BULL. AUSTRAL. MATH. SOC.
10A35, 14G20, 30D35, 30G05.
VOL. 29 (1984), 109-117.

p-ADIC METHODS IN THE STUDY OF TAYLOR COEFFICIENTS OF RATIONAL FUNCTIONS*

A. J. van der Poorten

Abstract

I sketch the proof of the so-called Hadamard Quotient Theorem: If the Hadamard quotient of two rational functions is a Taylor series with integer coefficients (more generally: with coefficients in some finitely generated subring of a field) then it is a rational function.

1. Introduction

Let \mathbb{K} be a field of characteristic zero, and r, s polynomials defined over \mathbb{K} with $s(0) \neq 0$. A rational function is a quotient $r(X) / s(X)$ and we have a Taylor expansion

$$
\frac{r(X)}{s(X)}=\sum_{h>0} a_{h} X^{h} .
$$

We lose no generality in setting

$$
s(X)=1-s_{1} X-\cdots-s_{n} X^{n}=\prod_{i=1}^{m}\left(1-\alpha_{i} X\right)^{n(i)}
$$

where the α_{i} are distinct elements of \mathbb{K}. It is then easy to see that

Received 12 September 1983.

* This is a lecture delivered at the Special Meeting of the Australian Mathematical Society "Celebration of the 80th Birthday of Kurt Mahler", Canberra, July 26, 1983.

[^0]we have
$$
a_{h+n}=s_{1} a_{h+n-1}+\ldots+s_{n} a_{h}
$$
so (a_{h}) is a so-called recurrence sequence of order n, and, by expanding in partial fractions,
$$
a_{h}=\sum_{i=1}^{m} A_{i}(h) \alpha_{i}^{h}
$$
for polynomials A_{i} of degree respectively $n_{i}-1$. These assertions hold for integers $h \geq \max (0, \operatorname{deg} r-n+1)$. The various descriptions of $\left(\alpha_{h}\right)$ are equivalent.

2. p-adification

To study the sequence $\left(\alpha_{h}\right)$ it is convenient to have h a continuous parameter. Cassels [2] shows there are infinitely many rational primes p so that the field \mathbb{K} may be embedded in the field Q_{p} of p-adic rationals whilst for each $\alpha=\alpha_{i}$

$$
\alpha^{p-1} \equiv 1(\bmod p)
$$

equivalently:

$$
\operatorname{ord}_{p}\left(\alpha^{p-1}-1\right) \geq 1
$$

Then

$$
\log \alpha^{p-1}=\log \left(1-\left(1-\alpha^{p-1}\right)\right)
$$

is well-defined p-adically, and $\alpha^{t(p-1)}$ is given by the power series

$$
\exp \left(t \log \alpha^{p-1}\right)
$$

which converges for t with ord $t>-1+1 / p-1$. Thus a recurrence sequence $\left(a_{h}\right)$ p-adifies to yield $p-1$ p-adic power series:

$$
a_{p, p^{\prime}}(t)=a(t(p-1)+r)=\sum_{i=1}^{m} A_{i}(t(p-1)+r) \alpha_{i}{ }^{r} \exp \left(t \log \alpha_{i}{ }^{p-1}\right), 0 \leq r<p-1
$$

It is now easy to prove the wonderful Skolem-Mahler-Lech-Mahler Theorem: If $\left\{h: a_{h}=0\right\}$ is infinite then it is a union of finitely many arithmetic progressions (and finitely many isolated points). Indeed if the set is infinite then for some r the p-adic analytic function $a_{p, r}$ vanishes infinitely often on the compact set \mathbb{Z}_{p}. Hence $a_{p, r}$ vanishes identically, so $a(h(p-1)+r)=0$ for h in \mathbb{Z}. We proceed similarly for each remaining $a_{p, r}$. It is interesting to notice that in the situation just described it follows from a theorem of Ritt that

$$
\left.\sin \frac{\pi(z-r)}{p-1} \right\rvert\, \sum A_{i}(z) \exp \left(z \log \alpha_{i}\right)
$$

in the ring of exponential polynomials. Thus the Lech-Mahler theorem implies that an exponential polynomial with infinitely many integer zeros is sinful.

