STRICT TOPOLOGY ON PARACOMPACT LOCALLY COMPACT SPACES

SURJIT SINGH KHURANA

In this paper, X denotes a Hausdorff paracompact locally compact space, E a Hausdorff locally convex space over K, the field of real or complex numbers (we call the elements of K scalars), $\{|| ||_p : p \in \mathscr{P}\}$ a filtering upwards family of semi-norms on E generating the topology of E, $C_b(X)$ the space of all continuous scalar-valued functions on X, and $C_b(X, E)$ the space of all continuous, bounded E-valued functions. The strict topology β_0 on $C_b(X, E)$ is generated by semi-norm $|| ||_{h,p}$, $p \in \mathscr{P}$, $h \in C_0(X) = \{h \in C_h(X) : h \text{ vanishing at} \}$ infinity}, $||f||_{h,p} = \sup_{x \in X} ||h(x)f(x)||_p$ ([2; 8]). We denote by u the topology of uniform convergence on $C_h(X, E)$. For a Hausdorff locally convex space G, G' will denote its topological dual: G is called *Mackev* if every absolutely convex relatively compact subset of $(G', \sigma(G', G))$ is equicontinuous, and strongly Mackey if every relatively countably compact subset of $(G', \sigma(G', G))$ is equicontinuous. The natural bilinear mapping on $E \times E'$ or $E' \times E$ will be denoted by \langle , \rangle . In this paper we prove that if E is metrizable then $(C_b(X, E), \beta_0)$ is Mackey and if, in addition, E is complete, that $(C_b(X, E), \beta_0)$ is strongly Mackey. This generalizes Conway's result ([1]).

We denote by $M_i(X)$ the set of all scalar, bounded, regular Borel measures on X ([**2**]), by $\mathscr{B}(X) = \mathscr{B}$, the Borel subsets of X, by $S(X, \mathscr{B}, E)$ all \mathscr{B} -simple, E-valued functions on X, i.e., functions of the form $\sum_{i \in I} \chi_{B_i} \otimes x_i, \{B_i\} \subset \mathscr{B}, \{x_i\} \subset E, I$ finite, and by $B(X, \mathscr{B}, E)$ the closure of $S(X, \mathscr{B}, E)$, in the space of all bounded E-valued functions on X with the topology of uniform convergence on X. Any finitely additive set function $\mu : \mathscr{B} \to E'$ gives rise to a linear mapping $\mu : S(X, \mathscr{B}, E) \to K; \mu$ will be called a *measure* if this corresponding mapping is continuous with uniform topology on $S(X, \mathscr{B}, E)$ ([**7**, p. 375]). For a measure $\mu : \mathscr{B} \to E'$ and $x \in E$, we define $\mu_x : \mathscr{B} \to K, \mu_x(B) = \langle \mu(B), x \rangle = \mu(\chi_B \otimes x), B \in \mathscr{B}$.

We define $M_t(X, E') = \{\mu : \mathscr{B} \to E' : \mu \text{ is a measure, and } \mu_x \in M_t(X), \text{ for all } x \in E'\}$. Take a $\mu \in M_t(X, E')$. If $p \in \mathscr{P}$ is such that $|\mu|_p$, defined by, $\forall B \in \mathscr{B}, |\mu|_p(B) = \sup \{|\sum \mu(\chi_{B_i} \otimes x_i)| : \{B_i\} \text{ a finite Borel partition of } B$, and $\{x_i\} \subset E$ with $||x_i||_p \leq 1, \forall i\}$, is finite $\forall B \in \mathscr{B}$ (there will be at least one such $p \in \mathscr{P}$), then $|\mu|_p \in M_t(X)$ (cf. [2, Proposition 3.9, p. 850]). Thus for any $\mu \in M_t(X, E')$ we get a linear continuous mapping $\mu : S(X, \mathscr{B}, E) \to K$, with uniform topology on $S(X, \mathscr{B}, E)$; this can be uniquely extended to $\mu : B(X, \mathscr{B}, E) \to K$. It is easy to verify that $C_b(X) \otimes$

Received May 20, 1976 and in revised form, October 18, 1976.

 $E \subset B(X, \mathscr{B}, E)$. It is known that $C_b(X) \otimes E$ is dense in $(C_b(X, E), \beta_0)$ and $(C_b(X, E), \beta_0)' = M_t(X, E')$ [8]. For a $p \in \mathscr{P}$, we put $M_{t,p}(X, E') = \{\mu \in M_t(X, E') : |\mu|_p \in M_t(X)\}.$

We first prove the following lemmas.

LEMMA 1. For $a \ \mu \in M_{t,p}(X, E')$ and $f \in C_b(X), f \ge 0$,

$$|\mu|_{p}(f) = \sup \{ |\mu(g)| : g \in C_{b}(X) \otimes E, ||g||_{p} \leq f \}.$$

 $(Here ||f||_p : X \to R, ||f||_p(x) = ||f(x)||_p.)$

Proof of this involves routine arguments and is omitted.

