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Abstract

We establish a general algebraic independence theorem for the solutions of a certain kind of
functional equations. As a particular application, we prove that for any real irrational £, the
numbers

are algebraically independent, for multiplicatively independent algebraic numbers at with
0 < | a < | < l .

Subject classification (Amer. Math. Soc. (MOS) 1970): 10 F 35, 10 F 45, 39 A 30.

0. Introduction

Let T = (ti}) be an nxn matrix with non-negative integer entries, and for any
field F define a transformation T: Fn^-Fn by z' = Tz, where

zj = 2$>...2{;- ( U i < » ) and z=(z1,...,zn).

Studies concerning the arithmetic properties of functions /(z) of n complex
variables, for which /(7z) can be expressed as a rational function in /(z) and z,
were initiated by Mahler in 1929-30. It follows from his work that functions of the
complex variable z, such as

r=0 r=0

where £ is a quadratic irrational, obtain transcendental values at algebraic numbers
a with 0 < | a | < l . Moreover he demonstrated the algebraic independence of, for
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174 Yuval Flicker [2]

instance, g(oc1),...,g(cxm), and further h^aj, ..^h^a^, for any multiplicatively
independent algebraic numbers c ,̂ ...,am, with 0<|a{ |< 1.

The method has received considerable attention recently from various authors,
especially Kubota, Loxton and van der Poorten. In particular they obtained
transcendence and algebraic independence results for functions which satisfy
functional equations with transformation matrices T which are more general
than those considered by Mahler; see, for example, Loxton and van der Poorten
(1977). Further, in answer to a question by Mahler (1969) (see p. 520), Loxton
and van der Poorten (1977a) proved the transcendence of values of functions which
satisfy a sequence of functional equations, rather than a single one. Their work
furnishes as a notable corollary the transcendence of h^a), where now £ is an
arbitrary real irrational. Furthermore, Kubota (1977a) generalized Mahler's
algebraic independence techniques to deal with functions that satisfy a sequence of
functional equations, but in which all of the transformations T are given by
scalar martices.

Loxton and van der Poorten (1977b) (see p. 20) posed the problem of extending
their transcendence results in order to establish algebraic independence theorems
similar to those obtained by Mahler in the case when £ is a quadratic irrational.
Here we shall extend the scope of Kubota's (1977a) methods, in order to deal
with a wider class of transformation formulae; we shall obtain thereby a general
algebraic independence theorem (Theorem 2), from which we shall deduce the
following corollary. Let Q be the field of rational numbers.

THEOREM 1. For any real irrational number £ there exists a number A = A(£),
with the following property. If <%, . . . ,am are algebraic numbers with 0 < | a f | < l ,
such that log | o^ |,..., log | am \ are linearly independent over Q + XQ, then the numbers

are algebraically independent over Q.

Note that £ is an arbitrary real irrational number, and that Q+hQ denotes the set
of all numbers of the form u+Ap with rational u and v. In fact we shall specify
in Section 5 the value of A when the partial quotients in the continued fraction
expansion of £ are bounded. When these partial quotients are not bounded we
obtain indeed a stronger algebraic independence result, for in that case we need
assume only that <x1,...,ccm are algebraic numbers with 0<|a<|< 1, whose absolute
values are distinct. In the special case m = 1 we obtain again the result of Loxton
and van der Poorten (1977a) which is mentioned above, namely the transcendency
of Aj(a). Simple cardinality arguments show that there are sets of o^,..., <xm, which
satisfy the conditions of the Theorem with arbitrary large m. Furthermore, we
shall carry out our studies over any completion of an arbitrary number field, thus
establishing the />-adic analogue of a major part of the work mentioned above.
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[3] Algebraic independence 175

In the p-adic case, when £ has continued fraction with bounded partial quotients,
we can obtain only the transcendence of h^a). This is essentially because the
(/»-adic) valuation group of a number field is cyclic and discrete in the real numbers;
see Section 5.

