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Abstract

In an isolate-free graph G, a subset S of vertices is a semitotal dominating set of G if it is a dominating set
of G and every vertex in S is within distance 2 of another vertex of S. The semitotal domination number of
G, denoted by γt2(G), is the minimum cardinality of a semitotal dominating set in G. Using edge weighting
functions on semitotal dominating sets, we prove that if G � N2 is a connected claw-free graph of order
n ≥ 6 with minimum degree δ(G) ≥ 3, then γt2(G) ≤ 4

11 n and this bound is sharp, disproving the conjecture
proposed by Zhu et al. [‘Semitotal domination in claw-free cubic graphs’, Graphs Combin. 33(5) (2017),
1119–1130].

2020 Mathematics subject classification: primary 05C69.
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1. Introduction

Domination and its variations have been extensively studied (see, for example, [1, 2, 4,
6, 11]). A subset D of vertices in a graph G is a dominating set of G if every vertex of
V(G) \ D is adjacent to a vertex in D. The minimum cardinality γ(G) of a dominating
set is called the dominating number of G. A subset D of vertices in a graph G is a total
dominating set of G if every vertex of V(G) is adjacent to a vertex in D. The minimum
cardinality γt(G) of a total dominating set is called the total dominating number of G.
It is worth noting that the study of total dominating sets is meaningful only on an
isolate-free graph.

Semitotal domination, introduced by Goddard et al. [3] in 2014, is a relaxed form
of total domination. A subset D of vertices in an isolate-free graph G is a semitotal
dominating set, abbreviated semi-TD-set, of G if it is a dominating set of G and every
vertex in D is within distance 2 of another vertex of D. The semitotal domination
number of G, denoted by γt2(G), is the minimum cardinality of a semi-TD-set in G.
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2 J. Chen, H. Chen and S.-J. Xu [2]

FIGURE 1. Two graphs: N2 and N′2, where the black vertices form a minimum semi-TD-set of their
respective graphs.

We refer to a minimum semi-TD-set of G as a γt2(G)-set. Since every total dominating
set is a semi-TD-set and every semi-TD-set is a dominating set, γ(G) � γt2(G) � γt(G).
However, the semitotal domination number is very different from the domination
and total domination number. For example, the total domination number cannot
be compared with the matching number, while the semitotal domination number
is comparable with the matching number and cannot be greater than the matching
number plus one (see [7, 8]). That makes the study of semitotal domination interesting.

There is much interest in bounds for the semitotal domination number of graphs.
For example, Goddard et al. [3] proved that if G is a connected graph of order n � 4,
then γt2(G) � 1

2 n and proposed Conjecture 1.1 below. Henning and Marcon [9] proved
that if G is a connected claw-free cubic graph of order n � 10, then γt2(G) ≤ 4

11 n, and
conjectured that this bound can be improved to 1

3 n if G � {K4, N2}, where N2 is a graph
shown in Figure 1(a). This conjecture was solved by Zhu et al. [13] and they proposed
Conjecture 1.2 below. Zhu and Liu [12] proved that Conjectures 1.1 and 1.2 hold for
line graphs with minimum degree 3 and 4, respectively. In [5], Henning established the
tight upper bounds on the upper semitotal domination number of a regular graph using
edge weighting functions. For algorithmic aspects of semitotal domination in graphs,
Henning and Pandey [10] showed the semitotal domination problem is NP-complete
for planar graphs, chordal bipartite graphs and split graphs.

CONJECTURE 1.1 [3]. If G � K4 is a graph of order n with minimum degree δ(G) � 3,
then γt2(G) � 2

5 n.

CONJECTURE 1.2 [13]. If G � N2 is a connected claw-free graph of order n ≥ 6 with
minimum degree δ(G) ≥ 3, then γt2(G) ≤ 1

3 n.