LEMMA 2. Let 2^N denote all subsets of N, with product topology. If $\lambda_n : 2^N \to K$ is a sequence of countably additive measures (this implies they are continuous) and $\lim \lambda_n(M) = \lambda(M)$ exists for all $M \subset N$, then $\lambda_n \to \lambda$ uniformly on 2^N . In particular, $\lambda_n(\{n\}) \to 0$.

Proof. This lemma is a particular case of [4, Lemma 1].

LEMMA 3. A subset $A \subset M_t(X, E')$ is equicontinuous on $(C_b(X, E), \beta_0)$ if and only if given $\epsilon > 0$, there exists a $p \in \mathscr{P}$ and a compact $K \subset X$ such that $A \subset M_{t,p}(X, E'), |\mu|_p(X \setminus K) \leq \epsilon$ for all $\mu \in A$, and

 $\sup \{ |\mu|_p(X) : \mu \in A \} = \alpha_0 < \infty.$

Proof. Suppose first that A is β_0 -equicontinuous. This means there exists a $\varphi \in C_0(X)$ and a $p \in \mathscr{P}$ such that

$$\{f \in C_b(X, E) : ||\varphi f||_p \leq 1\} \subset \{g \in C_b(X, E) : |(\mu)g| \leq 1, \text{ for all } \mu \in A\}.$$

Suppose $\sup_{x \in X} |\varphi(x)| \leq \alpha_1 > 0$. This means

 $\sup \{ |\mu(f)| : \mu \in A, f \in C_b(X, E), ||f||_p \leq 1 \} \leq 1/\alpha_1.$

By Lemma 1, $\sup \{|\mu|_p(X) : \mu \in A\} = \alpha_0 \leq 1/\alpha_1 < \infty$. Take a compact set $K \subset X$ with the property that $K \supset \{x \in X : |\varphi(x)| \geq \epsilon\}$. If $|\mu|_p(X \setminus K) > \epsilon$ for some $\mu \in A$, then there exists an $f \in C_b(X)$, $0 \leq f \leq \chi_{X \setminus K}$, with $|\mu|_p(f) > \epsilon$. By Lemma 1, there exists a $g \in C_b(X) \otimes E$ with $||g||_p \leq f$ and $|\mu(g)| > \epsilon$. This is a contradiction since $||\varphi g||_p < \epsilon$ implies $|\mu(g)| \leq \epsilon$.

Conversely, suppose A satisfies the given conditions. Let $(E_p, || \cdot ||_p)$ be the normed space associated with the semi-normed space $(E, || \cdot ||_p)$. Then $C_b(X) \otimes E_p \subset \pi_p \circ C_b(X, E) \subset C_b(X, E_p), \pi_p : E \to E_p$ being the canonical mapping, and $C_b(X) \otimes E_p$ is dense in $(C_b(X, E_p), \beta_0)$ ([2, p. 851]). Thus the elements of A can be considered as elements of $M_t(X, E_p') = (C_b(X, E_p), \beta_0)'$. We shall prove A is equicontinuous on $(C_b(X, E_p), \beta_0)$; this will prove the result. Since β_0 is the finest locally convex topology coinciding with compactopen topology on the norm-bounded subsets of $C_b(X, E_p)$ [2], it is enough to prove that for any k > 0 there exists a compact subset K of X and some $\eta > 0$ such that $Z = \{f \in C_b(X, E_p) : ||f||_p \leq k, ||f||_K \leq \eta\} \subset \{g \in C_b(X, E_p) : |\mu(g)| \leq 1$, for all $\mu \in A\}$. By hypothesis there exists a compact $K \subset X$ with $|\mu|_p(X \setminus K) < 1/(2k+1)$, for all $\mu \in A$. Take $\eta = 1/(2(1 + \alpha_0))$. For an $f \in Z$ and $\mu \in A$,

$$\begin{aligned} |\mu(f)| &\leq \int ||f||_{p} d|\mu|_{p} \quad ([\mathbf{2}, \text{ p. 851}]) \\ &= \int_{K} ||f||_{p} d|\mu|_{p} + \int_{X \setminus K} ||f||_{p} d|\mu|_{p} \\ &\leq \frac{1}{2(1+\alpha_{0})} \alpha_{0} + \frac{k}{2k+1} \leq 1. \end{aligned}$$

This proves the result.

Remark. This lemma evidently holds for any Hausdorff completely regular space X.

LEMMA 4. Let $F = C_b(X, E)$, $F' = M_t(X, E')$, and let A, a relatively countably compact subset of $(F', \sigma(F', F))$, be equicontinuous on $(C_b(X, E), u)$. Then A is equicontinuous on (F, β_0) .