In (1977a) (see Theorems 7 and 8; and see also Section 4.3 of (1977b)), Loxton
and van der Poorten suggested that their work can be generalized to yield the
transcendence of numbers such as £/>(!/•£]) <xr, with arbitrary £ and a as above,
where p is any non-constant polynomial with algebraic coefficients. Unfortunately,
however, when the degree ofp is greater than 1, and when the continued fraction of
£ has bounded partial quotients, the functional equations satisfied by the associated
sequence of functions is not as simple as asserted there (see p. 42), and thus their
technique (like ours) is insufficient, as it stands, to establish the result.

Further we mention the related problem of establishing the algebraic inde-
pendence of h1(ix),...,hm(a), where hx,...,hm are algebraically independent
functions associated with distinct £j,..., £m. Such a result does not seem to follow
from our studies here, but we note that the methods which were announced by
Kubota (1977b) may possibly be useful in this context.

1. The auxiliary functions

Let K be a finite algebraic extension of the field Q of rational numbers, and
denote by Kp its completion by a p-adic valuation | \p on K. We include the field
C of the complex numbers in this scheme by writing p = oo and Kp = C when
we deal with the archimedean valuation 11 (= | |a>)-

Our main theorem (Theorem 2, below) will relate to a sequence f^f ,̂..., of
m-tuples

/m/z)) 0>0) ,

where /^(z) are power series in n variables z = (z1} ...,zn) with coefficient in K.
For any n-tuple m = (mt, ...,mn) of non-negative integers we put

zm _ zm\ 2™*.
1 n

As usual, we measure the proximity to 0 of a power series in n variables by the
minimal total degree of the terms with non-zero coefficients; by the total degree
of the term zm we mean |m| = mx+ ...+mn. Now suppose that the sequence {f,}
admits a subsequence S which converges in the above topology to a limit function f.
We shall assume that the components f^z) ( K / < w ) of f are algebraically inde-
pendent over the ring Kp[z\ of polynomials in n variables with coefficients in Kp.

For the proof of Theorem 2 we shall further assume that there is an n-tuple
a in K*, and elements wk of K, not all 0, such that

(1)
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where h = (Alf..., A,J is a fixed m-tuple of non-negative integers, and k = (Â
satisfies 0 < i j < A ( ( l < i < 4 We shall write to = (a^), so that w is a vector of
h — (^i +1) ••• (^m+1) elements o^ of J£, not all 0. We shall denote by w a vector
of A independent variables in Kp. For convenience we shall rewrite (1) in the form

0 0 /•(fo(ct),a>) = O,

where
F(z,w) = S ^ z "

is a polynomial in n+h variables.
We shall eventually deduce a contradiction by estimating certain values of well-

chosen auxiliary functions; to describe these functions we need the notion of index.
Let tOj = (wjj (J= 1,2,...) be a sequence of vectors whose A components
a ^ (OsSk^h) are elements of K, and put to0 = <o. We say that a polynomial P(w)
with coefficients in K has the property A(ta) if />(wi) = 0 for all y>0. Let
P(z,w) = 2Pm(w)zm be a power series in z, with coeflicients Pm(w) in K[m],
We define the index /(/*) (with respect to {tô }) of the power series P(z, w), to be
the minimum of the numbers |m| over m such that Pm(w) does not have the
property ^(to). Thus we say that P(z, w) has the property A(<a), and that I{P) = oo,
if all coefficients Pm(w) of P(z, w) have the property A(<o).

To define the auxiliary functions we need the following:

LEMMA 1. For any natural number r there are polynomials P4(z,w) (0</<r)
with coefficients in K and with degrees at most r in each of its n+h variables, not
all with the property A(to), such that the function

(2) E;(z, W) = %!>&, w) F(f/z), w)S

has index >r1 + 1 / n for any j^j0(J0=j0(r))for which ij belongs to S. Further, the
coefficients of Pi may depend on r, but not onj.

