) & =\sum_{p} \beta(q, q \theta-p), \\
\gamma(k, q, \theta) & =\sum_{\substack{p \\
\text { g.c.c. } p, q) \leqq k}} \beta(q, q \theta-p), \\
I(q) & =\int_{0}^{1} \gamma(q, \theta) d \theta, \\
I(k ; q) & =\int_{0}^{1} \gamma(k, q, \theta) d \theta, \\
I(k ; q, r) & =\int_{0}^{1} \gamma(k, q, \theta) \gamma(k, r, \theta) d \theta, \\
\Psi(u, v) & =\sum_{u+1}^{v} \psi(q)
\end{aligned}
$$

We observe

$$
N(v, \theta)=\sum_{q=1}^{v} \gamma(q, \theta)
$$

and put

$$
N(k ; u, v ; \theta)=\sum_{q=u+1}^{v} \gamma(k, q, \theta) .
$$

Lemma 4.

$$
\begin{align*}
I(q) & =\psi(q) ; \quad I(k ; q)=\psi(q) \phi(k, q) q^{-1} \tag{11}\\
\mathrm{I}(k ; q, r) & \leqq \psi(q) \psi(r)+A(k ; q, r) \psi(q) q^{-1}, \tag{12}
\end{align*}
$$

where $A(k ; q, r)$ is the number of solutions p, s of

$$
\begin{equation*}
q s-r p=0 \tag{13}
\end{equation*}
$$

$$
0 \leqq p<q
$$

having

$$
\text { g.c.d. }(p, q) \leqq k, \quad \text { g.c.d. }(s, r) \leqq k
$$

Proof. $I(q)=\psi(q)$ is rather trivial, while the second half of (11) follows from

$$
\begin{aligned}
I(k, q) & =\sum_{\substack{p \\
\text { g.e.d. }(p, q) \leq k}} \int_{0}^{1} \beta(q, \theta q-p) d \theta \\
& =\phi(k, q) q^{-1} \int_{-\infty}^{\infty} \beta(q, \theta) d \theta
\end{aligned}
$$

As for $I(k ; q, r)$, we have

$$
I(k ; q, r)=\sum_{\substack{p, \text { g. e.d. }(p, q) \leqq k \\ s, g . e . c . d \\ s, r) \leq k}} \int_{0}^{1} \beta(q, \theta q-p) \beta(r, \theta r-s) d \theta .
$$

We split this sum into two parts,

$$
I(k ; q, r)=I_{0}(k ; q, r)+I_{1}(k ; q, r)
$$

where I_{0} consists of the terms with $q s-r p \neq 0$.

$$
\begin{align*}
I_{0}(k ; q, r) & \leqq \sum_{\substack{p, s, q s-r p \neq 0}} \int_{0}^{1} \beta(q, \theta q-p) \beta(r, \theta r-s) d \theta \tag{14}\\
& =\sum_{\substack{p, s \\
q s-r p \neq 0}} \int_{-(p / q)}^{1-(p / q)} \beta\left(q, q \theta^{\prime}\right) \beta\left(r, r \theta^{\prime}-\frac{q s-r p}{q}\right) d \theta^{\prime}
\end{align*}
$$

To find an estimate for this sum, write $q=q^{\prime} d, r=r^{\prime} d, q s-r p=h d$, where $d=$.g.c.d. (q, r). . For given h, p is determined modulo q^{\prime}. Hence

$$
\begin{aligned}
& I_{0}(k ; q, r) \\
& \quad \leqq d \sum_{h \neq 0} \int_{-\infty}^{\infty} \beta\left(q, q \theta^{\prime}\right) \beta\left(r, r \theta^{\prime}-\frac{h d}{q}\right) d \theta^{\prime} \\
& \leqq d \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \beta\left(q, q \theta^{\prime}\right) \beta\left(r, r \theta^{\prime}-\lambda d q^{-1}\right) d \theta^{\prime} d \lambda \\
& =\psi(q) \psi(r)
\end{aligned}
$$

In "changing from the summation over h to the continuous parameter λ we used the fact that the function

$$
\int_{-\infty}^{\infty} \beta\left(q, q \theta^{\prime}\right) \beta\left(r, r \theta^{\prime}-\lambda d q^{-1}\right) d \theta^{\prime}
$$

is monotonically decreasing in λ when $\lambda \geqq 0$, and monotonically increasing when $\lambda \leqq 0$.