Inspired by [5], using edge weighting functions, we establish the tight upper bound
on the semitotal domination number of a connected claw-free graph with minimum
degree at least 3. In Section 2, we give some basic definitions and a lemma as
preliminaries. In Section 3, we prove that if G � N2 is a connected claw-free graph
of order n ≥ 6 with minimum degree δ(G) ≥ 3, then γt2(G) ≤ 4

11 n. Also, we construct
a graph attaining this bound and thus disprove Conjecture 1.2.
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2. Preliminaries

In this section, we introduce some basic definitions and a useful lemma.
Let G = (V(G), E(G)) be a connected finite simple undirected graph with vertex

set V(G) and edge set E(G) of order n = |V(G)|. For a vertex v ∈ V(G), we denote by
NG(v) = {u ∈ V(G) | uv ∈ E(G)} the neighbourhood of v and by NG[v] = NG(v) ∪ {v}
the closed neighbourhood of v. The degree of v is dG(v) = |NG(v)| and the number
δ(G) = min{dG(v) | v ∈ V(G)} is the minimum degree of G. We call a path connecting
vertices u and v a (u, v)-path. The distance dG(u, v) between u and v is the length of a
shortest (u, v)-path in G. For a subset S of V(G), we denote by NS(v) the neighbourhood
of v restricted on S and by G[S] the subgraph of G induced by S, while the graph
G − S is the graph obtained from G by deleting the vertices in S and all edges incident
with S. A graph is claw-free if it does not contain the complete bipartite graph K1,3 as
an induced subgraph. If there is no confusion, then the subscript G is omitted in the
notation, such as N(v), d(v), d(u, v) and so on.

Now consider S1 and S2 which are two disjoint subsets of V(G). Let E[S1, S2] =
{u1u2 | u1 ∈ S1 and u2 ∈ S2}. For a vertex v of S, the S-external private neighbourhood
of v, denoted by epn(v, S), is the set of all vertices in V(G) \ S that are adjacent to
v but to no other vertex of S. In other words, if u ∈ epn(v, S), then u ∈ V(G) \ S and
NG(u) ∩ S = {v}. The S-internal private 2-neighbourhood of v, denoted by ipn2(v, S),
is the set of all vertices in S \ {v} that are within distance 2 of v in G but at a distance
greater than 2 from every other vertex of S. In other words, if u ∈ ipn2(v, S), then
u ∈ S \ {v}, d(v, u) � 2 and d(u, w) > 2 for any vertex w ∈ S \ {u, v}.

A semi-TD-set in a graph G is a minimal semi-TD-set if it contains no semi-TD-set
of G as a proper subset. The following result in [8] provides a characterisation of
minimal semi-TD-sets.

LEMMA 2.1 [8]. Let S be a semi-TD-set in a graph G. Then, S is a minimal semi-TD-set
of G if and only if every vertex v ∈ S satisfies at least one of the following three
properties:

(a) the vertex v is isolated in G[S];
(b) ipn2(v, S) � ∅;
(c) epn(v, S) � ∅.

3. Main result

In this section, we establish the tight upper bound on the semitotal domination
number of a connected claw-free graph with minimum degree at least 3 using edge
weighting functions. Before that, we define two graphs N2 and N′2 as in Figure 1. Note
that N′2 is a graph attaining the bound of Theorem 3.1. This shows that Conjecture 1.2
is not true.

THEOREM 3.1. If G � N2 is a connected claw-free graph of order n ≥ 6 with minimum
degree δ(G) ≥ 3, then γt2(G) ≤ 4

11 n, and this bound is sharp.
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PROOF. Suppose that the theorem is false. Let G be a counterexample such that |V(G)|
is as small as possible. By the choice of G, G � N2 is a connected claw-free graph of
order n ≥ 6 with δ(G) ≥ 3 such that γt2(G) > 4

11 n, and any connected claw-free graph
G′ � N2 of order n′ < n with δ(G′) ≥ 3 has γt2(G′) ≤ 4

11 n′, where n′ ≥ 6.
For a γt2(G)-set S, set S = V(G) \ S. Define sets AS = {v ∈ S | ipn2(v, S) � ∅},

AS
1 = {v ∈ AS | v ∈ ipn2(v′, S) for some vertex v′ ∈ S} and AS

2 = AS \ AS
1. Let v ∈ AS

1
and v ∈ ipn2(v′, S). Then v′ is the only vertex of S within distance 2 from v in G.
Since ipn2(v, S) � ∅, v′ ∈ ipn2(v, S) and v′ ∈ AS

1. Further, ipn2(v, S) = {v′} and
ipn2(v′, S) = {v}. This implies that the vertices in AS

1 are paired off. For each
vertex u ∈ AS

2, let Su = ipn2(u, S) ∪ {u}. If u′ ∈ ipn2(u, S), then u′ � AS. Otherwise,
u′ ∈ AS and u ∈ ipn2(u′, S), for u is the only vertex of S within distance 2 from
u′ in G, which contradicts the fact that u ∈ AS

2. We note that if u1 and u2 are two
distinct vertices in AS

2, then ipn2(u1, S) ∩ ipn2(u2, S) = ∅. Hence, Su1 ∩ Su2 = ∅ for
each pair of different vertices u1, u2 ∈ AS

2. Let BS =
⋃

u∈AS
2

Su and CS = S \ (AS
1 ∪ BS).