Here and below the constant implied by <̂  is independent of r and j . Before
proving the lemma we define the auxiliary functions that we actually require;
namely

for j as specified in the lemma, where q is the minimal integer such that P9(z, w)
does not have the property A(to).
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[5] Algebraic independence 177

PROOF. Let r be a natural number, and suppose that Pt are polynomials with
coefficients, variables and degrees as in the lemma. We expand E't as a power
series in z, thus

where Cim(yr) are polynomials with degrees at most 2r in the components of w,
whose coefficients may depend on the coefficients of fit but not on the variable z.
But the function f, belongs to the convergent subsequences S; hence there is a
function j0 =jo(r) of r, such that for any m with |m|<r1+1/n, the polynomial
C m̂(w) is independent ofj, provided thaty>./0.

It remains for us to choose polynomials P4 for which the lemma holds. We
reduce this problem to a simple question in linear algebra. Let V(r) denote the
vector space of polynomials in AT[w] with degrees at most r in each of its h variables.
Denote by VJr) the set of polynomials in V(r) with the property A(to). We
denote the dimension of the factor space

by d(r), and let v^ (1 <&<*/(/•)) be a basis for V(r) over K. We can write

P£z, w) = 2 PiJyr) zm, where r = (r,..., r),

and where pim(yr) is in V(r). Now the image of/>im(w) in F(r) is given by

= 2 PikmVkr (Pikm »n *)>

Substituting the last two equations in the defining equation (2) of E'p we see that
for any fixed m' the image Cim. in V(2r) of the element C,m-(w) of V(2r) is a linear
form in vk^(l<fc^</(2r)), whose coefficients are linear forms in

Thus each equation Cini = 0 is equivalent to a system of d(2r) homogeneous
linear equations

r d(r)

2 2
i=0 fc=l m

in the (r+l)n+1d(r) unknowns pikm, with coefficients aijkm in K. It follows that
the requirement that the index of Efa, w) be at least / is equivalent to a system of
at most Ind(2r) equations in the unknowns pikm. Note that if 7<r1+1/n then the
system is independent of the choice ofy, for anyy as in the statement of the lemma.
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Clearly each polynomial in F(2r) can be written as a linear form in 2* polynomials
in P(r), whose coefficients are of the form

Hence d(2r)^2hd(r), and further

Ind(2r)^In2hd(r)<(r+ \)n+1d(r),

if / = [2~h'n r1+1/n]. Therefore the number of unknowns exceeds the number of
equations in the homogeneous system above, and so we can choose polynomials
Pi(z,yr) for which the lemma holds. This completes the proof.

2. A dominance lemma

In this section we shall establish technical instruments which are useful in
estimating values of the auxiliary functions.

We introduce a sequence of nxn non-degenerate matrices 7|,,7i with
non-negative integer entries, and such that To is the identity matrix. We shall
assume that the maximum entry r̂  of 7} satisfies

(3) r' = hminf (/•,//)>(),

and that there exist arbitrary large y's with r}lj=£r'. Further, we assume that there
is an open neighbourhood D of the origin in K* such that/y(z) are convergent on
D. Also we assume that z,- = 7}z belongs to D for any z in D, where we use the
notations of Section 1. Furthermore, we assume that (i) and (ii) below are
satisfied.

(i) l/i/z)]^ are uniformly bounded for z in D and for ally.
(ii) For any z in D there exists an n-tuple s with real positive components, such

that for any m we have

log | zf \p r /m, s>, as y-> oo;

here and below <m, s> is the usual vector dot product, that is

<m,s> = m1s1+...+mnsn.

Now let ylt..., y, be a finite set of non-zero p-adic numbers with distinct valuations.
Let glt ...,gt be polynomials in m+n variables, with coefficients in Kp, and which
are not all 0. We put

Gik(x)
i—1
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[7] Algebraic independence 179

We denote by cim the coefficient of the term zm in the power series expansion of
gf(f(z), z) at the origin, that is

Finally we let a be an n-tuple in D, with non-zero algebraic components
at (1 </<«), and we suppose that the real vector s = s(a) has components which
are linearly independent over Q. For brevity we put a}- = 7} a.