To prove Lemma 4 it remains to give an upper bound for $I_{1}(k ; q, r)$. In analogy to (14), we find

$$
\begin{aligned}
& \leqq A(k ; q, r) \psi(q) q^{-1} .
\end{aligned}
$$

Lemma 5.

$$
\begin{aligned}
& \int_{0}^{1} N(v, \theta) d \theta=\Psi(v) \\
& \int_{0}^{1} N(k ; u, v ; \theta) d \theta=\sum_{q=u+1}^{v} \psi(q) \phi(k, q) q^{-1} \\
& \int_{0}^{1} N^{2}(k ; u, v ; \theta) d \theta \leqq \Psi^{2}(u, v)+2 \sum_{q=u+1}^{v} \psi(q) d_{k}(q),
\end{aligned}
$$

where $d_{k}(q)$ is the number of divisors of q not exceeding k.
Proof. The first two assertions follow from (11). As an immediate consequence of (12) we have

$$
\int_{0}^{1} N^{2}(k ; u, v ; \theta) d \theta \leqq \Psi^{2}(u, v)+2 \sum_{u<r \leqq q \leqq v} A(k ; q, r) \psi(q) q^{-1} .
$$

Now

$$
\sum_{r=1}^{q} A(k ; q, r)
$$

is equal to the number of solutions r, p, s of

$$
\begin{gathered}
q s-r p=0, \quad 0 \leqq p<q, \quad 1 \leqq r \leqq q \\
\text { g.c.d. }(p, q) \leqq k, \quad \text { g.c.d. }(s, r) \leqq k .
\end{gathered}
$$

Define a, b by

$$
\frac{a}{b}=\frac{p}{q}=\frac{s}{r}, \quad \text { g.c.d. }(a, b)=1
$$

Then b / q and g.c.d. $(p, q) \leqq k$ implies $q b^{-1} \leqq k$. Thus the number of possible choices for b is $d_{k}(q)$. Furthermore, there are $\phi(b) \leqq b$ possibilities for a and $q b^{-1}$ possibilities for r, once b is given. Hence

$$
\sum_{r=1}^{q} A(k ; q, r) \leqq q d_{k}(q)
$$

and

$$
\sum_{u<r \leqq q \leqq v} A(k ; q, r) \psi(q) q^{-1} \leqq \sum_{q=u+1}^{v} \psi(q) d_{k}(q) .
$$

4. Proof of Theorem $1(n=1)$. Write $\omega(h)=[\Psi(h) \Omega(h)]$ and define $S, S^{\prime}, S^{\prime \prime}$ as in $\S 1$. Let L_{s} be the set of all pairs $(u, v), u \in S^{\prime}, v \in S^{\prime}$, so that $(\omega(u), \omega(v)]$ is an interval of any order t with respect to ω (see § 1), and $\omega(v) \leqq 2^{s}$. From now on, the numbers k, s are always connected by the relation

$$
\begin{equation*}
k=2^{s} . \tag{15}
\end{equation*}
$$

From here on, we make heavy use of the methods developed in (2). Write $h^{*}=h^{*}(s)$ for the largest integer h^{*} having $\omega\left(h^{*}\right) \leqq 2^{s}$.

Lemma 6.

$$
\begin{align*}
& 0 \leqq \int_{0}^{1}\left(N\left(h^{*}, \theta\right)-N\left(k ; 0, h^{*} ; \theta\right)\right) d \theta=O\left(s 2^{s / 2}\right) \tag{16}\\
& \sum_{(u, v) \epsilon L_{s}} \int_{0}^{1}(N(k ; u, v ; \theta)-\Psi(u, v))^{2} d \theta=O\left(s^{2} 2^{s}\right) . \tag{17}
\end{align*}
$$

Proof. The first two equations of Lemma 5 give

$$
\begin{aligned}
\int_{0}^{1}\left(N\left(h^{*}, \theta\right)\right. & \left.-N\left(k ; 0, h^{*}, \theta\right)\right) d \theta \\
& =\Psi\left(h^{*}\right)-\sum_{q=1}^{h^{*}} \psi(q) \phi(k, q) q^{-1} \\
= & O\left(\Psi\left(h^{*}\right) k^{-1}+\Omega\left(h^{*}\right) \log k\right.
\end{aligned}
$$

according to Lemma 3 . Since

$$
\Omega\left(h^{*}\right)=O\left(2^{\frac{1}{2} s}\right)
$$

(16) follows.

