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Change and Persistence

18.1 Introduction

Our interest in this chapter is in change, which is another way of discussing

persistence, or the apparent endurance over intervals of time of spatially extended

structures.

Persistence is the phenomenon that underpins all human activity. Given the

rule that we may think of as the first law of time, the dictum of Heraclitus

that everything changes, persistence is our name for those remarkable processes

that appear to circumvent that law and give stability to our lives. We should be

interested, for instance, in the fact that when we wake up each morning, we feel

that we are the same individuals who went to sleep the previous night. Indeed,

without persistence in one form or another, nothing would make sense, including

logic, rational thought, and mathematics, for these depend on comparisons of

standards and rules that persist in memory with information that we acquire in

process time.

Persistence is necessary for physics to make sense. It is emphatically not a

metaphysical topic but of the greatest relevance to science, including quantum

mechanics (QM). Persistence is implicit in Wheeler’s dictum that only acts of

observation are meaningful in physics, because observers and their apparatus

have to endure long enough to make observations. In quantized detector networks

(QDN), the persistence of observers and their apparatus long enough to perform

experiments should be regarded as axiomatic.

The subject of persistence is a deep and complex one, and will probably never

be fully understood. Several reasons contribute to this.

Observers Themselves are Subject to Change

Contrary to the general implicit belief that the laws of physics transcend the

subjective behavior of observers, it is our thesis that this is a vacuous proposition.

It cannot be proved; it is just an assertion, albeit a very useful one. A more
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pragmatic view is the one held throughout this book, that the laws of physics are

contextual to observers. Without observers, science means nothing in a literal

sense. But according to the first law of time, observers themselves change over

time. This includes their memories and the conditioning that they have; these

are carried over from one stage to another. If the processes transporting those

memories and belief structures change those memories and belief structures,

then the laws of physics as understood by the observers at the time change as

well. Five hundred years ago, science knew little of Newton’s laws of motion; two

hundred years ago, science did not know that there was such a thing as quantum

mechanics.

We deal with the variability of observers by recognizing that truth values of

propositions, including the laws of physics, are contextual to observers at the

time of observation only. That the laws of physics themselves may change as the

Universe expands is not a fanciful idea: the possibility that the so-called constants

of nature have changed has been looked at by theorists such as Dirac (1938b)

and Magueijo (2003). A complete theory of observation would take into account

dynamical interaction between systems under observation, observers, and the

Universe that contains those observers.

Time Scales Are Important

Give the contextuality of persistence, what are the factors that contribute to that

contextuality? One of them is time scale, for the time scales over which objects

are said to persist is a crucial factor in creating the illusion. Indeed, persistence

may be thought of as a comparison of two time scales: the first is associated with

the SUOs being investigated, and the second is the time scale that the observer

regards as significant for their purposes.

Example 18.1 A scientist investigating the flight of insects needs to employ

video equipment that can adequately capture the motion of insect wings. There

will be no point in using a video frame speed of 25 frames per second if an

insect under observation flaps its wings 100 times per second.

Sheer Complexity

Another crucial factor associated with persistence is that observers and SUOs

are hideously complex phenomena. Indeed, the concepts of science are attempts

to organize that complexity into sufficiently simple forms that the brain can

interpret relatively quickly and easily.

Example 18.2 The human eye has a detecting screen known as the

retina, over which are detectors known as rods and cones. There are perhaps

120 million rods and 6 million cones in the typical human eye. When light from

suitable sources strikes the retina, many of these detectors will not register
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a signal. Of those that do, complex chemical processes in the rods and cones

occur, resulting in signals being passed into specialized nerve layers below the

retina. These raw signals from the rods and cones are then processed in those

nerve layers before more complex signals are passed further on into the brain,

where much more complex processes of comparison and pattern recognition

must be occurring. The templates that the brain uses in these comparisons

appear to be relatively stable themselves, so much so that the brain does its

best to match the incoming signals to what it, the brain, has already prepared

and expected for. When this process fails in some way, optical illusions can

occur, such as a failure to recognize individuals whom we have met before.

The simplicity that we think we see around us is a total illusion.

