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Abstract

Let R = Fp + uFp + u2Fp + · · · + ud−1Fp, where ud = u and p is a prime with d − 1 dividing p − 1. A
relation between the support weight distribution of a linear code C of type pdk over R and the dual code
C ⊥ is established.
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1. Introduction
The support weight distribution of codes over fields has been known for a long
time [4]. Sometimes called the Wei weight [6], this natural generalisation of the
weight distribution is of great interest in cryptography (for example, the attack on the
wiretap channel [6]), self-dual codes [2] and finite geometry [5]. More recently, the
support weight distribution of codes over the ring of integers modulo 4, the smallest
commutative ring with identity that is not a field, was studied in [1]. The case of codes
over a special semilocal ring was considered in [3]. In the present note we extend the
results of [3] to a larger family of semilocal rings.

The material is organised as follows. The next section contains the basic notions and
notations that we need. Section 3 extends some lemmas of [3] to the present situation.
Section 4 contains the main result, a MacWilliams-type identity on the support weight
enumerator of codes over the ring in the title.

2. Preliminaries
Denote by Fp the finite field of order p, with p a prime. Let R = Fp + uFp + u2Fp +

· · · + ud−1Fp, where ud = u and d − 1 divides p − 1. This arithmetic condition implies
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that the polynomial ud − u can be factored into linear factors over Fp as follows:

ud − u = u(u − a1)(u − a2) · · · (u − ad−1)

for some distinct nonzero a1, a2, . . . , ad−1 ∈ Fp. Clearly, R is a commutative ring and
has (u), (u − a1), . . . , (u − ad−1) as its maximal ideals, which implies that R is finite
nonlocal. Let a0 = 0 and fi = u − ai for i = 0, 1, . . . , d − 1. Let f̂i = (ud − u)/ fi. Then,
for each i = 0, 1, . . . , d − 1, fi and f̂i are coprime over Fp, which implies that there are
two polynomials mi and ti in Fp[u] such that

mi fi + ti f̂i = 1.

Let ei = mi fi for each i = 0, 1, . . . , d − 1. From the above relation, we see that ei is an
idempotent. Further, it can be shown that eie j = 0 for any i , j and

∑d−1
i=0 ei = 1 in R.

Therefore, we have the ring decomposition

R = e0R ⊕ e1R ⊕ · · · ⊕ ed−1R = e0Fp ⊕ e1Fp ⊕ · · · ⊕ ed−1Fp.

Let Rn be the set of n-tuples over R. Then Rn = e0F
n
p ⊕ e1F

n
p ⊕ · · · ⊕ ed−1F

n
p.

Any nonempty R-submodule C of Rn is called a linear code of length n over R.
According to the Chinese remainder theorem, C = e0C1 ⊕ e1C2 ⊕ · · · ⊕ ed−1Cd,
where C1, C2, . . . , Cd are Fp-subspaces of Fn

p, that is, linear codes of length n
over Fp. Therefore, |C | = |C1| |C2| · · · |Cd |. For integers 0 ≤ ri ≤ n, let |C1| = pr1 ,
|C2| = pr2 , . . . , |Cd | = prd . Then we say that C is a linear code of length n over R
of type pr1+r2+···+rd .

Let B ⊆ C be a subcode. The support of B is defined as

χ(B) = {i | ci , 0 for some (c0, c1, . . . , cn−1) ∈B}.

The support weight of B is defined as

ws(B) = |χ(B)|.

For any nonnegative integers t1 ≤ r1, t2 ≤ r2, . . . , td ≤ rd, let A(t1,t2,...,td)
i be the number

of subcodes of type pt1+t2+···+td with support weight i. The A(t1,t2,...,td)
i th support weight

distribution is the polynomial

A(t1,t2,...,td)(z) = A(t1,t2,...,td)
0 + A(t1,t2,...,td)

1 z + · · · + A(t1,t2,...,td)
n zn.

3. Some lemmas

Let C be a linear code of length n and type pk+···+k, written pdk, over R. Let
{a1, a2, . . . , ak} be a basis of C over R. Then, for any i = 1, 2, . . . , k, there exist words
b ji ∈ F

n
p such that

ai = e1b1i + e2b2i + · · · + edbdi.

Let G be the generator matrix of C and let a1, a2, . . . , ak be its rows. Then, if C is
viewed as an Fp-subspace, it has a generator matrix Ĝ with successive rows

e1b11, e1b12, . . . , e1b1k, e2b21, e2b22, . . . , e2b2k, . . . , . . . , edbd1, edbd2, . . . , edbdk.
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For any subcode C ⊆ C of type pt1+t2+···+td , where t1, t2, . . . , td ≤ k, define

SC = {(x1, x2, . . . , xk) ∈ Rk | (x1, x2, . . . , xk)G ∈ C}.

Clearly, SC is an R-submodule of Rk. Define

F (t1, t2, . . . , td) = {C | C is a subcode of type pt1+t2+···+td of C }

and

T (t1, t2, . . . , td) = {U | U is a submodule of type pt1+t2+···+td of Rk}.