Using Lemma 5 again we see that a single integral in (17) does not exceed

$$
2 \sum_{q=u+1}^{v} \psi(q) d_{k}(q)+2 \Psi(u, v)\left(\Psi(u, v)-\sum_{q=u+1}^{v} \psi(q) \phi(k, q) q^{-1}\right) .
$$

We first take the sum over those pairs $(u, v) \in L_{s}$ where $(\omega(u), \omega(v)]$ is an interval of fixed order t. Since intervals of order t cover the positive axis exactly once, we obtain the upper bound

$$
2 \sum_{q=1}^{h^{*}} \psi(q) d_{k}(q)+2 \Psi\left(h^{*}\right)\left(\Psi\left(h^{*}\right)-\sum_{q=1}^{h^{*}} \psi(q) \phi(k, q) q^{-1}\right) .
$$

We observe

$$
\sum_{q=1}^{h^{*}} \psi(q) d_{k}(q) \leqq 2^{s} \sum_{t=1}^{k} t^{-1}=O\left(2^{s} \log k\right)
$$

and using Lemma 3 we find the upper bound

$$
O\left(2^{s} \log k\right)+O\left(\Psi^{2}\left(h^{*}\right) k^{-1}+\Psi\left(h^{*}\right) \Omega\left(h^{*}\right) \log k\right)=O\left(\mathrm{~s} 2^{s}\right)
$$

Summing over t and observing $t \leqq s$ we obtain (17).

Lemma 7. There is a sequence of subsets $\sigma_{1}, \sigma_{2}, \ldots$ of the unit-interval with measures

$$
\mu_{s}=\int_{\sigma_{s}} d \theta=O\left(s^{-1-\epsilon}\right)
$$

such that

$$
N(h, \theta)=\Psi(h)+O\left(2^{s / 2} s^{2+\epsilon}\right)
$$

for any h with $\omega(h) \leqq 2^{s}, h \in S^{\prime}$, and any θ in $0 \leqq \theta<1$, but not in σ_{s}.
Proof. We define σ_{s} to be the set of all θ in $0 \leqq \theta<1$, for which not both of the following two inequalities hold:

$$
\begin{gather*}
0 \leqq N\left(h^{*}, \theta\right)-N\left(k ; 0, h^{*} ; \theta\right) \leqq s^{2+\epsilon} 2^{\frac{1}{2} s} \tag{18}\\
\sum_{(u, v) \epsilon L_{s}}(N(k ; u, v ; \theta)-\Psi(u, v))^{2} \leqq s^{3+\epsilon} 2^{s} . \tag{19}
\end{gather*}
$$

As a consequence of Lemma 6,

$$
\mu_{s}=O\left(s^{-1-\epsilon}\right) .
$$

If $h \leqq h^{*}, h \in S^{\prime}$, then the interval $(0, \omega(h)$] is the union of at most s intervals $(\omega(u), \omega(v)]$, where $(u, v) \in L_{s}$.

$$
N(k ; 0, h ; \theta)-\Psi(h)=\sum(N(k ; u, v ; \theta)-\Psi(u, v)),
$$

where the sum is over at most s pairs $(u, v) \in L_{s}$. This fact, together with (19) and Cauchy's inequality yields for $0 \leqq \theta<1, \theta \notin \sigma_{s}$,

$$
(N(k ; 0, h ; \theta)-\Psi(h))^{2} \leqq s^{4+\epsilon 2^{s} .}
$$

The last equation together with (18) gives Lemma 7.
Proof of Theorem $1(n=1)$. Since $\sum s^{-1-\epsilon}$ is convergent, there exists for almost all $\theta, 0 \leqq \theta<1$, an $s_{0}=s_{0}(\theta)$ such that $\theta \notin \sigma_{s}$ for $s \geqq s_{0}$. Assume θ has such an $s_{0}(\theta)$ and assume h to be so large that $\omega(h) \geqq 2^{s_{0}}$. Choose s so that $2^{s-1} \leqq \omega(h)<2^{s}$.