Quantum State Fragility

A critical factor contributing to persistence is atomic stability: atoms are gener-

ally stable, at least long enough to create the illusion of persistence. This brings

us to perhaps the greatest enigma in physics, one that is necessary for persistence

in the first place and one that could not be resolved by classical mechanics (CM).

According to CM principles, an accelerating electric charge should dissipate

energy by electromagnetic radiation. This led to the classical prediction that

hydrogen atoms should be unstable, contrary to empirical evidence.

In order to bypass this prediction, Bohr constructed a model of hydrogen based

on an unexplained veto of such radiation (Bohr, 1913). More refined QM, such as

wave mechanics and quantum field theory, account for many structural aspects

of atoms, but a completely satisfactory, reductionist explanation of atomic sta-

bility does not exist. For instance, the postulate of normalized wave functions in

Schrödinger mechanics that leads to quantized atomic energy levels in hydrogen

is manifestly an emergent one based on an implicit assumption of a persistent

exophysical observer dealing only with normalized states. In interacting quantum

field theories too, there is generally no proof that the vacuum, or state of lowest

energy, exists; such a state is normally postulated.

The stability of atoms helps create the illusions of persistence. But below that

classical layer of illusion is a seething mass of change. Of relevance here is the

idea that the classical world view is good when quantum phases are so random

and disorganized that a classical average approach can be relied on. The greatest

developments in QM have occurred principally in the theoretical understanding

and empirical control of quantum phase. For example, Feynman’s path integral

formulation of QM is based on a specific mathematical recipe for adding quantum

phases associated with different dynamical paths. On the empirical side, the

various quantum optics experiments discussed in the present book demonstrate

the point excellently.

Our ambition to understand persistence will be limited. We shall discuss the

persistence of labstates in a carefully controlled environment. Specifically, given
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an initial labstate Ψm at stage Σm, suppose it is allowed to evolve through

a quantized detector network to labstate Ψn at a later1 stage Σn, under the

evolution given by Ψn = Un,mΨm. A natural question to ask is: how different

are states Ψm and Ψn?

This question is not simple to answer, for several reasons.

The Parallel Transport Problem

An analogous problem arises in general relativity (GR), where there is a need

to make a comparison of directions at different places. Specifically, given two

points P and Q in a GR spacetime manifold, there is a tangent space associated

with each point, denoted TP for the tangent space at P , and TQ for that at Q.

Suppose we pick a vector vP in TP and vector vQ in TQ. The question is: how can

we compare vP and vQ? The problem is that these are vectors in two different

vector spaces. Somehow, a method of “bringing them together” has to be found,

so that a proper comparison can be made.

A solution to this problem was found by the mathematicians Christoffel, Levi-

Civita, and others, who developed Riemannian (differential) geometry in the

nineteenth and early twentieth centuries. Their approach was to introduce the

notion of a connection, a rule for relating basis vectors in TP to those in TQ.

Such a rule involves parallel transport, which means defining what it means to

transport a vector from one tangent space to another in a manifold “without

changing direction.”

There is no unique connection over a manifold. Fortunately for Einstein, who

from about 1911 onward was developing GR, there is a natural and unique con-

nection for any manifold that has a metric, or distance, rule. The so-called metric

connection can be derived from the metric tensor of the spacetime concerned,

and GR deals specifically with manifolds with Lorentzian signature metrics. The

metric connection in GR has been found over the last century to give excellent

empirical predictions, such as the precession of the orbit of the planet Mercury,

the gravitational deflection of light, and galactic lensing. Accordingly, it is the

connection in general use to this day, although alternatives such as those with

torsion are occasionally proposed.

In QDN, an important feature that assists us here is that empirical context

gives a preferred basis Bm for the quantum register Qm at stage Σm and likewise

for stage Σn. Therefore, the parallel transport problem seems to have a natural

resolution.

However, QDN does not insist on the constancy of quantum register dimensions

from stage to stage. When discussing persistence, we need to ensure that the

dimensions of the registers concerned are the same, that is, dimQn+1 = dimQn.

