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that the class Rat(G) of all rational subsets of G is a Boolean algebra. Then, G is
virtually abelian. Every soluble biautomatic group is virtually abelian.
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1. Introduction. The topic of this paper is two important concepts: rational sets
and biautomatic structure. We study finitely generated soluble groups G such that the
class Rat(G) of all rational subsets of G is a Boolean algebra. We conjecture that every
such group is virtually abelian. Note that every finitely generated virtually abelian
group satisfies to this property. We confirm this conjecture in the case where G is a
polycyclic, metabelian or soluble group of type FP∞. This conjecture remains open in
a general case. It appeared that the notion FP∞ helps to prove by the way that every
soluble biautomatic group is virtually abelian. Thus, we give answer to known question
posed in [1].

We provide full proofs of four theorems attributed to Bazhenova, a former student
of the author, stating that some natural assumptions imply that a soluble group is
virtually abelian. The original proofs were given by her in collaboration with the
author more than 14 years ago and had never been published. Now we fill this gap by
presenting improved versions of these proofs.

Recall that a Boolean algebra is a set B together with operations ¬ : B → B,∧ :
B × B → B, and ∨ : B × B → B, and special elements 0 ∈ B and 1 ∈ B, which satisfies
the following properties for all a, b, c ∈ B : 1) a ∧ 1 = a ∨ 0 = a, 2) a ∧ ¬a = 0, a ∨
¬a = 1, 3) a ∧ a = a ∨ a = a, 4) ¬(a ∧ b) = ¬a ∨ ¬b,¬(a ∨ b) = ¬a ∧ ¬b, 5) a ∧ b =
b ∧ a, a ∨ b = b ∨ a, 6) (a ∧ b) ∧ c = a ∧ (b ∧ c), (a ∨ b) ∨ c = a ∨ (b ∨ c), 7) a ∧ (b ∨
c) = (a ∧ b) ∨ (a ∧ c), a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

Let C ⊆ B be a subset of Boolean algebra B containing 0 and 1 and closed under
the Boolean operations. Then, C is a Boolean algebra, and we say C is a subalgebra of
B.

Let X be any set and B = P(X) be the set of all subsets of X . Then, B is a Boolean
algebra with ∧ = ∩,∨ = ∪, 0 = ∅, 1 = X, and ¬A = X \ A.

Given a monoid M, a rational set is an element of the minimal class Rat(M) of
subsets of this monoid that contains all singleton subsets and is closed under union,
product and Kleeny star operations. When M is finitely generated monoid, the class

https://doi.org/10.1017/S0017089516000677 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000677


210 V. ROMAN’KOV

Rat(M) under these operations is a Boolean algebra with 1 = M and 0 = ∅ if and only
if Rat(M) is closed under intersection.

Rational sets are useful in automata theory, formal languages and algebra. An
excellent introduction to rational sets is [4], where the reader can find out basic
definitions and fundamental results in this area.

Much of the basic theory of automatic and biautomatic groups is presented by
Epstein et al. in [1]. One of the major open questions in group theory is whether or not
an automatic group is necessarily biautomatic. The answer is not known even in the
class of soluble groups. Note that some known results about biautomatic groups remain
open questions for automatic groups. Gersten and Short initiated in [3] the study of the
subgroup structure of biautomatic groups. Among other results they established that
a polycyclic subgroup of a biautomatic group is virtually abelian. Also they proved
that if a linear group is biautomatic, then every soluble subgroup is (finitely generated)
virtually abelian.

2. Preliminaries. Given an alphabet �, certain subsets of the free semigroup �∗

on � are called regular languages. A recursive definition can be used to identify these.
The empty subset and the singleton sets are considered to be regular languages. Given
two regular languages A and B, their union A ∪ B and their concatenation A · B are
deemed to be regular languages. Also, if A is a regular language, then so is the monoid
generated by A: This is denoted by A∗ and is called the Kleene star of A. Denote by R
= Rat(�∗) is the set of regular languages of �∗.

The construction of a set like R is still possible when �∗ is changed by any monoid
M. Let S be the set of all singleton subsets of M. Consider the closure Rat(M) of S
under the rational operations of union, product, and the formation of a submonoid of
M. In other words, Rat(M) is the smallest subset of M such that
� ∅ ∈ Rat(M),
� A, B ∈ Rat(M) imply A ∪ B ∈ Rat(M),
� A, B ∈ Rat(M) imply AB ∈ Rat(M), where AB = {ab|a ∈ A, b ∈ B},
� A ∈ Rat(M) implies A∗ ∈ Rat(M), where A∗ is the submonoid of M generated by

A.