Further, we partition CS into three subsets: CS
0 = {z | z ∈ CS and |epn(z, S)| = 0},

CS
1 = {z | z ∈ CS and |epn(z, S)| = 1}, and CS

2 = {z | z ∈ CS and |epn(z, S)| ≥ 2}. Then
S = AS

1 ∪ BS ∪ CS
0 ∪ CS

1 ∪ CS
2.

In particular, a vertex u of AS
2 is special if |Su| = 2, d(u′) = 3 and |NS(u) \ NS(u′)| = 1,

where {u′} = Sv \ {u}. Further, we define sets AS
2̃
= {u | u ∈ AS

2 and u is special} and
CS

ĩ
= {z | z ∈ CS

i and d(z) = 3} for i ∈ {0, 1}.
A diamond in G is an induced graph of G isomorphic to K4 − e. We call a diamond

of G a special diamond if each of its vertices has degree 3 in G. Let D be the set of
vertices in a special diamond. Among all γt2(G)-set, we choose a γt2(G)-set S satisfying
the following conditions:

(1) the number of edges in G[S], denoted by λ(S), is minimised;
(2) subject to condition (1), |D ∩ S| is minimised;
(3) subject to condition (2), |CS

0̃
| is minimised;

(4) subject to condition (3), |CS
0 | is minimised;

(5) subject to condition (4), |CS
1̃
| is minimised.

We prove the following claim about the set S. �

Claim 1. S is an independent set of G.

Suppose to the contrary that there exist two adjacent vertices v1 and v2
in S. If epn(v1, S) � ∅ or epn(v2, S) � ∅, then without loss of generality, consider
epn(v1, S) � ∅. Let x1 be a vertex in epn(v1, S). Since G is claw-free, each vertex of
N(v1) \ {x1, v2} is adjacent to either x1 or v2. Thus, S1 = (S \ {v1}) ∪ {x1} is a γt2(G)-set.
However, λ(S1) < λ(S), for x1 is adjacent to no vertex of S \ {v1}, which contradicts the
choice of S. Hence, epn(v1, S) = ∅ and epn(v2, S) = ∅. By Lemma 2.1, ipn2(v1, S) � ∅
and ipn2(v2, S) � ∅.

If ipn2(v1, S) � {v2}, then there exists a vertex v3 ∈ ipn2(v1, S) \ {v2}. Combined with
v1v2 ∈ E(G), d(v1, v3) = 2. As v3 ∈ ipn2(v1, S), any vertex of N(v3) belongs to S and is
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adjacent to no vertex of S \ {v1, v3}. Let x2 be a vertex connecting v1 and v3. Then
x2v2 � E(G). Since G is claw-free, each vertex of N(v1) \ {x2, v2} is adjacent to either
x2 or v2. When all vertices of N(v3) \ {x2} are adjacent to x2, (S \ {v1, v3}) ∪ {x2} is
a semi-TD-set of G, which contradicts the minimality of S. However, when there
exists a vertex x3 ∈ N(v3) \ {x2} such that x2x3 � E(G), each vertex of N(v3) \ {x2, x3}
is adjacent to either x2 or x3 as G is claw-free. Then S1 = (S \ {v1, v3}) ∪ {x2, x3} is a
γt2(G)-set. But, λ(S1) < λ(S), which is a contradiction.

Hence, ipn2(v1, S) = {v2}. Similarly, ipn2(v2, S) = {v1}. Further, all vertices in
NS(v1) ∪ NS(v2) are adjacent to no vertex of S \ {v1, v2}. Recall that epn(v1, S) = ∅ and
epn(v2, S) = ∅. Thus, NS(v1) = NS(v2). Since n ≥ 6, γt2(G) ≥ 4

11 n > 2. This implies
that {v1, v2} is not a γt2(G)-set. As G is connected, there exists a vertex x4 in S \ NS(v1)
such that x4 is adjacent to a vertex x5 in NS(v1). We note that x4 has a neighbour in
S \ {v1, v2}. When all vertices of NS(v1) are adjacent to x5, S1 = (S \ {v1, v2}) ∪ {x5}
is a semi-TD-set of G with |S1| < |S|, which is a contradiction. When there exists a
vertex x6 ∈ NS(v1) such that x5x6 � E(G), each vertex of NS(v1) \ {x5, x6} is adjacent to
either x5 or x6 as G is claw-free. Then S1 = (S \ {v1, v2}) ∪ {x5, x6} is a γt2(G)-set with
λ(S1) < λ(S), which is a contradiction. This completes the proof of Claim 1.