Some technical remarks. It can be shown by means of specialisation (see [5]) that here and in the sequel there is no loss of generality nor any introduced degeneracy in supposing \mathbb{K} to be an algebraic number field of degree d, say, over Q. In that case the embedding into Q_{p} is successful for primes p of a set P satisfying

$$
\prod_{\substack{p \leq x \\ p \in P}} p^{\frac{1}{p-1}} \geq C x^{1 / d} \text { with } C>0
$$

A major benefit of p-adification is obtained from the following fact: If $g(t)=\sum x_{h} t^{h}$ converges for $\operatorname{ord}_{p} t>-s$, say, and $\Delta g(i)=: g(i+1)-g(i)$ then

$$
\lim ^{-1} \text { ord } p^{\Delta k} g(0) \geq s+1 / p-1
$$

Indeed we are given $\lim ^{-1}$ ord $_{p} x^{2} \geq s$. But

$$
\Delta^{k} f(t)=\sum_{h>k} x_{h} \Delta^{k} t^{h} \quad \text { and }\left.\quad \operatorname{ord}_{p} \Delta^{k} t^{h}\right|_{t=0} \approx k / p-1
$$

We use this basic result as follows: it is not terribly difficult to see that $\left(a_{h}\right)$ is a recurrence sequence if and only if its Hankel-Kronecker determinants

$$
K_{h} a:=\left|a_{i+j}\right|_{0 \leq i, j<h}
$$

vanish for all sufficiently large h. But from elementary row and column operations one sees that

$$
K_{h^{a}}=\left|\Delta^{k} a_{-}(p-1)+r\right|_{i+j=k(p-1)+r}
$$

So if $a_{t(p-1)+r}$ is given by p-adic power series converging beyond the p-adic unit disc we can show that $K_{h} a$ is divisible by a high power of p (that is, is of high p-adic order).

3. Hadamard division

If $\sum a_{h} X^{h}, \sum b_{h} X^{h}$ are rational then their 'child's product' $\sum\left(a_{h} b_{h}\right) X^{h}$ is again rational; for $\left(a_{h}\right),\left(b_{h}\right)$ are given by generalised power sums whence so is $\left(c_{h}\right), c_{h}=a_{h} b_{h}$. The product above is frequently spoken of as the hadomard product of the power series. We wish to consider the hadamard quotient of rational functions. Polya [4] showed that if $\sum h a_{h} X^{h}$ is rational, and the a_{h} all are integers (more generally, elements of a finitely generated subring R of \mathbb{I}) then $\sum a_{h} X^{h}$ is rational. Ultimately we have the theorem of polya-Cantor [3] : if f is a polynomial and $\left[f(h) a_{h} X^{h}\right.$ is rational with the a_{h} all in R, then $\sum a_{h} X^{h}$ is rational. The integrality condition is necessary: $\sum(h+1)^{-1} X^{h+1}$ is not rational, but it is the hadamard quotient of $\sum X^{h+1}=X(1-X)^{-1}$ by $\sum(h+1) X^{h+1}=X(1-X)^{-2}$.

We sketch a proof of the:
HADAMARD QUOTIENT THEOREM. Suppose $\sum c_{h} X^{h}, \sum b_{h} X^{h}$ are Taylor expansions of functions rational over \mathbb{K} and that there is a sequence
(a_{h}^{\prime}) of elements of R so that $a_{h}^{\prime} b_{h}=c_{h}, h \geq 0$. Then there is a rational function $\left[a_{h} X^{h}\right.$ with $a_{h} b_{h}=c_{h}, h \geq 0$.
Proof. We p-adify and consider quotients

$$
a(t(p-1)+x)=c(t(p-1)+r) / b(t(p-1)+r)
$$

of p-adic exponential polynomials. If b is of order n then b has at most n zeros in the disc with ord $t>-1 / n$. Hence for each $r: 0 \leq r<p-1$ there is a polynomial $f_{p, r}$ of degree at most n so that $f_{p, r}(t(p-1)+r) a(t(p-1)+r)$ converges for t with ord $p^{t} \geq-1 / n$. The same holds for $f_{p}(t(p-1)+r) a(t(p-1)+r)$ if f_{p} is the lowest common multiple of the $f_{p, r}$; we note that f_{p} has degree at most $n(p-1)$.