A rational set of M is an element of Rat(M).
If �∗ is a finite generated free monoid, then a rational set of �∗ is also called

regular language.
The rational sets of a monoid M are precisely the subsets accepted by finite

automata over M. A finite automaton � over M is a finite directed graph with
a distinguished initial vertex, some distinguished terminal vertices, and with edges
labelled by elements from M. The set accepted by � is the collection of labels of paths
from the initial vertex to a terminal vertex, where label μ(p) of a path p is the product
of labels of sequential edges in p

Recall two auxiliary assertions.

LEMMA 2.1 (The Pumping Lemma (see [4])). Let M be a monoid, R ∈ Rat(M).
Then, either R is finite, or it contains a set of the form aq∗b = {aqnb|n ≥ 0}, a, q, b ∈
M, q �= 1. Moreover, if M is a group, then the subset aq∗b of M can be written in the
form abb−1q∗b = ab(b−1qb)∗. So we might assume b = 1.

LEMMA 2.2 ([2]). Let G be a group, H ≤ G be a subgroup. If R ⊆ H is rational
subset of G, then R is a rational subset of H.
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As we have 2.2, we do not have to care if a set is rational as a subset of a larger
group or of a smaller one. Note that with monoids that are not groups the situation
may be different.

LEMMA 2.3 (see [4]). Let G be a group and H ≤ G. Then, H ∈ Rat(G) if and only if
H is finitely generated. If R ∈ Rat(G), then, gp(R) ∈ Rat(G), and so finitely generated.

LEMMA 2.4 (see [2]). Let G be a group, T � G, and ϕ : G → G/T is the standard
homomorphism. Then, for every R ∈ Rat(G), we have ϕ(R) ∈ Rat(G/T). If T is finitely
generated, then for every S ∈ Rat(G/T), we have ϕ−1(S) ∈ Rat(G).

3. Polycyclic groups. The goal of this section is to prove the following theorem.

THEOREM 3.1. Let G be a polycyclic group. If Rat(G) is a Boolean algebra, then G is
virtually abelian.

Proof. Let us first consider a special case that is the ‘core’ of the problem, in the
sense concentrates all the difficult points of it. So, let a group G be a semidirect product
AλH, where A � �r is a normal free abelian of rank r subgroup of G, H = gp(h) is a
cyclic subgroup of G. Suppose that Rat(G) is a Boolean algebra. We are to prove that
G is virtually abelian.

We may assume h to have infinite order. First prove that some nontrivial element
g ∈ A and some exponent hm, m > 0, commute. Take an arbitrary nontrivial element
x ∈ A. Consider the set

R = {h−nxhn|n ∈ �}.
If R is finite, then we have h−nxhn = h−txht for some n > t, which implies [x, hn−t] =

1; hence, we get what we need. Now assume that R is infinite. Note that R is rational,
because it is equal to intersection (h−1)∗xh∗ ∩ A of two rational subsets of G and
Rat(G) is closed under intersection by our assumption that it is Boolean algebra.
Then, by Lemma 2.1, R contains a subset P = aq∗, a, q ∈ A, q �= 1. Let I be the set
of indices such that P = {h−ixhi|i ∈ I}. Then, S = {hi|i ∈ I} = h∗ ∩ (x−1h∗P) is the
infinite rational set. So it contains a subset T = hk(hl)∗, k, l ∈ �, l > 0. The set Q =
{f −1xf |f ∈ T} = (T−1xT) ∩ A is rational and subset of P. We can assume that k = 0. In
other case, we change R, P, a and q to h−kRhk, h−kPhk, h−kahk and h−kqhk, respectively.
Now T = (hl)∗.

Since A is isomorphic to the free abelian group of rank r, we may regard it as
a lattice of �r. Let | · | be any standard norm on �r. Since now we will use additive
notation for the operation on A as well as multiplicative one.

