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I n t r o d u c t i o n . In this paper we prove a sharpening and generalization 
of the following Theorem of Khintchine (4) : 

Let ypi(q), . . . , $n{q) be n non-negative junctions of the positive integer q and 
assume 

Hi) = n Ui) 

is monotonically decreasing. Then the set of inequalities 

(1) 0 S qdi- Pi <yPi(q) ( i = 1 , . . . , » ) 

has an infinity of integer solutions q > 0 and pi, . . . , pn for almost all or no 
sets of numbers 0i, . . . , 9n, according as /dig) diverges or converges. 

Actually, Khintchine proved the Theorem with \qdf — p{\ < \pi(q) instead 
of (1). T h e first au thor who used the one-sided inequalities (1) was Cassels (1). 

Surprisingly, the following sharpening of the Theorem seems to have 
escaped at tent ion. 

T H E O R E M 1. Make the same assumptions as in Khintchine s Theorem. Let e > 0 
be arbitrary. Write N(h; di, . . . , 6n) for the number of solutions of (1) with 
1 ^ q ^ h and put 

(2) *(*) = Z Hi) 
4=1 

(3) 0(A) = Ê Hi)^1-

Then 

(4) N{h; e u . . . , 6n) = *(h) + 0(^*(A)Q*(A) log2+c ¥(ft)) 

for almost all sets 6U . . . , 6n. 

Note. In this paper, log a s tands as an abbreviatson for 

( logari thm a, if a ^ e 

\ l , if a < e. 

Only l o g ( l + l ( l / g — 1 ) ) in (10) means logarithm, in spite of l-\-(l/q—\)<e. 

Next, we generalize Khintchine 's Theorem to linear forms. We use the 
following notat ion. Throughout this paper, lower case italics denote rational 
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integers. By Q, R, . . . , we denote lattice points Q(qi, . . . , qm) in Rm. 0 
denotes points (0i, . . . , 9m) in Rm. pQ, where p is real, is the point with 
co-ordinates pqh . . . , pqm, and QQ is the scalar product qrfi + . . . + qmBm. 
We write d(Q) for the number of common divisors of q±,. . . , qm. Finally, we 
put Q ^ h if q = max(gi, . . . , qm) S h, and similarly h < Q. 

THEOREM 2. Let e > 0 be arbitrary. Let ^i(Q), . . . ,ipn(Q) be n bounded 
non-negative functions. We introduce 

HQ) = fi UQ) 

*(*) = E *(Q) 

x(h) = E HQ)d(Q) 

and write N(h; 0!, . . . , 0W) /or the number of simultaneous solutions Q ^ h, 
Pu • • • , Pn of the system 

(5) 0 ^ QOt-Pt <*i(Q) (i = 1 , . . . , » ) . 

TTzen /or almost all n-tuples 0i, . . . , 0n 

(6) iV(A; 0i, . . . , 0.) = *(A) + 0(x*(A)log3/2+£xW). 

Note. We need not assume \p(Q) to be monotonie in any co-ordinate. 
This theorem can be interpreted as a generalization of the well-known fact 

that the points ((?9i, . . . , QOn) are uniformly distributed mod 1 for almost 
all 0i, . . . , Qn. (See, for instance, (3, chapter iv).) Indeed, putting i/^(()) =<xu 

a = TLat, we have ty(h) = ahm and 

(i,\ V j(n\ i° (A log A), if w = 
e<a W O ), it w > 1. 

An interesting special case of Theorem 1 is when \[/(Q) = ^(ç), where 
g = max(gi, . . . , qm). Then 

X(h)=0(j: E E •••Z Hqi)) 
d\d\ d\Q2 d\qm 

d | < ? i 

Thus we have 

x(A) = 0 (¥(*)) 

if w ^ 3, or if w = 2 and g^(?) is monotonically decreasing, because in the 
latter case 

E *(«i)2i s «r'tfw. 
d\Q\ 
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For example, if ^t(Q) = ft(q) = q-m'n, $(Q) = g"w, ¥(&) = m log A + 
0(1), then for almost all 9i, . . . , 9m 

N(h; 0i, . . . , 0ro) = m log A + 0 (log*A logloga+eA), 

where we may take a = 2 for m = 1, according to Theorem 1, and a = 3/2 
for m > 1, according to Theorem 2. 

For the proof we have to modify the standard proof of Khintchine's Theorem 
and use some ideas of (2). The new idea in Theorem 1 is to use fractions p/q 
with g.c.d. (p, q) :g k where k is specified later, instead of p/q with 
g.c.d.(p, q) = 1, as employed in (1; 3; 4). Theorems 1 and 2 should be com
pared with similar results I proved recently in the geometry of numbers (5). 