Otherwise, we would be trying to relate labstates in vector spaces that were

1 In this context, stage Σn later than stage Σm always means n > m.
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inherently dissimilar. This dimensionality issue does not arise in the case of

Riemannian geometry because the dimension of each tangent space in a manifold

is precisely the same as the dimension of the manifold over which they are defined.

We shall henceforth assume that when an observer is measuring the change

in a state of an SUO, it will be under carefully controlled conditions such that

dimQn = dimQm ≡ r. For instance, we might be interested in some branch

of macroscopic quantum mechanics, such as superfluidity or superconductivity.

Changes in quantum register dimension in that context would correspond to

fluctuations in the numbers of electrons or other particles in the SUO, which

would be a manifest breakdown of persistence.

Do We Know What We Are Doing?

One possible reason for the difficulty we have in understanding persistence is that

perhaps we really don’t understand the problem. It may be the case that QM

is the wrong branch of physics needed to understand persistence. A comparison

of Ψm and Ψn is a comparison of quantum states: these do not represent a

reality that “exists” in a classical sense. As emphasized before in this book,

quantum states represent the statistics of empirical context and are not snapshots

of reality, while the persistence that we see around us is an illusion based on a

near instantaneous comparison of signals received on our retinas and patterns in

our memories. Whether QM is right way to discuss that process of comparison

is debatable. The assumption that it is leads to vacuous concepts such as “wave

functions for the Universe.”

This issue has long been discussed in QM, examples being Ehrenfest’s theorem

(Ehrenfest, 1927) and decoherence theory (Zurek, 2002). These are viewed by us

as attempts to bridge the gap known as the Heisenberg cut, from the relative

internal contextual (RIC) side where QM is good and the relative external

context (REC) where a classical description is good. We view these attempts as

misguided, because REC is the domain proper of emergent physics, and we should

not expect any reductionist approach to “explain” emergence. We note that

despite initial hopes that decoherence would “explain” why the world around us

appears classical, these expectations have not been met and have been criticized

(Kastner, 2016).

As in other situations, the resolution of our problem comes from looking at

what goes on in the laboratory, not in our theories. When all is said and done,

the only things that matter in physics are the signals received in our detectors.

That is where we can understand persistence and change. We shall continue our

investigation into persistence, therefore, along the lines of comparing changes in

labstate outcomes.

Correlation of Preferred Basis States

Given a computational basis representation (CBR) Bm ≡ {im : 0 � i < 2r} for

Qm and a CBR Bn ≡ {in : 0 � i < 2r} for Qn, we need to relate the individual
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elements of each preferred basis. Clearly, there will be no use attempting to

relate these basis states if the quantum registers have unrelated contexts. For

instance, if the stage Σm apparatus is observing photon signals and stage Σn is

observing electron signals, then there may be no natural relationships between

them. Therefore, the discussion requires us to correlate contexts.

Assuming this is the case, then since the labeling of CBR elements is arbitrary,

we can assume that the ordering of elements in each preferred basis is correlated

contextually. This means for instance that 0m is correlated to 0n, that 1m is

correlated to 1n, and so on.

The Null Evolution Operator

Given the above provisos, an important operator will be the null evolution

operator Nn,m, defined by

Nn,m ≡
2r−1∑
i=0

inim. (18.1)

This will have the critical role, rather like the metric connection in GR, of defining

a concept of parallel transport in QDN, as we see from the following argument.

Given an initial labstate

Ψm ≡
2r−1∑
i=0

Ψi
mim, (18.2)

we find

Ψ̃n ≡ Nn,mΨm =

2r−1∑
i=0

Ψi
min, (18.3)

which is a carbon copy of Ψm but at stage Σn.

18.2 Comparisons

The discussion now reduces to a comparison of the naturally evolved labstate

Ψn ≡ Un,mΨm and the persistent image state Ψ̃n ≡ Nn,mΨm. The problem

is that there is no natural measure of difference between two quantum register

states in the same register, no measure of distance, that survives all criticism.

The following are some possibilities.