Take an arbitrary real ε > 0. Pick a positive integer m such that aqm (or, in additive
notation, a + mq ) belongs to Q and the inequality

1/m|(h−lahl) − a| < ε

holds. This is possible, because Q is infinite. Since aqm ∈ Q, the element h−l(aqm)hl is
in Q, so it can be written in the form aqp, p ∈ �, p ≥ 0. Then,

h−lahl + m(h−lqhl) = a + pq,

m(h−lqhl) − pq = a − h−lahl,

|h−lqhl − (p/m)q| = (1/m)|a − h−lahl| < ε.
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It follows that h−lqhl is a limit of elements of the form sq, s ∈ �, s ≥ 0, so it has
this form too. Clearly, s is nonzero and rational, because sq ∈ �r \ {0}. Let u be the
greatest positive integer with the property: q has the form sq′, q′ ∈ A. Then, v = su is
the greatest positive integer with the property: sq has the form vq′, q′ ∈ A. Since there
exists an automorphism of A which takes q to sq, we get u = sm, so s = 1. Then, we
have h−lqhl = q, so we get what we need.

Let us finish the proof. Let f ∈ A, f �= 1. Let g, hu (g �= 1, g ∈ A, u > 0) commute.
If r, s are nonzero integers such that gr = f s, then (h−uf hu)rs = (h−uf shu)r = gr2 = f rs.

As A is abelian and torsion-free, h−uf hu = f, so f and hu commute.
Now suppose that gr = f s cannot hold unless r = s = 0, or, equivalently, grf s =

gnf l cannot hold unless r = n, s = l. Let w = hu. Consider the set

R = (wg)∗f ∗ ∩ w∗(gf )∗ = {wngnf n|n ≥ 0}.
Let

S = R(g∗ ∪ (g−1)∗) ∩ w∗f ∗ =

{wnf n|n ≥ 0}.
Take a subset aq∗ ⊆ S, q �= 1. Let a = wnf n, aq = wmf m, n �= m. Then,

aq2 = (aq)a−1(aq) = w2m−n(wn−mf m−nwm−n)f m

also has the form wtf t, t ≥ 0. Then, t = 2m − n. Hence,

f 2m−n = f m(wn−mf m−nwm−n),

so

f m−n = wn−mf m−nwm−n,

then,

f = wn−mf wm−n.

Then, f and hm−n commute.
We proved that for each f ∈ A there exists t ∈ �, t > 0 such that f and ht commute.

Let f1, . . . , fr be free generators for A. Pick some nonzero t1, . . . , tr such that for each
i the elements fi and hti commute. Let N = t1 . . . tr. Then, hN and every fi commute.
Hence, the group M generated by A and hN is abelian. Clearly, M has finite index in
G. Thus, G is virtually abelian.

Now we are ready to prove the theorem by using induction on solubility length.
If G is abelian, the statement is trivial. Let G be nonabelian. The derived subgroup
G′ has smaller solubility length, and, as it is finitely generated, its rational subsets are
a Boolean algebra. Then, G′ is virtually abelian. Let G = gp(G′, g1, . . . , gj). Consider
the series of subgroups G′ = G0 ≤ G1 ≤ Gj = G, where Gi+1 = gp(Gi, gi+1) for i =
0, . . . , j − 1. Clearly, all Gi are normal in G. Prove by induction on i that all Gi are
virtually abelian. Suppose that Hi is a finite index normal abelian subgroup of Gi.

We have proved above that gp(Hi, gi+1) is virtually abelian. Hence, Hi+1 is virtually
abelian. �
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4. Metabelian groups. Recall that a group G is said to have the Howson property
(or to be a Howson group) if the intersection H ∩ K of any two finitely generated
subgroups H, K of G is finitely generated subgroup. Let G be a group in which Rat(G) is
a Boolean algebra. Then, G has the Howson property. Indeed, a subgroup of arbitrary
group is a rational set if and only if it is finitely generated. By our assumption the
intersection H ∩ K is a rational set. Hence, H ∩ K is finitely generated subgroup.

All finitely generated metabelian nonpolycyclic Howson groups are characterized
as follows.

THEOREM 4.1 (Kirkinskij [6]). Let G be a finitely generated metabelian
nonpolycyclic group. Then, the following properties are equivalent:

(1) G has the Howson property,
(2) the finitely generated nonpolycyclic subgroups of G have finite indexes,
(3) G has a subgroup H of finite index containing a normal finite subgroup T such

that H/T � gp(x, a|[a, axi
] = 1, i ∈ �, af (x) = 1) with f (x) being irreducible over �

polynomial with integral coefficients such that degf (x) ≥ 1 and for every n ∈ �, this
polynomial does not divide any polynomial in xn of degree degf (x) − 1. If f (x) =
q0xm + q1xm−1 + · · · + qm, then af (x) means (axm

)q0 (axm−1
)q1 . . . aqm .