LEMMA 2. There is an integer i ( l< /< / ) and an n-tuple m with cfm#0, such
that

uniformly in k, provided thatfk belongs to S, andk^>\.

PROOF. The proof is based on arguments of Kubota (1977a); in fact we merely
have to show that Kubota's methods can be applied in our slightly more general
situation.

It suffices to prove the lemma in the case that / = 1; for then we obtain the
asymptotic formula for Gjk(a) as a finite sum of terms with the required shape, and
one of these is dominating by virtue of the assumptions that ylt..., yt have distinct
valuations and that there exist arbitrary large j 's with r^jr'. It suffices in fact to
prove that

Let M be the set of m for which cm^ 0. We define a partial order relation on M
by writing m^m' if and only if m^m^ for all / with 1 <i<n. The subset L of
minimal elements of M is clearly finite. Since s has linearly independent compo-
nents over Q, there is some t in L such that for any m ̂  t in L we have <m—t, s> > 0.
It now follows from (ii) and (3) that oj1-' tends to 0 as y->-oo. Let q' be an integer
which is greater than the maximum of | m | over all m in L. Then there is an integer
k0 = ko(q'), such that for any k>k0 for which fk belongs to S, the coefficients of
the terms with total degree ^q' in the power series / i i - / i ( U i ^ " i ) are zero;
in particular cfa = ct, where

It follows that we can write

)̂ = cto*+ 2 ckmaf,
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180 Yuval Flicker [8]

and it suffices to show that

tends to 0 asy-»-oo.
By virtue of (i) the functions g(fk(z), z) are uniformly bounded for z in D and

for all k. Thus it follows from Cauchy's inequality that there is a real positive
vector c such that

where the implied constant is independent of k and m. Now if m > t then there is
an i with a j 1 - ' = ac^ af\ where <xi} is the rth component of a}, and where m'>0.
Also if m ^ t ' , where t V t in L, then aj-* = afj-* af', where m'SsO. Since any m
which appears in the sum C} satisfies at least one of the condititions m > t or

t', for some t V t in L, it follows that

But by virtue of (ii) and (3) the sum over m' converges for all y > l , and it is
uniformly bounded i n / ; further, a y and ctj'-* tend to 0 as j-+oo. Since L is finite,
it follows that C^->0 as/->oo, and the proof is complete.

3. The choice of tat

To proceed further we assume that the numbers y^/wy) satisfy the equations

(4) /«(«)

here at and bit are elements of K which may depend on a. We shall assume that
the a/s are non-zero and that the multiplicative subgroup of K generated by the
a/s does not contain any element on the unit circle in Kp, except roots of unity.
We can then assume without loss of generality that in fact this subgroup does not
contain any element on the unit circle in Kp, except the element 1; for there
exists a positive integer d such that the set of,..., a^ has this property, and we may
restrict our attention to a subsequence of {f̂ }, whose members fj are indexed by
ally congruent to a fixed i(0^i<d) modulo d. We choose i with the property
that the intersection of the corresponding subsequence with S is infinite; then
\aif...afc\p = 1 if, and only if, a{l...afc= 1, where jY j m are rational integers, as
required.
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[9] Algebraic independence 181

In the next section we shall estimate the numbers ê  = Efiij, w,). We shall deal
with A-tuples tat for which

(5)

for ally; by virtue of (1') we then deduce that

(6)

and therefore that the e} are algebraic numbers. Moreover, the next lemma implies
that the et are non-zero for infinitely many j . Substituting the value of /o(ot),
which is obtained from (4), in the right-hand side of (5), we deduce that in fact (5)
is satisfied with the <ô  occurring on the left given by

(7) wft

where a> = (a{ ... JJ, b, = {bu, ...,bmj), and Q = (£)••• ( £ ) • Substituting the

value of b} obtained from (4), namely b,- = f^oO-a'f/o^), in (7), we obtain

(8) « A

In the sequel we assume that the property A(to) and the index are defined with
respect to the sequence (oy = (wA) of (7) and (8).