Consider

$$
K_{H}\left(f_{p} a\right)=\left|f_{p}(i+j) a(i+j)\right|_{0 \leq i, j<H}
$$

We have shown that

$$
\lim H^{-2} \text { ord }_{p} K_{H}\left(f_{p} a\right) \geq\left(\frac{1}{n}+\frac{1}{p-1}\right) / p-1
$$

so, say with H sufficiently large:

$$
\operatorname{ord}_{p} K_{H}\left(f_{p} a\right)>\frac{H^{2}}{n(p-1)} .
$$

But to obtain this result we use only that

$$
\operatorname{ord}_{p} \Delta^{k} f_{p}(\bar{o}(p-1)+r) a(\bar{o}(p-1)+r) \geq k\left(\frac{1}{n}+\frac{1}{p-1}\right) / p-1
$$

with $k(p-1)+x \leq 2 H$. Thus if we were to have truncated the coefficients of the f_{p} modulo

$$
M(p ; H)=p^{2 H\left(\frac{1}{n}+\frac{1}{p-1}\right) /(p-1)^{2}}
$$

we would obtain the desired inequality for ord ${ }_{p} K_{H}\left(f_{p} a\right)$.

However once coefficients are so truncated the f_{p} become elements of $\mathbb{Z}[X]$ with coefficients not exceeding $M(P ; H)$. By the Chinese Remainder Theorem we may construct a polynomial f in $\mathbb{Z}[X]$ with coefficients not exceeding

$$
M:=M(H)=\prod_{p \in P} M(p ; H)
$$

so that f plays the role of f_{p}, each $p \in P$. The degree of f is at most

$$
\max _{p \in P} n(p-1)
$$

To avoid the somewhat clumsy and naive notion of 'truncation' we can equivalently describe f as being so constructed as to satisfy

$$
\left\|f-f_{p}\right\|_{p} \leq M(p ; H)^{-1}
$$

$p \in P$, thereby transforming our appeal to the Chinese Remainder Theorem to an appeal to the approximation theorem; here $\left\|\|_{p}\right.$ is the valuation of the maximum of the coefficients.

As constructed, the polynomial f has coefficients that are far too large and degree that is uneconomically small. Fortunately the following is plain: if f_{0} be any non-zero polynomial in $\mathbb{Z}[X]$ then the remarks above, to wit that

$$
\operatorname{ord}_{p} K_{h}(f a)>h^{2} / n(p-1), H_{0}<h \leq H, p \in P
$$

remain true with f replaced by $F=f_{0} f$. Accordingly we now appeal to the box-principle to choose f_{0} so as to obtain F with reasonably small coefficients and degree not too large. To see that we may replace f by F we need only recall that each f_{p} might have been replaced by a multiple of itself.

Select f_{0} of degree $N=, c_{1} H^{\frac{\pi}{2}}(\log H)^{-\frac{1}{2}}$. Here and in the immediate sequel $c_{0,}, c_{1}, \ldots$ denote positive constants and H is supposed large with respect to the prevailing parameters n and $p \in P$. Modulo M there are
some M^{N} possibilities to choose f_{0}. We want $F=f_{0} f$ to have coefficients no larger in absolute value than M_{o} / N, modulo M of course. Accordingly our 'boxes' each contain polynomials F with coefficients differing modulo M by no more than M_{o} / N. With c_{o} appropriately large (not depending on H) there are Eewer than M^{N} such boxes. Hence our construction succeeds and we have

$$
\operatorname{ord}_{p} K_{h}(F a)>h^{2} / n(p-1) \quad H_{0}<h \leq H, p \in P
$$

with F of degree $c H^{\frac{1}{2}}(\log H)^{-\frac{1}{2}}$ and with coefficients not exceeding $M^{f_{o}} / N$ in absolute value. A priori H_{0} need only be large enough to validate the p-adic inequalities. It certainly suffices to set $H_{0}=H^{\frac{1}{2}} \log H$.

We now need a suitable archimedean upper bound for the algebraic numbers $K_{h}(F a)$.