THEOREM 4.2. Let G be a finitely generated metabelian group such that Rat(G) is a
Boolean algebra. Then, G is virtually abelian group.

Proof. If G is polycyclic, the statement follows by Theorem 3.1. Suppose G is not
polycyclic. Then, by Theorem 4.1, G has a series 1 ≤ T � H ≤ G. Since H is finitely
generated, Rat(H) is a Boolean algebra. Since T is finite, by Lemma 2.4 Rat(H/T) is
a Boolean algebra.

Let Theorem 4.1 H/T � gp(x, a|[a, axi
] = 1, i ∈ �, af (x) = 1), f (x) = q0xm +

q1xm−1 + · · · + qm. Note that every element g ∈ H/T can be expressed as g = xka
r(x)
xl ,

where k, l ∈ �, l ≥ 0, and r(x) is a polynomial with integer coefficients. One has g = 1
if and only if k = 0, and r(x) divides into f (x) in the polynomial ring �[x].

Fix some numbers p, d ∈ �, p, d > 0. Define the following rational sets in H/T :

R1 = ((adxp)−1)∗({ad , ad+1}xp)∗,

R2 = (x−p)∗({1, a}xp)∗,

R3 = ((adx−p)−1)∗({ad , ad+1}x−p)∗,

R4 = (xp)∗({1, a}x−p)∗.

By our assumption, all intersections Ri ∩ Rj for i, j = 1, . . . , 4, are rational.
Any element of R1 can be written in the form

(adxp)−l+k(aε1 )xkp
(aε2 )x(k−1)p

. . . (aεk )xp
,

where l, k ∈ �, l, k ≥ 0, and εi = 0 or εi = 1.
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Any element of R2 can be written in the form

x(−l+k)p(aε1 )xkp
(aε2 )x(k−1)p

. . . (aεk )xp
,

l, k ∈ �, l, k ≥ 0, εi = 0 or εi = 1.

Any element of R3 can be written in the form

(adx−p)−l+k(aεk )x−p
(aεk−1 )x−2p

. . . (aε1 )x−kp
,

l, k ∈ �, l, k ≥ 0, where εi = 0 or εi = 1.

Any element of R4 can be written in the form

x(l−k)p(aεk )x−p
(aεk−1 )x−2p

. . . (aε1 )x−kp
,

l, k ∈ �, l, k ≥ 0, εi = 0 or εi = 1. Also note that for n > 0 we have

(adxp)n = xnp(ad )xnp
. . . (ad )xp

,

(adxp)−n = x−np(a−d )x−(n−1)p
. . . (a−d )x−p

a−d ,

(adx−p)n = x−np(ad )x−np
. . . (ad )x−p

,

and

(adx−p)−n = xnp(a−d )x(n−1)p
. . . (a−d )xp

a−d .

The sets R1 and R2 contain the elements

axkp = ((adxp)−1)k · (ad+1xp)(adxp)k−1 =

(x−p)k · (axp)(xp)k−1, k = 1, 2, . . . .

Similarly, the sets R3 and R4 contain the elements ax−kp
, k = 1, 2, . . . .

Let N = ncl(a) be the normal closure of the element a in H/T (that is the minimal
normal subgroup of N/T, containing a). If the sets S1 = R1 ∩ R2 and S2 = R3 ∩ R4

lie in N, then the subgroup M generated by S1 ∪ S2 ∪ {a} is the normal closure of a
in the subgroup generated by a and xp. By Lemma 2.3 every subgroup generated by
a rational set is rational and finitely generated. Since N is generated by a finite set of
subgroups that are conjugate to M, it is finitely generated too. In the case, H/T and
G are polycyclic. We get contradiction to our assumption. Hence, at least one of the
subsets Si, i = 1, 2, does not lie in N. Then, one of the following equalities is true:

(aεn )xnp
. . . (aεk+1 )x(k+1)p

(ad+εk )xkp
,

(ad+εk−1 )x(k−1)p
. . . (ad+ε1 )xp = 1, (1)

(aεn )xnp
. . . (aε1 )xp

(a−d )(a−d )x−p
. . . (a−d )x−1p = 1, (2)

(ad+ε1 )x−p
. . . (ad+εk )x−kp

(aεk+1 )x−(k+1)p
. . . (aεn )x−np = 1, (3)

(a−d )xlp
. . . (a−d )xp

(a−d )(aε1 )x−p
(aεk )x−kp = 1, (4)
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l, k, n ∈ �, l ≥ 0, n ≥ k > 0, εi ∈ {−1, 0, 1}. If the absolute value μ of one of the
coefficients q0, qm in f (x) is greater than 3, we may assume that chosen number d
is such that d − 1, d and d + 1 do not divide to μ. It follows that all equalities (1)–
(4) failed. Furthermore, both of the coefficients q0, qm cannot be ±1, because in the
case H/T is polycyclic. Thus, q0 or qm is equal to 2 or 3. We set d = 22 · 32 + 2 = 38.