LEMMA 3. (i) The polynomial P(z, w) has the property A((ta) if P{at, <oy) = 0
forallj^l,

(ii) The set of polynomials in K[n] with the property A(ui) is a prime ideal of the
ring K[w].

We deduce from the second part of the lemma that

(9)

for any power series Px and P2 in z, with coefficients in K[vr]. The inequality (9)
can be replaced by an equality, since the complementary inequality is easy to
obtain; however, we shall not need it here.

PROOF. Let P(z,w) be a polynomial in z and w for which P(*},<6}) = 0 for all
sufficiently large / By virtue of (8) we deduce that there are finitely many poly-
nomials glt ...,gl in m+n variables, whose coefficients (which lie in K) may depend
on a, but not ony; also there are monomials yx, ...,yj in ax, •••,am, whose values
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182 Yuval Flicker [10]

are distinct, such that

p(<tj, to,) = s gat*,), c^) y) a> o).

Since {f,} admits a subsequence S which converges to a function f, we can apply
Lemma 2 to deduce that ^i(f(z),z) = 0 ( K i < / ) , identically in z. Since the
components of f are algebraically independent we conclude that g/x, z) = 0 for
all i, identically in x = (xlt ...,*„) and z. It follows that if we define *A by the
right-hand side of (8), replacing fi}{(t^ by xi7 and if we put x} = {x^, then

(10) P(zi,xj) = j:gi(x,zi)y
i
i = 0, forally>0.

i—1

Now if

then on substituting xt =/y(a3) in (10) we obtain

0 = P(xjt wy) = 2 PJtaj) zj
m

Since 7} is non-singular for allj'^O it follows that zj'/zj1' for any m/m' . Hence
Pm(o*j) = 0 for all/>0, and P(z,vr) has the property A(ta).

To prove (ii) we take two polynomials Px(w) and P2(w) which do not have the
property A(<a), and deduce a contradiction from the assumption that their product
P does have the property A(t»y). Arguing as above we can write

(* = 1,2),

in the usual notations. The polynomials

i
hk(x) = Sgad*)y{ (k=l,2),

and their product

t

i-l

are non-zero by our assumption. But the supposition that P(w) = Px(w)P2(w) has
the property A(to) implies that
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[11] Algebraic independence 183

for all./>0. Applying Lemma 2 as above we deduce that gf(x,z) == 0 ( l< /< / ) ,
identically in x and z. This is a contradiction which establishes the lemma.

4. Estimates

It remains for us to estimate the numbers e} = Efaj, *ty).

LEMMA 4. For any r> 1, and for infinitely many jpji, where jx =j\(r), we have:
(i) /(F(f,.(z),w)Kl, 00 /(f^w))*!-1*1'" (iii) 0<|e,.|p<exp(-c/-Jri+

1/™), where

PROOF. Since F is a non-zero polynomial, and/j, ...,/m are algebraically inde-
pendent, the function F(f(z),u>) is non-zero. Denote by i (resp. i}) the minimal
total degree of the terms zm in the power series expansion of F(f(z), a>) (resp.
F(lfa), <o)) at the origin, whose coefficients are non-zero. For any large enough j
for which fy belongs to 5 we have it = i. Define Pikm by

If I(F(f/z),w)^/ then for any m with |m|</ we have Pikm = 0, for any
Noting that to = o>0 we deduce that 7(F(f,-(z), w)) < /, and (i) follows.

By the minimality of q we see that for anyy as in Lemma 3 the power series

has the property A{ta). Thus the two members have equal indices, and by (9) we
deduce that

I(E;(z, W)) -qmtyz), w)).