Combining Claim 1 and the claw-freeness of G, we see that x has at most two
neighbours in S for any vertex x of S. We define an edge weighting function w on
G: [S, S]→ [0, 1]. For each vertex x ∈ S, the function w assigns weight for each edge
e ∈ [{x}, S] as follows.

• If x is an S-external private neighbour, then for the unique edge e ∈ [{x}, S], w(e) = 1.
• If x is not an S-external private neighbour and NCS

0̃
(x) = ∅, then w(e) = 1

2 for each
edge e ∈ [{x}, S].

• Assume that x is not an S-external private neighbour and NCS
0̃
(x) � ∅. Let NS(x) =

{y1, y2}, where y1 ∈ NCS
0̃
(x). It follows from the partition of S that y2 ∈ AS

2 ∪ CS
0 ∪

CS
1 ∪ CS

2.

• If y2 ∈ AS
2̃
∪ CS

0̃
, then w(xy1) = w(xy2) = 1

2 .
• If either y2 ∈ (AS

2 \ AS
2̃
) ∪ (CS

1 \ CS
1̃
), or y2 ∈ CS

1̃
and |{u | u ∈ NS(y2) and

NCS
0̃
(u) � ∅}| = 1, then w(xy1) = 3

4 and w(xy2) = 1
4 .

• If either y2 ∈ CS
0 \ CS

0̃
and |{u | u ∈ NS(y2) and NCS

0̃
(u) � ∅}| ≤ 2, or y2 ∈ CS

1̃
and

|{u | u ∈ NS(y2) and NCS
0̃
(u) � ∅}| = 2, then w(xy1) = 5

8 and w(xy2) = 3
8 .

• If y2 ∈ CS
0 \ CS

0̃
and |{u | u ∈ NS(y2) and NCS

0̃
(u) � ∅}| ≥ 3, then w(xy1) = 9

16 and

w(xy2) = 7
16 .

• If y2 ∈ CS
2, then w(xy1) = 1 and w(xy2) = 0.

From the definition of the edge weighting functions, the sum of the weights assigned
to the edges joining x to S is 1. For any subset S1 of S, we define a weighting function
f on S1 with f (S1) =

∑
e∈[S,S1] w(e). We prove the following claims.
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Claim 2. f (AS
1) > 7

4 |A
S
1|.

Recall that the vertices in AS
1 are paired off. Let v1 and v2 be a pair of vertices

in AS
1. Then ipn2(v1, S) = {v2} and ipn2(v2, S) = {v1}. This implies that all vertices in

NS(v1) ∪ NS(v2) are adjacent to no vertex of S \ {v1, v2}. Further, we have f ({v1, v2}) =
|NS(v1) ∪ NS(v2)|. Combining Claim 1 and δ(G) ≥ 3, we have |NS(v1) ∪ NS(v2)| ≥ 3.
If |NS(v1) ∪ NS(v2)| = 3, then NS(v1) = NS(v2) and |NS(v1)| = 3. In this case, n = 5 as G
is claw-free and G is connected, which is a contradiction. Thus, |NS(v1) ∪ NS(v2)| ≥ 4.
Hence f ({v1, v2}) ≥ 4 > 7

2 and then f (AS
1) > 7

4 |A
S
1|.

Claim 3. f (BS) ≥ 7
4 |B

S|.

Note that BS =
⋃

u∈AS
2

Su and Su ∩ Su′ = ∅ for any two different vertices u, u′ ∈ AS
2.