Technical remark. The correct measure of the size of a sequence of algebraic numbers is provided by Bombieri [1] p. 37 in his discussion of G-functions. Since the a_{h} belong to a finitely generated subring R of K the sequence $\left(a_{h}\right)$ has finite size ρ, say, For us it is convenient to define

$$
\sigma_{h}(a)=\sum_{v} \max _{j \leq h}\left|\alpha_{j}\right|_{v}
$$

with the sum the appropriately normalised valuations v of \mathbb{K}. Then

$$
\sigma(a)=\overline{\lim }_{h \rightarrow \infty} h^{-1} \log \sigma_{h}(a)=\log \rho
$$

It then follows that

$$
\overline{\lim }_{h \rightarrow \infty} h^{-2} \log \sigma_{h}(K(a))=\log \rho
$$

Then with the F chosen as above we obtain

$$
\log \sigma_{h}(K(F a))<h^{2} \log \rho+c_{2} h H^{\frac{1}{2}}(\log H)^{\frac{1}{2}}
$$

But for $H_{0}<h \leq H$ and $p \in P$

$$
\operatorname{ord}_{p} K_{h}(F a)>h^{2} / n(p-1)
$$

Hence if $H_{0}=H^{\frac{1}{2}} \log H$ then for $H_{0}<h<H$ we have

$$
h^{-2} \log \sigma_{h}(K(F a))<\log \rho+c_{3}(\log H)^{-\frac{1}{2}}
$$

But by the product formula $K_{h}(F a)$ vanishes if

$$
\sum_{p}(\log p) \operatorname{ord}_{p} K_{h}(F a)>d \log \sigma_{h}(K(F a))
$$

Indeed it is this formula that justifies the measure σ_{h} we have introduced above.

We can now return to the main argument. From the remarks above we see that $K_{h}(F a)=0$ for $H^{\frac{1}{2}} \log H<h<H$ if

$$
\sum_{p \in P} \frac{\log p}{n(p-1)}>d \log \rho+d c_{3}(\log H)^{-\frac{1}{2}}
$$

We note that though c_{3} depends on P it remains bounded if P grows, hence since the sum over $p \in P$ is unbounded as P grows we can certainly achieve the condition above for a suitably large choice of the set P.

The vanishing of $K_{h}(F a)$ for $H^{\frac{1}{2}} \log H<h<H$ implies readily that there is a recurrence sequence $\left(d_{h}\right)$ of order at most $H^{\frac{1}{2}} \log H$ so that

$$
d_{h}=F(h) a_{h}=F(h) c_{h} / b_{h}
$$

for $H^{\frac{1}{2}} \log H<h<H$. But the recurrence sequences $\left(b_{h} d_{h}\right)$ and $\left(F(h) c_{h}\right)$ then coincide over a range considerably greater than is their order. Hence they coincide for all h. It follows that F divides $b d$ in the ring of exponential polynomials. By the Polya-Cantor lemma we lose no generality in assuming that b has no polynomial factor; for any such factor must also be a factor of c and so we may suppose it to have been removed. Hence F divides d in the ring of exponential polynomials, for the quotient satisfies the conditions of the Polya-Cantor lemma. Hence, as we wished to show, $\left(a_{h}\right)$ is indeed a recurrence sequence.

To complete the proof we should deal with the case where some b_{h} vanish and with the general case where $\left(a_{h}\right)$ is not defined over an
algebraic number field. These technicalities seem inappropriate to this summary .

4. Concluding Remarks

The p-adic methods employed above were either introduced or flowered in the work of Kurt Mahler. It seems especially appropriate to describe a recent application of his ideas on this the occasion of his 80th birthday.

References

[1] E. Bombieri, "On G-functions", in H. Halberstam and C. Hooley (eds.) Recent Progress in Analytic Number Theory (Academic Press, 2 , 1981 , 1-67).
[2] J.W.S. Cassels, "An embedding theorem for fields", BulZ. Austral. Math. Soc. 14 (1976), 193-198. Addendum, ibid. 14 (1976), 479-480.
[3] D.G. Cantor, "On arithmetic properties of the Taylor series of rational functions II", Pacific J. Math. 41 (1972), 329-334.
[4] G. Polya, "Arithmetische Eigenschaften der Reihenentwicklungen rationaler Functionen", J. fïr die reine u. angew Math. 151 (1920), 1-31.
[5] A.J. van der Poorten and H.P. Schlickewei, "The growth conditions for recurrence sequences", Invent. Math., to appear.

School of Mathematics and Physics,
Macquarie University,
North Ryde,
New South Wales 2113, Australia.

[^0]: Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/84 $\$ \mathrm{~A} 2.00+0.00$