Suppose $h \in S^{\prime}$. Then we have with Lemma 7

$$
\begin{aligned}
N(h, \theta) & =\Psi(h)+O\left(2^{\frac{1}{2} s} s^{2+\epsilon}\right) \\
& =\Psi(h)+O\left(\Psi^{\frac{1}{2}}(h) \Omega^{\frac{1}{2}}(h) \log ^{2+\epsilon} \Psi(h)\right) .
\end{aligned}
$$

Hence Theorem 1 holds for $h \in S^{\prime}$. By the same argument we can prove the Theorem for $h \in S^{\prime \prime}$.

To any h there exist $h^{\prime}, h^{\prime \prime}$ with $h^{\prime} \in S^{\prime}, h^{\prime \prime} \in S^{\prime \prime}$ and

$$
\begin{aligned}
& \omega\left(h^{\prime}\right)=\omega(h)=\omega\left(h^{\prime \prime}\right) . \\
& \left|\Psi(h) \Omega(h)-\Psi\left(h^{\prime}\right) \Omega\left(h^{\prime}\right)\right| \leqq 1 .
\end{aligned}
$$

Then

$$
\left|\Psi(h)-\Psi\left(h^{\prime}\right)\right| \leqq \Omega(h)^{-1} \leqq \Omega(1)^{-1}=\psi(1)^{-1}
$$

and similarly for $\Psi\left(h^{\prime \prime}\right)$. Since

$$
N\left(h^{\prime}, \theta\right) \leqq N(h, \theta) \leqq N\left(h^{\prime \prime}, \theta\right),
$$

the case $n=1$ of Theorem 1 follows.
5. The case $n \geqq 2$. Using

$$
\begin{aligned}
v-\sum_{q=1}^{v} & \phi^{n}(k, q) q^{-n} \\
& =\sum_{q=1}^{v}\left(q^{n}-\phi^{n}(k, q)\right) q^{-n} \\
& \leqq n \sum_{q=1}^{v}(q-\phi(k, q)) q^{n-1} q^{-n} \\
& =n\left(v-\sum_{q=1}^{v} \phi(k, q) q^{-1}\right)
\end{aligned}
$$

we easily generalize Lemmas 2,3 to

$$
\begin{gathered}
\sum_{q=1}^{v} \phi^{n}(k, q) q^{-n}=v+O\left(v k^{-1}+\log k \log v\right) \\
\sum_{q=1}^{v} \psi(q) \phi^{n}(k, q) q^{-n}=\Psi(v)+O\left(\Psi(v) k^{-1}+\Omega(v) \log k\right) .
\end{gathered}
$$

In analogy to $\beta(q, \theta)$ of $\S 3$ we define $\beta\left(q, \theta_{1}, \ldots, \theta_{n}\right)$ to be the characteristic function of the rectangle

$$
0 \leqq \theta_{i}<\psi_{i}(q) \quad(i=1, \ldots, n)
$$

and put

$$
\begin{aligned}
& \gamma\left(q, \theta_{1}, \ldots, \theta_{n}\right)=\sum_{p_{1}, \ldots, p_{n}} \beta\left(q, q \theta_{1}-p_{1}, \ldots, q \theta_{n}-p_{n}\right) \\
& \gamma\left(k ; q, \theta_{1}, \ldots, \theta_{n}\right)=\sum_{\substack{i, \text { s. ...d. }\left(p_{i}, q\right) \leq k \\
i=1, \ldots, n}} \beta\left(q, q \theta_{1}-p_{1}, \ldots, q \theta_{n}-p_{n}\right) .
\end{aligned}
$$