We give a detailed proof of Theorem 1 only. For convergent s u m s ^ f e ) 
Theorem 1 follows from Khintchine's Theorem. Hence in §§ 1 to 4, which 
deal with Theorem 1, we assume without explicit mention that \l/(q) is a 
non-negative, monotonically decreasing function with divergent s u m ^ ( g ) . 
^(A) and 12(A) are defined by (2) and (3). The author is much indebted to 
the referee who discovered a mistake in the original draft and made valuable 
suggestions. 

1. On certain intervals. Let co(A), A ̂  1, be a monotonically increasing 
integral-valued function which tends to infinity. We write co(0) = 0 and 
define S' to be the set consisting of 0 and of all integers A > 0 such that 
co(A — 1) < co(A). We define S" to be the set of integers A ^ 0 having 
co (A) < co (A + 1). Finally, S is the set of values of co(A), A ^ 0. 

Next, we define for fixed t > 0 intervals of order t to be the half-open 
intervals 

(uV + vu (u + l)2t + v2], 

where u, Vi, v2 are non-negative integers such that v\ < 2l and vi} v2 are the 
smallest non-negative integers satisfying u2l + V\ Ç S, (u + 1)2* + v2 (z S. 
(It is possible, of course, that for given u, t there exists no such Vi.) The 
intervals of order t cover the positive axis exactly once. 

LEMMA 1. Every interval (0, x], x G S, can be expressed as union of intervals 
\JIi of the type described above, where no two of the intervals It are of the same 
order. 

Proof. Write x in the binary scale, 
w 

x = E tp 
2=0 

where tt equals 0 or 1, but tw = 1. There exists an interval (0, ji] of order w 
with ji ^ x. If ji = x, then we are through. If not, and if 

h = f t?2\ 
i=0 
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then tm
V2) = tw = 1 and there exists a largest integer W<L having 

Hence there exists an interval (ji, J2] of order w2, j 2 ^ x. If j 2 = x, then 
(0, x] = (0,ji] U 0*1,72]. Otherwise, if 

w 

I — V / ( 3 )9* / (3 ) — / — 1 / (3 ) — / — 1 
i=0 

then there exists a largest u>3, Wz < w2, having 

We proceed as before. Since Ji < J2 < . . . , we finally arrive at jf — x and 
(0, x] = (0,ji] U . . . yj (jf-ujf]. The orders of the intervals are w > w2 

> . . . > wf > 0. 

2. Sums involving a function 4>(k,q). Let fe, g be positive and write 
<j)(k, q) for the number of integers x, 0 S x < q, so that g.c.d.(x, q) g &. 

LEMMA 2. 

V 

X) </>(&, #)g_1 = u + O^"" 1 + log v log &). 

AT0/e. Here and throughout the paper, the inequality indicated by the 
O-symbol holds for all values of all variables involved. 

Proof. Clearly, 

w <7 \ o / / w\q 

where <j)(x) is the Euler <£-function. Using the well-known relation 

<t>(x) = x X) M(:y):y~\ 

we obtain 

X <t>(k,q)q 
(7=1 

ç = l M'!(? y\qic~l 

mm(k,v) [(v/w)] Uv/yw)] 

t c = l * / = l < /= l 

where [a] is the integral part of a. Thus 
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q=l 

mm(k,v) [(v/w)] 

= v J2 w~2 E ^(y)y~2 + O(\ogv log k) 
w=l y—l 

minCfc, v) / miaOc, v) \ 

= v X) Î O " * ^ ) - 1 + 0( J2 w-1) +O(logv\ogk) 
w—1 \ w=l / 

= v + 0(vk~ + log z; log fe). 

LEMMA 3. 

Ê ^(g)^>(k,q)q-1 = *(v) + O&fàk-1 + 12(») log*). 
( 7 = 1 

P^6>/. Put n(jfe,0) = 0 and 

n(*,r) = Z «(Mte"1 

( 7 - 1 

for r ^ 1. Lemma 2 yields 

(7) n(jfe, r) = r + OO*"1 + log r log jfe). 