Proof. There exists a $p \in \mathscr{P}$ and $\alpha_0 > 0$ such that

$$\alpha_0 = \sup \{ |\mu|_p(X) : \mu \in A \} < \infty.$$

Thus $A \subset M_{\iota,p}(X, E')$. First we prove that for any partition of unity $\{f_{\alpha}\}_{\alpha \in I_{0}}$ in X, and $\epsilon > 0$, there exists a finite subset $I_{0} \subset I$ such that $\sum_{\alpha \in I_{0}} |\mu|_{p}(f_{\alpha}) > |\mu|_{p}(1) - \epsilon$, for all $\mu \in A$. If this is not true, there exists a sequence $\{\mu_{n}\} \subset A$ and a strictly increasing sequence $\{q(n)\} \subset N$ with q(0) = 1, and a distinct countable set $\{\alpha_{n}\} \subset I$ such that

$$|\mu_n|_p\left(\sum_{i=0}^{q(n+1)-q(n)-1}f_{\alpha_q(n)+i}\right) > \epsilon/2, \text{ for all } n.$$

This means there exists a sequence $\{g_n\} \subset C_b(X) \otimes E$,

$$||g_n||_p \leq \sum_{i=0}^{q(n+1)-q(n)-1} f_{\alpha_q(n)+i}, \text{ and } |\mu_n(g_n)| > \epsilon/2, \text{ for all } n.$$

For any subset $M \subset N$, $g_M = \sum_{n \in M} g_n \in C_b(X, E)$ and $||g_M||_p \leq 1$. The countable set $\{g_M : M \text{ finite}\}$ is dense in $P = \{g_M : M \subset N\} \subset (C_b(X, E), \beta_0)$ and so if μ , in $(F', \sigma(F', F))$, is an adherent point of $\{\mu_n\}$, there exists a subsequence of $\{\mu_n\}$, which for notational convenience we denote by $\{\mu_n\}$, such that $\mu_n \to \mu$, pointwise on P [5]. Define $\lambda_n : 2^N \to K$, $\lambda_n(M) = \mu_n(g_M)$. Using the dominated convergence theorem and the relation $|\mu_n(g)| \leq |\mu_n|_p (||g||_p)$, for all $g \in C_b(X, E)$ [2, p. 851], we prove that the λ_n 's are countably additive; also $\{\lambda_n(M)\}$ is convergent for every $M \subset N$. By Lemma 2, $\mu_n(g_n) =$

STRICT TOPOLOGY

 $\lambda_n(g_n) \to 0$, which is a contradiction. Let $\{V_\alpha\}_{\alpha \in I}$ be a family of relatively compact, open subsets of X filtering upwards such that $\bigcup_{\alpha \in I} V_\alpha = X$, and let $\{f_\alpha\}$ be a partition of unit subordinated to this converging. Using the above notations we have $|\mu|_p(\sum_{\alpha \in I_0} f_\alpha) > |\mu|_p(1) - \epsilon$. This means there exists $\alpha_1 \in I$ such that $|\mu_p|(V_{\alpha_1}) > |\mu_p|(1) - \epsilon$. Taking $K = \bar{V}_{\alpha_1}$ and using Lemma 3, we get the result.

THEOREM 5. If E is metrizable, then $(C_b(X, E), \beta_0)$ is Mackey; if, in addition, E is complete $(C_b(X, E), \beta_0)$ is strongly Mackey.

Proof. Let $F = C_b(X, E)$, $F' = M_t(X, E')$. Take A to be an absolutely convex and compact subset of $(F', \sigma(F, F'))$. Since E is metrizable $(C_b(X, E), u)$ is metrizable. Using $\beta_0 \leq u$ we prove that A is equicontinuous on $(C_b(X, E), u)$. By Lemma 4, A is equicontinuous on $(C_b(X, E), \beta_0)$. If E is a Fréchet space then $(C_b(X, E), u)$ is barreled and so if A is relatively countably compact subset of $(F', \sigma(F', F))$, then A is equicontinuous on $(C_b(X, E), u)$ [6, p. 127, 1.6 Corollary]. The result follows from Lemma 4.

References

- 1. J. B. Conway, The strict topology and compactness in the space of measures, Trans. Amer. Math. Soc. 126 (1967), 474-486.
- 2. R. A. Fontenot, Strict topologies for vector-valued functions, Can. J. Math. 26 (1974), 841-853.
- 3. A. K. Katsaras, Spaces of vector measures, Trans. Amer. Math. Soc. 206 (1975), 313-328.
- 4. S. S. Khurana, *Convergent sequences of regular measures*, Bull. Acad. Polon. Sci. Sér. Math. Astronom. Phys. 24 (1976), 37-42.
- 5. J. D. Pryce, A device of R. J. Whitley applied to pointwise compactness in spaces of continuous functions, Proc. London Math. Soc. 23 (1971), 532-546.
- 6. H. H. Schaeffer, Topological vector spaces (Macmillan, New York, 1966).
- A. Shuchat, Integral representation theorems in topological vector spaces, Trans. Amer. Math. Soc. 172 (1972), 373–397.
- 8. J. Wells, Bounded continuous functions on locally compact spaces, Michigan Math. J. 12 (1965), 119–126.

The University of Iowa, Iowa City, Iowa