$I(q), I(k, q), I(k ; q, r)$ are now n-dimensional integrals. To find an upper bound for

$$
\begin{aligned}
I(k ; q, r)= & \sum_{\substack{p_{i}, \text { g.e. .d. }\left(p_{i}, q\right) \leq k \\
s_{i} \text {....... } \\
i=1, r i, \ldots, n}} \int_{0}^{1} \cdots \int_{0}^{1} \beta\left(q, q \theta_{1}-p_{1}, \ldots,\right) \\
& \beta\left(r, r \theta_{1}-s_{1}, \ldots,\right) d \theta_{1} \ldots d \theta_{n},
\end{aligned}
$$

we split this sum into $n+1$ parts,

$$
I(k ; q, r)=I_{0}+\ldots+I_{n}
$$

where I_{j} consists of the terms with exactly j indices i_{1}, \ldots, i_{j} having $q s_{i}-r p_{i}=0$. We find

$$
I_{0}(k ; q, r) \leqq \psi(q) \psi(r)
$$

and

$$
\begin{aligned}
I_{j}(k ; q, r) & \leqq c^{(j)} A^{j}(k ; q, r) \psi(q) q^{-j} \\
& \leqq c^{(j)} A(k ; q, r) \psi(q) q^{-1} .
\end{aligned}
$$

There are no other modifications of any depth.
6. On the proof of Theorem 2. For simplicity assume $n=1$. We put

$$
\beta(Q, \theta)=\left\{\begin{array}{l}
1, \text { if } 0 \leqq \theta<\psi(Q) \\
0 \text { otherwise }
\end{array}\right.
$$

and define $\gamma(Q, \theta), I(Q)$ in an obvious way. Further

$$
\begin{aligned}
& I(Q, R)=\int_{0}^{1} \gamma(Q, \theta) \gamma(R, \theta) d \theta, \\
& \Psi(u, v)=\sum_{u<Q \leq v} \psi(Q) .
\end{aligned}
$$

We observe

$$
N(v, \theta)=\sum_{Q \leqq v} \gamma(Q, \theta)
$$

and put

$$
N(u, v, \theta)=\sum_{u<Q \leqq v} \gamma(Q, \theta) .
$$

We do not need the parameter k now, which was essential in Theorem 1 . Lemma 4 now reads

Lemma $4 a$.

$$
\begin{align*}
I(Q) & =\psi(Q) \tag{20}\\
I(Q, R) & =\psi(Q) \psi(R), \tag{21}
\end{align*}
$$

if Q, R are linearly independent (there exists no ρ having $Q=\rho R$).

$$
\begin{equation*}
I(Q, R) \leqq \psi(Q) \psi(R)+c A\left(q_{1}, r_{1}\right) \psi(Q) q_{1}^{-1} \tag{22}
\end{equation*}
$$

if Q, R are linearly dependent. Here q_{1}, r_{1} are the first co-ordinates of Q, R and $A\left(q_{1}, r_{1}\right)$ is the number of solutions p, s of

$$
q_{1} s-r_{1} p=0 \quad 0 \leqq p<q .
$$

(20) and (21) are proved like (11), while the proof of (22) is like the one given for (12). Lemma 5 becomes

Lemma $5 a$.

$$
\begin{aligned}
& \int_{0}^{1} N(u, v, \theta) d \theta=\sum_{u<Q \leqq v} \psi(Q)=\Psi(u, v) \\
& \int_{0}^{1} N^{2}(u, v, \theta) d \theta \leqq \Psi^{2}(u, v)+c \sum_{u<Q \leqq v} \psi(Q) d(Q) .
\end{aligned}
$$

All the other changes in the proof are obvious, except perhaps the definition of $\omega(h)$, namely $\omega(h)=[\chi(h)]$.

References

1. J. W. S. Cassels, Some metrical theorems in diophantine approximation I, Proc. Camb. Phil. Soc., 46 (1950), 209-218.
2. -- Some metrical theorems in diophantine approximation III, Proc. Camb. Phil. Soc.,
3. $\quad 46$ (1950), 219-225. An introduction to diophantine approximation, Cambridge Tracts, 45 (1957).
4. A. Khintchine, Zur metrischen Theorie der diophantischen Approximationen, Math. Z., 24 (1926), 706-714.
5. W. Schmidt, A metrical theorem in geometry of numbers, Trans. Amer. Math. Soc., 00 (1960), 000-000.

Montana State University