Using partial summation we obtain 

X) Tp{q)4>{k,q)q~l 

«=1 

= Z ^ ( 2 ) ( n ( * , g ) - n ( * , g - l ) ) 

(8) 

= Z 

u(k,q)(Hq) - *(<z + i)) + n (*,»)*(») 

<z(iKa) - <K<z + i)) + »*(») + *(*, «0 

where, according to (7), 

R{k,v) 

( 9 ) = 0 ( £ (ff*_1 + logglog*)(^(g) - *(g + 1)J 

+ 0(yk~~ + log z> log k)\p(v) 

= o ( * W F ' + log* g *(«z) dog g - log (g - 1)) + log * * ( ! ) ) . 
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Now 

(10) 

E * ( 2 ) ( l o g 2 - l o g ( 2 - l ) ) 
5=2 

= o(±Hq)iog(i + ^ ) ) 

= o(a(»)). 
Lemma 3 is a consequence of (8), (9), and (10). 

3. Bounds for certain integrals. We introduce the following functions 
and integrals. 

W'0>- \ 0 otherwise, 

7(2,») = Z P(a,çP-P), 
V 

T O , 2 - 0 ) = E 0 ( 2 . 2 * - / » ) , 
V 

g.c.d. (p,q)^k 

Hq) = f T(<Z,0)<», 

J(*;a) = f y(k,q,o)do, 

/(fc; 2 l f) = j 7(fc, fff 0)7 (£, r, 0)d0, 

We observe 

and put 

0=1 

N(k;u,v;6) = X) y(k,q,0). 
q=u+l 

LEMMA 4. 

(11) 1(g) = 4,(q); I(k; q) = *{q)<t>{k, q)q^ 

(12) I(É; g, r) S H<ÙHr) +A(k;qy r)^{q)q~\ 

where A(k\q, r) is the number of solutions p, s of 
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(13) qs-rp = 0 0 ^p <q 

having 
g.c.d.O, q) ^ &, g.c.d.(s, r) ^ k. 

Proof. I(q) = y//(q) is rather trivial, while the second half of (11) follows 
from 

J ( M ) = E f P(q,0q-p)d6 
g. c.d. (p.î)^A; 

= *(&, 2)ff-1 J _ j8(ff, »)d9. 

As for I(k; q, r), we have 

I(k; q,r) = F I /S(2, fig - p)p(r, Or - s)d6. 
p,g.c.ù.(p,q)^ik*Jo 
s,g.c.d. (s, r)^k 

We split this sum into two parts, 

I(k;q,r) = h(k; q, r) + Ii(k;q,r), 

where Jo consists of the terms with qs — rp ^ 0. 

(14) h(k;q,r) ^ Y, ( P(q,6q - p)p(r, 6r -
P,s, «'O 

s)dd 
qs—rp^O 

p,s "-(via) \ (Z / p , s « ' —(p/ff) 
qs—rp^O 

To find an estimate for this sum, write g = g'd, r = r'<i, qs — rp = hd, where 
d = *g.c.d.(g, r).|.For given A, £ is determined modulo qf. Hence 

Io(k\q,r) 

SdT, rP(q,qe')(l(r9rO'-^dO' 

h^o J-oo \ q/ 

- d J I ^q' qe'^\r'r6' ~~ U(f) dd'dx 

= ^(q)^(f). 

In changing from the summation over h to the continuous parameter X we 
used the fact that the function 

P(q,qo')P(r,re' - \dq'l)der 

is monotonically decreasing in X when X â 0, and monotonically increasing 
when X ^ 0. 
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To prove Lemma 4 it remains to give an upper bound for I\(k\ q, r). In 
analogy to (14), we find 

h{k;q,r)= E (l(q, qd')l3(r, rd'W 
s,g. c d . (.9, r)Sk 

qs—rp=0 

SA(k;q,r)t(q)q-\ 

LEMMA 5. 

J N(v,6)dd = *{v) 
Jo 

N(k;u,v;d)dd = £ xP{q)cj>(k, q)q~1 

0 q=u+l 

/^ l v 

N\k;u,v;8)d6 è*\u,v) + 2 £ 4>(q)dk{q), 

where dk(q) is the number of divisors of q not exceeding k. 

Proof. The first two assertions follow from (11). As an immediate conse
quence of (12) we have 

\ N\k;u,v;d)dd ^ tf(u,v) + 2 £ A(k\q,r)^{q)q~\ 
Jo u<r^q^v 

Now 

r = l 

is equal to the number of solutions r, p, s of 

qs - rp = 0, 0 ^ £ < g, l S r ^ q 

g.c.d.(p, g) g fe, g.c.d.(s, r) g &. 

Define a, b by 

- = - = - , g.c.d. (a, 6) = 1. 