The Born Measure of Similarity

In standard QM Hilbert space theory, the inner product (Φ,Ψ) of two normalized

state vectors in the same Hilbert space has an empirical significance: if (Φ,Ψ)=0,

the two states are regarded as totally different. More generally, the square mod-

ulus P (Φ|Ψ) ≡ |(Φ|Ψ)|2 of this amplitude has the Born interpretation as the

conditional probability of a positive answer if tested for state Φ given prepared

state Ψ.
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We may, with some justification, refer to P (Φ|Ψ) as the Born measure of

similarity .

The problem with the Born measure of similarity is that it can be far too crude

for quantum register states, as the following example illustrates.

Example 18.3 Consider a rank-billion quantum register Q[109]. The states

Ψ ≡ Â1Â2 . . . Â999999999Â1090 and Φ ≡ Â1Â2 . . . Â9999999990 have zero inner

product, but differ in only one signal out of a billion. By any conventional,

heuristic measure of similarity, these two states would be regarded as very

similar though not identical, but the Born measure of similarity gives them as

totally different.

We conclude that the Born measure of similarity is not good enough, in the

context of this chapter and the next, as a measure of similarity.

The Hamming Measure of Dissimilarity

The problem of comparing two quantum register states in the same quantum

register has an interesting parallel in the world of computing, cryptography, and

information science. In those subjects, a frequent problem is to compare two

strings of symbols, such as S1 ≡ αQ55{7 and S2 ≡ aP56[7. There are two possi-

ble cases: either the strings have the same number of elements (six in this case),

or they have different numbers of elements. We shall discuss only the equal case.

Equal-Length Strings

In his study of the transmission of information over telephone networks, Ham-

ming discussed the problem of identifying and then correcting errors in transmis-

sion (Hamming, 1950). This scenario is very much like a quantum experiment,

with essentially the same architecture, including an information void. There are

observers (the speaker and the listener) and their preparation devices and final

state detectors (the telephones). The information void here consists of extensive

transmission lines and modules, such as telephone exchanges, signal amplifiers,

and so on.

Suppose S ≡ s1s2 . . . sr is the message that is sent (the prepared state) and

T ≡ t1t2 . . . tr is the message that is actually received (the outcome state). A

natural question is: how different are these two strings? Hamming devised a

geometrical method of quantifying the difference between two character strings

of equal length. He defined a distance, or metric, dH(S, T ) between S and T

according to the rule

dH(S, T ) ≡ number of matched pairs (si, ti), i = 1, 2, . . . , r, for which si 	= ti.

(18.4)

Example 18.4 For S ≡ αQ55{7 and T ≡ aP56[7 we find dH(S, T ) = 4,

as these strings of length six differ everywhere except in their third and sixth

elements.
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The interpretation of the Hamming distance between two equal length strings

is that it is the minimum number of single character replacements in one string

that would convert it into the other. In Example 18.4, we can convert S into T

by the four replacements α → a, Q → P , 5 → 6, and {→ [.

Exercise 18.5 Prove that the Hamming metric is a true metric in the sense

of a metric space.

Suppose we prepare a labstate Ψm in a rank-r quantum register Qm at stage

Σm, and pass it through an information void, until it is received as outcome Ψn

in an identical rank quantum register Qn at stage Σn, where n > m.2 The two

registers are copies of each other, having the same rank. Moreover, their preferred

bases are contextually correlated: computational basis element im means the

same to the speaker (the observer at stage Σm) as in means to the listener (the

observer at stage Σn). In other words, speaker and listener understand the same

language.

Taking account of the parallel transport problem discussed above, we need

to compare like with like. We choose to compare the persistent image Ψ̃n ≡
Nn,mΨm in Qn of the original state with the transmitted state Ψn ≡ Un,mΨm,

also in Qn.

The problem is compounded here by superposition: neither Ψn nor Ψ̃n are

classical, but thay are complex superpositions of classical information (which is

essentially what preferred basis elements are). This is a factor that Hamming did

not face.

In the following, we drop the temporal index, as it does not play an essen-

tial role.