Define the map

φ : Rk → C

(x1, x2, . . . , xk) 7→ (x1, x2, . . . , xk)G.

One can verify that φ is an R-module isomorphism. Therefore, for any nonnegative
integers t1, t2, . . . , td ≤ k, if C ⊆ C is a subcode of type pt1+t2+···+td , then SC ⊆ Rk is an
R-submodule of type pt1+t2+···+td . Moreover, the map C → SC is bijective between the
set F (t1, t2, . . . , td) and the set T (t1, t2, . . . , td).

Let SC be a linear code of length k and type pt1+t2+···+td over R, with t1, t2, . . . , td ≤ k.
Then the dual code

S⊥C = {(y1, y2, . . . , yk) ∈ Rk | (y1, . . . , yk) · (x1, . . . , xk) = 0 for any (x1, . . . , xk) ∈ SC}

is a linear code of length k and type pk−t1 pk−t2 · · · pk−td over R.
From the discussion above, the next lemma follows immediately.

Lemma 3.1. For any nonnegative integers t1, t2, . . . , td ≤ k, C → S⊥
C

is a bijection
between the set F (t1, t2, . . . , td) and the set T (k − t1, k − t2, . . . , k − td).

For any x ∈ Rk, let µ(x) be the number of occurrences of x as a column in the
generator matrix G of C . More generally, for any S ⊆ Rk, let µ(S ) =

∑
x∈S µ(x). With

this notation,

ws(C ) = n − µ(0).

Lemma 3.2. Let C ⊆ C be a subcode of length n over R. Then ws(C) = n − µ(S⊥
C

).

Proof. Let C ⊆ C be a subcode of length n and type pt1+t2+···+td , where t1, t2, . . . , td ≤ k.
Then SC ⊆ Rk is an R-submodule of type pt1+t2+···+td . As an Fp-subspace, let

{e1b11, e1b12, . . . , e1b1t1 , e2b21, e2b22, . . . , e2b2t2 , . . . , edbd1, edbd2, . . . , edbdtd }

be a basis of SC, where b1i, b2i, . . . , bdi ∈ F
k
p. Let M be the (r1 + r2 + · · · + rd) × k

matrix the rows of which are, successively,

e1b11, e1b12, . . . , e1b1t1 , e2b21, e2b22, . . . , e2b2t2 , . . . , edbd1, edbd2, . . . , edbdtd .

Then {e1bT
11G, e1bT

12G, . . . , e1bT
1t1

G, e2bT
21G, e2bT

22G, . . . , e2bT
2t2

G, . . . , edbT
d1G, edbT

d2G,
. . . , edbT

dtd
G} forms an Fp-basis of C. Therefore, MG is a generator matrix of C, which

implies that
ws(C) = n −

∑
Mx=0

µ(x) = n −
∑
x∈S⊥

C

µ(x) = n − µ(S⊥C). �
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Let

[m]c1,c2,...,cd =

c1−1∏
i1=0

(pm − pi1 )
c2−1∏
i2=0

(pm − pi2 ) · · ·
cd−1∏
id=0

(pm − pid ).

We make the convention that, for any integer a, the product
∏a−1

i=0 (pm − pi) = 1 if a = 0.
Denote by GR(R,m) = e1Fpm + e2Fpm + · · · + ed−1Fpm the mth Galois extension ring
of R. Let ξ be a primitive element of the finite field Fpm . Then, for any element
r ∈ GR(R,m), r can be expressed uniquely as

r = r0 + r1ξ + · · · + rm−1ξ
m−1,

where r0, r1, . . . , rm−1 ∈ R.

Lemma 3.3. LetU ⊆ Rk be an R-module of type pt1+t2+···+td and
Û = {y ∈ GR(R,m) | y · x = 0 for x ∈ Rk if and only if x ∈ U}. Then

(i) |Û| = [m]k−t1,k−t2,...,k−td ;
(ii) {Û | U is a submodule of Rk} is a partition of GR(R,m)k.

Proof. (i) This follows from the proof technique of [4, Lemma 3].
(ii) From the definition of Û, we have that ifU1 ,U2, then Û1 ∩ Û2 = ∅. For any

(y1, y2, . . . , yn) ∈ GR(R,m)k, define

U = {(x1, x2, . . . , xk) ∈ Rk | (x1, x2, . . . , xk) · (y1, y2, . . . , yk) = 0}.

Then U is an R-submodule of Rk and (y1, y2, . . . , yk) ∈ Û, which implies that {Û |
U is a submodule of Rk} is a partition of GR(R,m)k. �

Similar to [1, Lemma 7], we also have the following result. We omit the proof.

Lemma 3.4. If a1, a2, . . . , ak ∈ Rk are free over R, then a1, a2, . . . , ak are free over
GR(R,m).

4. Main results

Recall that C is a linear code of length n and type pdk over R, and that {a1,a2, . . . ,ak}

is the basis of C with G as its generator matrix. Let C (m) denote the linear code over
GR(R,m) with generator matrix G.