Since ^^r, Lemma 1 implies that the right-hand side of the inequality above is

and (ii) follows.
Finally, in order to prove (iii) we note that (6) and Lemma 3(i) imply that ei

are non-zero for infinitely many/ By (8), and by (6) again, we may write

i

t=i

where y{ are monomials in ax, ...,am of degrees <^r and with distinct non-zero
valuations; gt are non-zero polynomials which are independent of j . Now for any r
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184 Yuval Flicker [12]

and for infinitely vaany j ^ j x , Lemma 2 and (ii) of Section 2 imply that

log | et |p < ;max (log | yi \p) - cx r, \ 11.

Lemma 4(ii), and later (3), imply that the right-hand side above is

< cjr - c3 r}

where U c ^ l (1 </^3). Thus (iii) follows.
To establish our last estimates we need to define the size s(a) of any algebraic

number a=£0. This is given by

s(oc) = max (|| a ||, den a),

where ||a|| denotes the maximum of the archimedean absolute values of the
conjugates of a, and den a is the minimal natural number for which (a den a) is
an algebraic integer. For any valuation we have

(11) WpHsi*))-2*,

where d denotes the degree of the field K over Q, provided that a belongs to K.
We assume that

(12) log*(*y)<|/v.

On extending K if necessary we may assume without loss of generality that all
components of o lie in K.

LEMMA 5. For any j and any r as in Lemma 4 we have

\og s{e

PROOF. By (3), (7) and (12) we deduce that l o g ^ w y j ^ . Since rt is the maximal
entry of 7} we have Iog5(ay)<^/y, where aw denotes the ith component of <x̂.
Lemma 1 implies that the polynomial Pg(z, w) has degree at most r in each of its
variables, and its coefficients are ^-integers whose sizes do not exceed a rea'
positive number c, which may depend on r, but not on / Thus Pg(z, w) is majorized
by

i - i
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[13] Algebraic independence 185

We deduce that

log s(Pg(<tj, toj)) 4 log c+rr} < rrp

for r > 1 and y>/a (=J2(r)). The lemma now follows from (6).

Finally we establish the following:

THEOREM 2. The numbers f^a), •••,fma(o) are algebraically independent over Q.

PROOF. We merely have to show that no relation of the form (1) can hold.
But this is easy, since if the relation (1) did hold, we would obtain for any rp 1
and for infinitely many j ,

rr^> log s(ej)^> - log | et \p> r1+1/" r,;

the inequalities follow from Lemma 5, (11) and Lemma 4(iii), respectively. We
obtain a contradiction, if r is large enough, which establishes the theorem.

As we remarked in the introduction, a variant of Theorem 2 has been obtained
by Mahler in the special case that the transformation matrices 7} are equal to the
jth power T* of a fixed matrix T, and by Kubota (1977a), when all of the matrices
Tj axe scalars, provided that liminf(logr,-//)>0. Loxton and van der Poorten
(1977a) established Theorem 2 in the case m = 1. However, we need Theorem 2
in its full generality in order to deduce Theorem 1.

5. Proof of Theorem 1

We shall now deduce Theorem 1 from Theorem 2, using the analysis of Loxton
and van der Poorten (1977a), pp. 39-45.

Let £ be a real irrational with 0 < £ < l , and denote by ax,a2,..., the partial
quotients of the simple continued fraction of f. Put

aj+1+ aj+2+

hence £ = £0 and £3+1 = CjT1—aj+i- The convergents pfa of £ are determined by
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We have

Pj+i = — L I _£L=_L 1

Put n = 2m, and let z = (z1; ...,zn) be a vector of n variables. The function

converges for all z with /4 < 0, where we put

h = log | z2i_! \p+C log | z2i |p.

Denote by T't and 7} the nxn matrices with

along their main diagonals, respectively. We denote by T'o and by To the identity
nxn matrix, and note that 7} = rjTJ-^C/^l). Condition (3) now follows with
r,=9y+i, and we note that since r,-= a^ri_^-\-Tj_% and â  are rational integers,
we cannot haveyr^+j = (j+1)^ for ally> 1. It is easy to verify that

where zj = r jz = (z^, ...,z^), and further that

(13) fj?) = ( - l)%(z,)+ S ( - l ^ V u

where ẑ  = 7}z = (zw, ...,zm:?). We deduce that (4) and (12) hold for any H-tuple
z = a with non-zero (algebraic) components such that

/i = /i(a)<0 and o g ^ a ^ l (Ui<m) .