Then ô/g and g.c.d. (p, q) ^ k implies qb~l ^ k. Thus the number of possible 
choices for b is dk(q). Furthermore, there are <j>(b) ^ b possibilities for a and 
qb~l possibilities for r, once b is given. Hence 

and 

u<T^q^v q=u-\-\ 
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4. Proof of Theorem 1 (n = 1). Write œ(h) = [V(h)Q(h)] and define 
5, 5', S" as in § 1. Let Ls be the set of all pairs (u,v),u £ S', v £ 5', so that 
(co(w), w(z/)] is an interval of any order / with respect to co (see § 1), and 
a)(v) ^ 2s. From now on, the numbers &, 5 are always connected by the 
relation 

(15) k = 2s. 

From here on, we make heavy use of the methods developed in (2). Write 
h* = h*(s) for the largest integer h* having œ(h*) S 2s. 

LEMMA 6. 

(16) 0 ^ f (N(h*, d) - N(k\ 0, h*\ S))dd = 0{s 2S/2) 
Jo 

(17) Z f (N(k\ u, v\ 6) - ¥(«, v))*dd = 0(s2 25). 
(u,v)eLs Jo 

Proof. The first two equations of Lemma 5 give 

f (N(h*,6) - N(k;0, h*, 6))d6 
Jo 

= ¥(&*)- E Hq)<t>(k,q)q-1 

= o ^ ^ f e ^ + nCA îogfe 
according to Lemma 3. Since 

12 (A*) = 0(2**), 

(16) follows. 
Using Lemma 5 again we see that a single integral in (17) does not exceed 

2 T, t(q)dk(q)+2*{u,v)(-*(u,v) - £ *(«)*(*, S)a_1). 
0=t t+1 Ç=W-(- l 

We first take the sum over those pairs (u, v) £ £ s where (co(w), co(z>)] is an 
interval of fixed order /. Since intervals of order t cover the positive axis 
exactly once, we obtain the upper bound 

2 Z iKgKte) + 2*(**)(*(**) - è Mtiifacuq-1)-

We observe 
Z J * A; 

X) *(<zK(<z) ^ 2s D r 1 = 0(2S log *) 
ff=l t=l 

and using Lemma 3 we find the upper bound 

0(2* log k) + O ^ f t * ) * - 1 + ¥(A*)Q(A*) log Jfe) - 0(s2s). 

Summing over t and observing t S s we obtain (17). 
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LEMMA 7. There is a sequence of subsets o-i, C2, . . . of the unit-interval with 
measures 

n, = ( d0 = Ois'1'') 

such that 

N(h,6) = ¥(ft) + 0(2"V+«) 

/or a?ry A m/A co(A) ^ 2s, h 6 5 ' , awd a?ry 6 in 0 ^ 6 < 1, but not in <rs. 

Proof. We define crs to be the set of all 0 in 0 rg 0 < 1, for which not both 
of the following two inequalities hold: 

(18) 0 S N(h*, 0) - N(k; 0, A*; 0) Û s2+e 2** 

(19) X (N(k;u,v;6) - *(u,v))2 £ 53+c 2s. 
(w,»)el/s 

As a consequence of Lemma 6, 

Ms = 0{s~1-'). 

\ih S h*, h Ç 5', then the interval (0, 03(h)] is the union of at most 5 intervals 
(œ(u), 03(v)], where (u,v) € Ls. 

N(k;0,h;d) - *(A) = X) (iV(&; ^ ; 0) - *(w, z;)), 

where the sum is over at most s pairs (u, v) Ç Ls. This fact, together with 
(19) and Cauchy's inequality yields for 0 g 0 < 1, d(£as, 

(iV(&;0, A;0) - *(A))2 g s4+É2s. 

The last equation together with (18) gives Lemma 7. 

Proof of Theorem 1 (n = 1). Since ^ s - 1 - 6 is convergent, there exists for 
almost all 0, 0 g 0 < 1, an s0 = So(0) such that 0 $ o-s for s è so. Assume 0 
has such an so(0) and assume h to be so large that 03(h) ^ 2S°. Choose s so 
t h a t 2 s " 1 ^ 03(h) < 2s. 

Suppose h G 5' . Then we have with Lemma 7 

N(h,d) = *(h) + 0(2*V+«) 
= *(&) + 0(**(&)n*(&) iog2+€*(A)). 

Hence Theorem 1 holds for h Ç Sf. By the same argument we can prove 
the Theorem for h Ç S". 