Hamming Distance between Preferred Basis Elements

In the simplest case, case, suppose Ψ = i and Ψ̃ = j, where i and j are

elements of the computational basis representation (CBR) for Q. Each basis

element carries classical information, that is, corresponds to a signal state that

could actually be observed in a run. We calculate the Hamming distance dH(i, j)

between these two elements by first converting each integer into its associated

binary string and then working out the Hamming distance using the rule given

in (18.4).

That means applying the process of binary decomposition. Specifically, we

write

i = i[1] + i[2]2 + i[3]22 + · · ·+ i[r]2r−1,

j = j[1] + j[2]2 + j[3]22 + · · ·+ j[r]2r−1, (18.5)

2 Note that the transmitted state is not an actual outcome (which is classical information),
but a quantum state immediately before it is looked at for an outcome, and is therefore best
thought of as a different form of information, referred to by us as quantum information.
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Table 18.1 The Hamming distance between elements of a

rank-three quantum register basis

000 100 010 110 001 101 011 111

0 ≡ 000 0 1 1 2 1 2 2 3

1 ≡ 100 1 0 2 1 2 1 3 2
2 ≡ 010 1 2 0 1 2 3 1 2
3 ≡ 110 2 1 1 0 3 2 2 1
4 ≡ 001 1 2 2 3 0 1 1 2
5 ≡ 101 2 1 3 2 1 0 2 1
6 ≡ 011 2 3 1 2 1 2 0 1
7 ≡ 111 3 2 2 1 2 1 1 0

where the coefficients i[k], j[k], k = 1, 2, . . . , r, are each either zero or one. Next,

we form the strings Si ≡ i[1]i[2] . . . i[r], Sj ≡ j[1]j[2] . . . j[r]. Finally, we calculate

the Hamming distance dH(Si, Sj).

Table 18.1 gives the Hamming distance between pairs of elements in the

preferred basis for a rank-three quantum register.

We note the following:

1. The maximally saturated state 7 ≡ 111 is furthest away in Hamming distance

terms from the ground state 0 ≡ 111,

2. All elements of the same signality σ are a Hamming distance σ from the signal

ground state.

3. For any two register basis elements, the Hamming distance between them

defines what can be thought of as a relative signality : if any one of these

elements were chosen to be the new ground state, then the other state would

have signality equal to its Hamming distance from that new ground state. This

underlines the fact that the ground state in a QDN register is not intrinsic to

the apparatus but defined contextually by the observer. The choice of signal

ground state is not dictated by lowest energy state.

The power of Hamming’s approach is that his distance rule is a genuine metric,

so that all the theorems of metric spaces can be applied. Lest this appear trivial,

we should consider that quantum registers modeling real situations may have

immense rank, such as that modeling a superconducting quantum interferometer.

In such situations, the Hamming metric distance approach may well prove useful.

The above approach is classical, in that it covers classical register states com-

pletely. QM, however, involves superpositions of register basis states, so we are

faced with the problem of defining the equivalent of a Hamming distance between

arbitrary, normalized quantum register states in the same register.

The Hamming Operator

For a given rank-r quantum register Q with CBR {i : i = 0, 1, 2, . . . , 2r − 1} we

define the Hamming operator H by

iHj ≡ dH(i, j), (18.6)
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where dH(i, j) is the Hamming distance between elements i and j. Then using

completeness, we have the representation

H =

2r−1∑
i,j=0

idH(i, j)j. (18.7)

We would in the first instance like to use this operator to attempt several

definitions of “distance” between more general quantum register states. Examples

are the following.

Quantum Hamming Measure of Dissimilarity

Given the CBR expansions Φ ≡
∑2r−1

i=0 Φii and Ψ ≡
∑2r−1

i=0 Ψii we define the

quantum Hamming measure of dissimilarity H1(Φ,Ψ) as the magnitude of the

matrix element ΦHΨ, that is,

H1(Φ,Ψ) ≡

∣∣∣∣∣∣
2r−1∑
i,j=0

Φi∗dH(i, j)Ψj

∣∣∣∣∣∣ . (18.8)

A variant proposal is to define the quantum Hamming measure of dissimilarity

H2 as

H2(Φ,Ψ) ≡
2r−1∑
i,j=0

Pr(i|Φ)dH(i, j) Pr(j|Ψ) =
2r−1∑
i,j=0

|Φi|2dH(i, j)|Ψj |2. (18.9)

Neither (18.8) nor (18.9) is a genuine metric, because they do not return zero

in general when Φ = Ψ. However, that is not necessarily a bad thing. After all,

quantum states are not objective things. The fact that neither H1(Ψ,Ψ) nor

H2(Ψ,Ψ) is not zero in general reflects the fact that labstates are not classical.