Then, d − 1, d, and d + 1 do not divide to μ2. We can assume that p > m + 1. Then,
each of the equalities (1)–(4) implies that all the coefficients of f (x) divide to μ, and
|q0| = |qm| = μ. Then, the normal closure K = ncl(aμ) � H/T is finitely generated.
By Lemma 2.4, Rat((H/T)/K) is a Boolean algebra. The quotient (H/T)/K is a
homomorphic image of the wreath product ZμwrZ, where μ is prime. Hence, either
(H/T)/K or ZμwrZ is polycyclic. In the first case, (H/T)/K satisfies the ascending
chain condition, and since K is finitely generated abelian, H/T satisfies the ascending
chain condition too. Every soluble group with the ascending chain condition is
polycyclic (see for instance [5]). Hence, H/T is polycyclic. The second case is impossible,
because ZμwrZ is not the Howson group (see [6]).

�

5. Solvable groups of type FP∞ with Boolean algebras of rational subsets.
DEFINITION 5.1. A group G is said to be of type FP∞ if and only if there is a projective
resolution

. . . → Pj → . . . → P2 → P1 → P0 → � → 0 (5)

of finite type: that is, in which every Pj is finitely generated.

DEFINITION 5.2. A group G has finite cohomological dimension if and only if there
is a projective resolution

· · · → Pn → · · · → P2 → P1 → P0 → � → 0, (6)

of finite length: that is, in which Pi are zero from some point on.

The following remarkable theorem is a base in our proof of the main result of this
section.

THEOREM 5.3 Kropholler [9], see also [8]). If G is a soluble group of type FP∞ then
vcd(G) < ∞.

Also we need in a standard statement as follows.

LEMMA 5.4. If cd(G) < ∞, then:

(1) G is torsion free,
(2) there is n > 0 such that: if A ≤ G, A � �k, then k ≤ n.

At this section, we will specialize to soluble groups of type FP∞ and establish the
following algorithm.

THEOREM 5.5. If G is a finitely generated soluble group of type (FP)∞ such that
Rat(G) is a Boolean algebra. Then, G is virtually abelian group.

Proof. By Theorem 5.3, there is a subgroup of finite index H ≤ G that has finite
cohomological dimension. The subgroup H is finitely generated and thus rational
in G. Then, Rat(H) is a Boolean algebra. By Lemma 5.4, H is torsion free. Hence,
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every finitely generated abelian subgroup of H is a free abelian of bounded rank. By
Kargapolov’s theorem (see [5] or [10]), H has finite rank, i.e., there is a finite number r
such that every finitely generated subgroup of H can be generated by r elements and r
is least such integer (Prüfer or Mal’cev rank).

Thus, H is a soluble torsion-free group of finite rank. By the Robinson-Zaǐcev
theorem (see [10]), every finitely generated soluble group with finite rank is a minimax
group. It means there is a subnormal series

1 = K0 ≤ K1 ≤ · · · ≤ Kn = K, (7)

in which every quotient Ki+1/Ki satisfies to the ascending or descending condition.
Also we know (see [10]) that every soluble torsion-free minimax group is nilpotent-by-
(virtually abelian).

Let N be a nilpotent normal subgroup of H such that H/N is virtually abelian.
We will prove that N should be abelian. Let 1 ≤ ζ1(N) ≤ ζ2(N) ≤ · · · ≤ ζj(N) = N
be the upper central series of N. If u ∈ N, y ∈ ζ2(N) \ ζ1(N) do not commute, then
[u, y] ∈ ζ1(H) has an infinite order. We know that the quotient of torsion-free nilpotent
group by the center is torsion-free (see [5]). Then, the subgroup gp(g, y) is isomorphic
to the free nilpotent of rank 2 and class 2 group (UT3(�) or the Heizenbergh group).
But UT3(�) is obviously non-virtually abelian; hence, Rat(UT3(�)) is not Boolean
algebra by [2]. It follows that ζ2(N) = ζ1(N); thus N is abelian. Then, H is extension of
the abelian normal subgroup N with virtually abelian group H/N. Then, by Theorem
4.2, G is virtually abelian.