Henceforth we shall assume that la l̂j, ̂  1 (1 < i <2/M), and we distinguish between
the two cases.

Case I. Suppose that the partial quotients at are bounded. Thus A = liminf^+1/^
is finite, greater than 1, and irrational. This is the number A which is mentioned
in the statement of Theorem 1. On restricting j to a subsequence with qj+\]qj-+ A,
condition (ii) of Section 2 obtains for any vector z = a with non-zero components,
with s proportional to an n-tuple whose (2/—y)th component is equal to — A*/4
( U i < m ; y = 0,l), Loxton and van der Poorten (1977a), pp. 43-4, proved that
the sequence f,(= (J^,...,fmj)) admits a subsequence which converges to an
/M-tuple of non-constant functions, each of which is transcendental over Kp[z].

yiy (1 </</») are functions of independent variables, hence the limit functions
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are algebraically independent over Kp[z]. Theorem 2 now holds for any n-tuple
a = («!, ...,an) of non-zero algebraic numbers, with a g ^ a g ^ 1, such that lt are
negative and linearly independent over Q+XQ. We obtain Theorem 1 in this
case on putting <% = 1 (1 </^m). Note that when A is algebraic it suffices to
assume that log|aa{_1|2,(Ki<m) are linearly independent over Q; this follows
from Baker's theorem on linear forms in the logarithms of algebraic numbers.

In the complex case the linear independence assumption can be satisfied with
arbitrary large m. In the nonarchimedean case we can take m = 1 only, since the
/»-adic valuation of any algebraic number is equal to some rational power of p.
Thus we obtain the transcendence of 2 ['"£]zr at z = a, in the />-adic sense, where
a is any algebraic number with 0 < | a | p < l . It would be of interest to obtain a
general algebraic independence result in the />-adic case, analogous to the one
which we obtained in the complex case.

Case II. It remains to deal with the case that the partial quotients a, are
not bounded. In this case we shall establish the algebraic independence of
/io(°0 ••• /mo(°0 when /x ... lm are distinct and negative, in the complex as well
as in the/>-adic case. We deduce from (13) that

where

and for anyy> 1 we put for brevity

k=j

hence we have q+^i =/io(a). Suppose that (a^) is a finite set of algebraic numbers,
not all 0, such that

i . . . (cm+O*" = 0.

Then

(14)

where 8 is a linear form in products of at least two distinct dt's with bounded
coefficients and where
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On noting that the c< are rational functions in a!ik =-a|*_iaf!f (1 </<m, 1 <k^j),
we deduce that the left-hand side of (14) is an algebraic number, say tj, with

(15) logsitjXq,.

We shall now find an upper bound for the valuation of the right-hand side of
(14), where we restrict our attention to a subsequence of j with ty+i/fy"*"00- We
note that dt can be expressed as a power series in (*#, a^+lj., whose dominant
term is a£, = ajj ajj+1. Since ct =fu>(<*)—di> andy^oO^O, the dominant term in
d^i is (x"jkifJa)k<-1llhtifVi(a)kt. Now if llt...,lm are distinct, it is clear that the
dominant term in the right-hand side of (14) is given by the product of ay (with
a fixed i, K i<m) and

Mi

The last expression is certainly non-zero if we assume as we may that the algebraic
dependence relation which is satisfied by the /^(a) is of minimal (total) degree.
It follows that tj is non-zero and that

(16)

But since #3+i/4
r/->-°o, the inequalities (15) and (16) violate the fundamental

inequality (11). Thus we obtain a contradiction to the assumption that
flo(a), . . . , / ^a ) are algebraically dependent. Theorem 1 follows in this case on
taking a^ = 1 (1< /<m).
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