To any h there exist A', h" with A' G S\ h" G S" and 

co(A') = « ( * ) = co(A"). 

j*(A)0(A) - ¥(ft')Q(A')l ^ 1. 

Then 

|*(A) - *(A')| ^ 12(A)"1 g fi(l)"1 = ^ ( l ) - 1 , 
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and similarly for ^(h"). Since 

N(h',6) S N(h,0) S W , 0 ) , 

the case n = 1 of Theorem 1 follows. 

5. The case w ^ 2 , Using 

v - t, *"(*, q)q-n 

( 7 = 1 

= Z (a* - *"(*, <z))<P 
<z=i 

=É » É (2 - *(*, <Z))<ZK"V 
< ? = 1 

we easily generalize Lemmas 2, 3 to 

E 0»(fc, <?)<?"* = v + O ^ " 1 + log k log »), 
c=i 

£ (̂g)4>w(&, <z)<T* = ¥(») + O^d;)*"1 + Q(») log k). 
q=l 

In analogy to /3(q, 6) of § 3 we define /3(g, 0i, . . . , 0W) to be the characteristic 
function of the rectangle 

0 ^Bt<Mq) (« = 1 ») 

and put 

y(q, 0i, . . . , 0„) = X) P(Q> Zei - pu • • . , qOn - pn) 
v i , . . . 

y(k; q, 0i, . . . , 6n) = X) 0(2, Çfl\ - Pu . • • , g0n - £n). 
t'=l w 

7(g), I(k,q), I(k;q,r) are now ^-dimensional integrals. To find an upper 
bound for 

I(k',q,r) = S I I /3(ff,g^i - £ i , . . . , ) 
Pt .g .c .d . (/>,-,c)^fc «JO t / o 

00 , r0i - 5i, . . . , ) ^ i . . .d0„, 

« t- .g .c .d.(5t ,r) = X; 
z ' = l n 

we split this sum into n + 1 parts, 

I(k;qfr) = I0 + . . . + In, 

where /?• consists of the terms with exactly j indices iif . . . , i3 having 
qsi — rpi = 0. We find 
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h(k;q,r) S *(g)*(r) 
and 

Ij(k; q, r) ^ c<j)A*(k; q, r)^(q)q~j 

^ c^A(k;qyr)iP(q)q-\ 

There are no other modifications of any depth. 

6. On the proof of Theorem 2. For simplicity assume n = 1. We put 

1, if 0 S 8 < iKC) 
m e ) ~ (0 otherwise 

and define y(Q, 6), I(Q) in an obvious way. Further 

I(Q,R) = ( y(Q,d)y{R,e)de, 
Jo 

We observe 

and put 

N(v,8) = £ y(Q,0) 

N(u,v,e) = £ 7«2. 

We do not need the parameter k now, which was essential in Theorem 1. 
Lemma 4 now reads 

LEMMA 4a. 

(20) I(Q) = *(0) 

(21) / ( & * ) =HQ)HR), 

if Q, R are linearly independent {there exists no p having Q — pR). 

(22) I(Q,R) ^ HQ)HR) + c A{qun)t{Q)ql\ 

if Q, R are linearly dependent. Here gi, ri are the first co-ordinates of Q, R and 
A(qi, ri) is the number of solutions p, s of 

qis — rip = 0 0 ^ p < q. 

(20) and (21) are proved like (11), while the proof of (22) is like the one given 
for (12). Lemma 5 becomes 

LEMMA 5a. 

\ N(u,v,8)d6 = X \K(?) = *(u,v) 
Jo u<Qûv 

I N\u, v, 6)dd ^ *\u, v) + c X) t(Q)d(Q). 
Jo u<0<v 
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All the other changes in the proof are obvious, except perhaps the definition of 
03(h) y namely œ(h) = [xWL 

REFERENCES 

1. J. W. S. Cassels, Some metrical theorems in diophantine approximation I, Proc. Camb. Phil. 
Soc, 46 (1950), 209-218. 

2. Some metrical theorems in diophantine approximation III, Proc. Camb. Phil. Soc, 
46 (1950), 219-225. 

3. An introduction to diophantine approximation, Cambridge Tracts, 45 (1957). 
4. A. Khintchine, Zur metrischen Théorie der diophantischen Approximationen, Math. Z., 24 

(1926), 706-714. 
5. W. Schmidt, A metrical theorem in geometry ojnumbers, Trans. Amer. Math. Soc, 00 (1960), 

000-000. 

Montana State University 

https://doi.org/10.4153/CJM-1960-056-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1960-056-0