Proposition 4.1. The Hamming weight enumerator of C (m) is

WH(z) =

m∑
t1=0

m∑
t2=0

· · ·

m∑
td=0

[m]t1,t2,...,td A(t1,t2,...,td)(z).

Proof. From Lemma 3.4, for any y1, y2 ∈ GR(R,m)k such that y1 , y2, we know that
y1G , y2G, implying that WH(z) =

∑
y∈GR(R,m)k zw(yG). From Lemma 3.3(ii),

WH(z) =

k∑
t1=0

k∑
t2=0

· · ·

k∑
td=0

∑
U∈T (t1,t2,...,td)

∑
y∈Û

zw(yG).
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For y ∈ Û,

w(yG) =
∑
x∈Rk

µ(x)w(y · x) = n −
∑
x∈U

µ(x) = n − µ(U).

Therefore,

WH(z) =

k∑
t1=0

k∑
t2=0

· · ·

k∑
td=0

∑
U∈T (t1,t2,...,td)

∑
y∈Û

zn−µ(U)

=

k∑
t1=0

k∑
t2=0

· · ·

k∑
td=0

∑
U∈T (t1,t2,...,td)

[m]k−t1,k−t2,...,k−td zn−µ(U)

=

k∑
t1=0

k∑
t2=0

· · ·

k∑
td=0

∑
U∈T (k−t1,k−t2,...,k−td)

[m]t1,t2,...,td zn−µ(U)

From Lemmas 3.1 and 3.2,∑
U∈T (k−t1,k−t2,...,k−td)

zn−µ(U) =
∑

C∈F (t1,t2,...,td)

zn−µ(S⊥
C

) =
∑

C∈F (t1,t2,...,td)

zws(C) = A(t1,t2,...,td)(z),

which implies that

WH(z) =

k∑
t1=0

k∑
t2=0

· · ·

k∑
td=0

[m]t1,t2,...,td A(t1,t2,...,td)(z).

If m ≤ k and t1, t2, . . . , td > m, then [m]t1,t2,...,td = 0. If m > k and t1, t2, . . . , td > k, then
A(t1,t2,...,td) = 0. Putting everything together,

WH(z) =

k∑
t1=0

k∑
t2=0

· · ·

k∑
td=0

[m]t1,t2,...,td A(t1,t2,...,td)(z)

=

m∑
t1=0

m∑
t2=0

· · ·

m∑
td=0

[m]t1,t2,...,td A(t1,t2,...,td)(z). �

Let C ⊥ ⊆ Rn be the dual code of C and (C (m))⊥ ⊆ GR(R,m)n be the dual code of
C (m). Clearly, (C (m))⊥ is also generated over GR(R,m) by the parity-check matrix of
C . Denote by Wm

H (z) the Hamming weight enumerator of (C (m))⊥ and by B(t1,t2,...,td)(z)
the (t1, t2, . . . , td)th support weight distribution of C ⊥. Then, by Proposition 4.1,

Wm
H (z) =

m∑
t1=0

m∑
t2=0

· · ·

m∑
td=0

[m]t1,t2,...,td B(t1,t2,...,td)(z). (4.1)

Theorem 4.2. For all m ≥ 1,
m∑

t1=0

m∑
t2=0

· · ·

m∑
td=0

[m]t1,t2,...,td B(t1,t2,...,td)(z)

=
1

pdmk (1 + (pdm − 1)z)n
m∑

t1=0

m∑
t2=0

· · ·

m∑
td=0

[m]t1,t2,...,td A(t1,t2,...,td)
( 1 − z
1 + (pdm − 1)z

)
.
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Proof. Using the underlying additive group structure of the ring GR(R,m), we can
write the following MacWilliams-type identity for the Hamming weight enumerator
of the linear code C (m) over that ring:

Ham(C (m))⊥(x, z) =
1
|C (m)|

HamC (m) (x + (pdm − 1)z, x − z).

From this,

Wm
H (z) =

1
|C (m)|

(1 + (pdm − 1)z)nWH

( 1 − z
1 + (pdm − 1)z

)
. (4.2)

Substituting (4.2) into (4.1), the result follows. �

Example 4.3. Assume that p = d = 2 and consider the code of length 2 obtained by
taking the Cartesian product C = R2 × R2, where R2 is the repetition code of length 2,
that is, R2 = {00, 11}. By inspection,

B0,0 = 1,
B1,0 = 2z2,

B0,1 = 2z2,

B1,1 = z2,

while the definition of [m]a,b from above yields

[1]0,0 = [1]1,0 = [1]0,1 = [1]1,1 = 1,

leading to WH(z) = 1 + 3z2 = B(z). Since C is self-dual, the polynomial B(z) must be
a fixed point of the MacWilliams transform. It can be checked by hand that equation
(4.2) reduces to

(1 + 3z)2B
( 1 − z
1 + 3z

)
= |C|B(z) = 4 + 12z2.
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