We show that for any vertex u1 of AS
2, f (Su1 ) ≥ 7

4 |Su1 |. Let Su1 = {u1, . . . , ur}, where
r = |Su1 | ≥ 2. Since {u2, . . . , ur} ⊆ ipn2(u1), all neighbours of ui in S are adjacent
to no vertex of S \ {u1, ui}, where i ∈ {2, . . . , r}. Combined with Claim 1, f (Su1 ) ≥∑

i∈{2,...,r} d(ui). If u1 ∈ AS
2̃
, then f (Su1 ) = f ({u1, u2}) = w(x1u1) + d(u2) = w(x1u1) + 3,

where {x1} = NS(u1) \ NS(u2). Since u1 � ipn2(u2, S), x1 has a neighbour in S other
than u1. Thus, w(x1u1) = 1

2 . Further, f ({u1, u2}) = 7
2 and f (Su1 ) = 7

4 |Su1 |, as desired.
Thus, we may assume that u1 ∈ AS

2 \ AS
2̃
. Then either r ≥ 3, or r = 2 and d(u2) ≥ 4, or

r = 2 and d(u2) = 3 and |NS(u1) \ NS(u2)| ≥ 2.
If r ≥ 3, then 3r − 3 > 7

4 r. Since δ(G) ≥ 3, f (Su1 ) ≥ ∑i∈{2,...,r} d(ui) ≥ 3(r − 1) =
3r − 3. Further, f (Su1 ) > 7

4 r. When r = 2 and d(u2) ≥ 4, f (Su1 ) = f ({u1, u2}) ≥ d(u2) ≥
4 > 7

4 r. When r = 2, d(u2) = 3 and |NS(u1) \ NS(u2)| ≥ 2, let x1 be a vertex in NS(u1) \
NS(u2). From the definition of the edge weighting functions, we have w(x1u1) ≥ 1

4 .
Thus, f (Su1 ) = f ({u1, u2}) ≥ 2w(x1u1) + d(u2) ≥ 1

2 + 3 = 7
2 ≥

7
4 r. This completes the

proof of Claim 3.

Claim 4. f (CS
0 \ CS

0̃
) ≥ 7

4 |C
S
0 \ CS

0̃
|.

Let z1 be a vertex in CS
0 \ CS

0̃
and let NS(z1) = {x1, . . . , xr}, where r ≥ 4. If we

have |{x | x ∈ NS(z1) and NCS
0̃
(x) � ∅}| ≤ 2, then |{x | x ∈ NS(z1) and NCS

0̃
(x) = ∅}| ≥

r − 2 ≥ 2. Without loss of generality, consider NCS
0̃
(x1) = ∅ and NCS

0̃
(x2) = ∅. By the

definition of the edge weighting functions, w(x1z1) = 1
2 , w(x2z1) = 1

2 and w(xiz1)
≥ 3

8 for any i ∈ {3, . . . , r}. Hence, f ({z1}) ≥ w(x1z1) + w(x2z1) +
∑

i∈{3,...,r} w(xiz1) ≥
1 + 3

8 (r − 2) ≥ 7
4 . When |{x | x ∈ NS(z1) and NCS

0̃
(x) � ∅}| ≥ 3, w(xiz1) ≥ 7

16 for any

i ∈ {1, . . . , r}. Then f ({z1}) ≥ 7
16 r ≥ 7

4 . In all cases, we have f ({z1}) ≥ 7
4 . Therefore,

f (CS
0 \ CS

0̃
) ≥ 7

4 |C
S
0 \ CS

0̃
|.

Claim 5. f (CS
1) ≥ 7

4 |C
S
1 |.

Let z1 be a vertex in CS
1 and NS(z1) = {x1, x2, . . . , xr}, where {x1} = epn(z1, S) and

r ≥ 3. According to the definition of the edge weighting functions, w(x1z1) = 1. When
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z1 ∈ CS
1 \ CS

1̃
, we have r ≥ 4 and w(xiz1) ≥ 1

4 for any i ∈ {2, . . . , r}. Thus, f ({z1}) =
w(x1z1) +

∑
i∈{2,...,r} w(xiz1) ≥ 1 + 1

4 (r − 1) ≥ 7
4 . When z1 ∈ CS

1̃
and either NCS

0̃
(x2) = ∅

or NCS
0̃
(x3) = ∅, without loss of generality, we can take NCS

0̃
(x2) = ∅. Then w(x2z1) = 1

2

and w(x3z1) ≥ 1
4 . Further, f (z1) = w(x1z1) + w(x2z1) + w(x3z1) ≥ 1 + 1

2 +
1
4 =

7
4 . When

both z1 ∈ CS
1̃

and NCS
0̃
(x2) � ∅ and NCS

0̃
(x3) � ∅, we have w(x2z1) = w(x3z1) = 3

8 .