�

6. Solvable biautomatic groups. The class of automatic groups is one of the
main classes studied by geometric group theory. Different properties of automatic
and biautomatic groups are described in the classical monography [1]. See also [3]. We
give the main definitions.

Let (A, λ, L) be a rational structure for G. Recall that A is a finite alphabet, λ is a
homomorphism of the free monoid A∗ onto G, L is a regular language in A∗ such that
λ(L) = G. The set A is a generating set for G, considered as a monoid. We assume that
A is symmetric: That is, A contains with each of its element a its formal inverse a−1. We
assume that homomorphisms of A∗ to groups map formally inverse elements to inverse
images. The set L is considered as the set of normal forms of expressions of elements of
G. We add to A a new symbol $. Consider alphabet A2$, consisting of the pairs (b, c),
where b, c ∈ A ∪ $. Take the corresponding free monoid (A2$)∗. The homomorphism
λ is naturally extended to the homomorphism of the free monoid (A2$)∗ to G2. One
has λ($) = 1.

A rational structure (A, λ, L) called automatic for G under the following conditions
is satisfied:

{(u, v) ∈ L2$ : λ(u) = λ(v)}, (8)

and for every a ∈ A the language

{(u, v) ∈ L2$ : λ(u) = λ(va)} (9)

is regular in A2$.
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DEFINITION 6.1. A group G is said to be automatic if G has an automatic structure
(A, λ, L).

An automatic structure is said to be biautomatic, if for every a ∈ A the language

{(u, v) ∈ L2$ : λ(u) = λ(av)} (10)

is regular in A2$.

DEFINITION 6.2. A group G is said to be biautomatic if G has a biautomatic structure
(A, λ, L).

In [1], a question is formulated: Is every biautomatic group virtually abelian? We
give a positive answer to this question by the following theorem. This result has been
obtained by Bazhenova, Noskov, Remeslennikov and the author using the information
received from Kropholler.

THEOREM 6.3 (Bazhenova, Noskov, Remeslennikov, Roman’kov). Let G be a
finitely generated soluble biautomatic group. Then, G is virtually abelian.

Proof. By [1], Theorem 10.2.6, every soluble biautomatic group has type FP∞.

Hence, by Theorem 5.3, G has a subgroup of finite index H with cd(H) < ∞. By
Lemma 5.4, H is torsion free. Moreover, all abelian subgroups of H have bounded
rank. Hence, by Kargapolov’s theorem (see [5] or [10]), H has finite rank. By the
Robinson–Zaǐcev theorem (see [10]), every finitely generated soluble group with a
finite rank is a minimax group. Also we know (see [10]) that every soluble torsion-free
minimax is nilpotent-by-(virtually abelian). Let N be a nilpotent normal subgroup of
H such that H/N is virtually abelian.

We will prove that H is abelian. Let 1 ≤ ζ1(N) ≤ ζ2(N) ≤ · · · be the upper central
series in N. Let u ∈ N, y ∈ ζ2(N) \ ζ1(N) do not commute. Then, [u, y] ∈ ζ1(H) is a
nontrivial element of infinite order. Then, the subgroup gp(g, y) is isomorphic to the
free nilpotent of rank 2 and class 2 group UT3(�). It cannot happen, since UT3(�)
is polycyclic but not virtually abelian. Indeed, by [3], every polycyclic subgroup
of biautomatic group is virtually abelian. Thus, ζ2(H) = ζ1(H), and H = ζ1(H) is
abelian.

The group H is finitely generated and virtually metabelian. Every subgroup of a
finite index in a biautomatic group is biautomatic [3]. Thus, H is biautomatic. Then,
H satisfies to the minimal condition for centralizers (see [11] or [10]). It means: if
S(H) be a class of subgroups of H of type M = CH(X) = {h ∈ H : ∀x ∈ X [h, x] = 1},
where X ⊆ H, then descending sequence M1 ≥ M2 ≥ · · · ≥ Ml . . . of subgroups in
S(H) stabilizes on a finite step. Then, there is a number l such that Ml = Ml+1 = · · · .

By [3], each biautomatic group with this property satisfies to the maximal condition on
abelian subgroups. By Mal’cev’s theorem (see [5]), a soluble group with this condition
is polycyclic. Hence, H is polycyclic. Then, by [3] H is virtually abelian. Hence, G is
virtually abelian. �
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