If they were, they would be represented by a single element of the CBR, and in

that case, both measures of dissimilarity vanish.

18.3 Signal Correlation Measure of Change

Suppose an observer is able to prepare and investigate, separately, two labstates

Ψ andΦ in a rank-r quantum registerQ. This means that the observer can exam-

ine each of these labstates separately and measure the answer to any maximal or

partial question about either of these states. Another way of saying this is that

the observer can determine, empirically, the frequencies of finding either labstate

in a given preferred basis state. In reality, that is all that an observer can do.

With such information, the observer can meaningfully discuss differences in

signal outcome probabilities, and it is on that basis that we now proceed. First

we review briefly the concept of correlation.

Correlations in Statistics

The problem of comparing two data sets occurs frequently in statistics. Suppose

we have two sets of data, X and Y , each consisting of n real numbers, such that
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the ith element of X is xi and the ith element of Y is yi. The question often

arises: how “close” are the two sequences {x1, x2, . . . , xn} and {y1, y2, . . . , yn}?
This question is a variant of the one originally addressed by Hamming. Statisti-

cians have developed the concept of correlation in a variety of forms that attempt

to give a number, usually between −1 and +1, that gives the degree of similarity,

dependence, or correspondence between the two data sets (or sequences). A

well-known correlation coefficient is the Pearson correlation coefficient, which

in the case we are discussing is known as a sample correlation coefficient CX,Y

defined by

CX,Y ≡
∑n

i=1(x
i − x)(yi − y)√∑n

j=1(x
j − x)2

∑n
k=1(y

k − y)2
, (18.10)

where x and y are the respective sample averages. If a sample correlation coeffi-

cient has value +1, 0, or −1, the two samples are said to be perfectly correlated,

uncorrelated, or perfectly anticorrelated, respectively.

Detector Correlations

In our case, our interest is directly related to detector physics. The “data” values

in which we are interested, that is, the analogues of the xi and yi values in the

above, are truth values, suitably modified to give correlations. What greatly helps

here is that the values are binary. Suppose we look at two detectors and compare

their signal status. If they both register a signal, or if they both register ground

(no signal), then we can say they are perfectly correlated. Otherwise, they are

perfectly anticorrelated.

More commonly, we might take many such joint readings. Suppose the prob-

ability of finding perfect correlation is p. Therefore, the probability of anticorre-

lation is 1 − p. Assigning a value +1 for every case of perfect correlation and a

value of −1 for every case of perfect anticorrelation, we deduce that the average

correlation C will be given by C = 2p− 1.

Single Qubit Temporal Correlation

Quantum registers in practice may be vast, and the description of change and

persistence of labstates will be accordingly complicated. It is reasonable to

focus attention on the simplest SUO first, in order to appreciate what we are

faced with.

Consider an experiment that is dealing with an SUO represented by a single

qubit. Suppose that, by stage Σ0, the observer has prepared a labstate Ψ0 in the

rank-one quantum register Q0 given by the CBR expression

Ψ0 ≡ α00 + β10, (18.11)

where |α|2 + |β|2 = 1.

Now suppose the labstate Ψ0 is allowed to evolve undisturbed to stage Σ1

under semi-unitary evolution, into labstate Ψ1 in a rank-one quantum register
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Q1. Then we write Ψ1 ≡ U1,0Ψ0, where the evolution operator U1,0 is semi-

unitary. Taking the matrix representation of this operator in standard form,

shown in Eq. (11.26), with the phase E set to zero, we have the rules

U1,000 = a01 − b∗11,

U1,010 = b01 + a∗11, (18.12)

where |a|2 + |b|2 = 1.

We now come to a critical point, one that impinges on the quantum Hamming

measures of dissimilarity discussed above. Consider a persistent array of detectors

from stage Σm to stage Σn, where n > m, such that detector im at stage Σm is

regarded as the same as in at stage Σn. Given the labstates Ψm and Ψn, there

are two very different quantities that could be measured:

Correlation of Probabilities

Suppose the observer measured P i
m, the probability of a positive signal in im

and, separately, P i
n, the probability of a signal in in. These two quantities give

important information about what goes on at detector i at two separate stages.

But there is no direct correlation between those two pieces of information. Every

observation of im at stage Σm cannot possibly be influenced by what could

happen at in at stage Σn, and vice-versa, simply because each observation in

any given run necessarily precludes the other observation, in that run.

The argument goes as follows. If the observer looks at stage Σm to see what

the signal status of detector im is, then that stops the run and so in cannot be

investigated during that run. Likewise, if the observer decides to see what the

signal status is of detector in at stage Σn, that means they cannot have looked

at im at stage Σm, because that would have stopped that run immediately. In

brief, a comparison of the signal status im and in in any given run is ruled out.

The only information the observer has are the two probabilities P i
m and P i

n, and

these have been measured separately over many different runs.

If P̂ i
m ≡ 1 − P i

m, P̂ i
n ≡ 1 − P i

n, we define the correlation of probabilities P i
n,m

as follows:

P i
n,m ≡ P i

nP
i
m + P̂ i

nP̂
i
m − P i

nP̂
i
m − P̂ i

nP
i
m

= (2P i
n − 1)(2P i

m − 1) = Ci
nC

i
m, (18.13)

where Ci
n and Ci

m are detector i correlations at stage Σn and Σm, respectively.

Probability of Correlation

What the observer is really after is the probability of finding a signal at in
knowing for sure that there was a signal in im. This is then a genuine temporal

correlation, denoted Ci
n,m. In the following, we simplify the discussion by taking

the register to consist of just one detector.
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Definition 18.6 Given initial state Ψm ≡ α0m+β1m, where |α|2+|β|2 = 1,

and the evolution operator is Un,m, the temporal correlation Cn,m is given by

Cn,m ≡ Pr(0m|Ψm) Pr(0n|0m) + Pr(1m|Ψm) Pr(1n|1m)

−Pr(1m|Ψm) Pr(0n|1m)− Pr(0m|Ψm) Pr(1n|0m)

= 2Pr(0m|Ψm) Pr(0n|0m) + 2Pr(1m|Ψm) Pr(1n|10)n,

= 2|α|2|0nUn,m0m|2 + 2|β|2|1nUn,m1m|2 − 1. (18.14)

We point out that the probabilities Pr(0m|Ψm) ≡ |α|2 and Pr(1m|Ψm) ≡ |β|2
are found during the calibration process, prior to the experiment proper starting.

From (18.12), we readily find that

Cn,m = 2|a|2 − 1, (18.15)

which, significantly, is independent of the components α, β, of the initial labstate.

This result makes sense: if the dynamics is trivial, in that the only effect is to

multiply the initial labstate by some complex phase factor, then |a| = 1 and the

correlation is perfect, that is, Cn,m = 1. If, conversely, the dynamics flips the

initial labstate to an orthogonal labstate, then the correlation is −1.

We will use the above result (18.15) in the next chapter on the Leggett–Garg

inequalities.

The generalization of these calculations to higher rank registers will undoubt-

edly be more complicated but, in principle, amenable to the same logic as above:

in all cases, the observer should decide what it is that they can actually measure,

and then the formalism will give unambiguous predictions.

A final point we need to make is that we expect our apparatus to be large rank

and calibrated. Then the observables will be (say) the up and down components

of spin, and interest will be in spin correlations. The QDN analysis in such a

case assigns two qubits, one for spin up and one for spin down. This effectively

doubles the size of the quantum register. If we labeled spin up by index 2i, then

spin down would be indexed by 2i + 1, and our temporal correlations would

involve signals in detectors 2i and 2i+ 1.
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