Further, f ({z1}) = w(x1z1) + w(x2z1) + w(x3z1) = 7
4 . In both cases, f ({z1}) ≥ 7

4 .
Therefore, f (CS

1) ≥ 7
4 |C

S
1 |.

Claim 6. f (CS
2) > 7

4 |C
S
2 |.

Let z1 be a vertex in CS
2 and x1, x2 be two vertices in epn(z1, S). Then w(x1z1) =

w(x2z1) = 1 and further f ({z1}) ≥ 2. Hence, f (CS
2) ≥ 2|CS

2 | >
7
4 |C

S
2 |.

If f (CS
0̃
) ≥ 7

4 |C
S
0̃
|, then f (S) ≥ 7

4 |S| by Claims 2–6. From the definition of the edge

weighting functions, f (S) = n − |S|. It follows that |S| ≤ 4
11 n, which is a contradiction.

Thus, f (CS
0̃
) < 7

4 |C
S
0̃
| and there exists a vertex y1 ∈ CS

0̃
such that f ({y1}) < 7

4 . Suppose
that NS(y1) = {x1, x2, x3} and NS(xi) = {y1, yi+1} for any i ∈ {1, 2, 3}. If {y2, y3, y4} ∩
((AS

2 \ AS
2̃
) ∪ (CS

1 \ CS
1̃
) ∪ CS

2) � ∅, then at least one edge of {x1y1, x2y1, x3y1} has a

weight of at least 3
4 . Further, f ({y1}) = w(x1y1) + w(x2y1) + w(x3y1) ≥ 3

4 +
1
2 +

1
2 ≥

7
4 ,

which is a contradiction. Thus, {y2, y3, y4} ∩ ((AS
2 \ AS

2̃
) ∪ (CS

1 \ CS
1̃
) ∪ CS

2) = ∅. Next,
we prove two claims about the set {y2, y3, y4}.

Claim 7. {y2, y3, y4} ∩ AS
2̃
= ∅.

In contrast, we may assume that y2 ∈ AS
2̃
. Let Sy2 = {y2, y5} and N(y5) = {x4, x5, x6},

where x4 is a vertex connecting y2 and y5. According to the definition of AS
2̃
, N(y2) ⊆

{x1, x4, x5, x6}. Note that ipn2(y1, S) = ∅ and epn(y1, S) = ∅. If d(x1, y5) ≤ 2, then
(S \ {y1, y2}) ∪ {x1} is a semi-TD-set of G, which contradicts the minimality of S. Thus,
d(x1, y5) ≥ 3 which implies that x1xi � E(G) for any i ∈ {4, 5, 6}. Combining δ(G) ≥ 3
and the claw-freeness of G, we have x1x2 ∈ E(G) or x1x3 ∈ E(G) and x4x5 ∈ E(G) or
x4x6 ∈ E(G). Without loss of generality, consider x1x2 ∈ E(G) and x4x5 ∈ E(G).

If x4x6 ∈ E(G), then S1 = (S \ {y1, y2, y5}) ∪ {x1, x4} is a semi-TD-set of G, which
is a contradiction. Thus, x4x6 � E(G). Since G is claw-free, y2x6 � E(G). Then y2x5 ∈
E(G) as N(y2) ⊆ {x1, x4, x5, x6} and d(y2) ≥ 3. Further, d(y2) = 3. If x5x6 ∈ E(G), then
S1 = (S \ {y1, y2, y5}) ∪ {x1, x5} is a semi-TD-set of G, which is a contradiction. Thus,
x5x6 � E(G). Since G is claw-free, N(x4) = {y2, y5, x5} and N(x5) = {y2, y5, x4}. We note
that d(x4) = d(x5) = 3 and then G[{y2, y5, x4, x5}] is a special diamond.

Since y5 ∈ ipn2(y2, S) and x6y2 � E(G), x6 is adjacent to no vertex of S \ {y5}.
If x6 is not in a special diamond, then S1 = (S \ {y2, y5}) ∪ {x4, x6} is a γt2(G)-set
with λ(S1) = λ(S) but with |D ∩ S1| < |D ∩ S|, which contradicts our choice of S.
Thus, x6 is in a special diamond D. Observe that x6x2 � E(G) and x6x3 � E(G). Let
V(D) = {x6, x7, x8, y6}, where x6y6 is the missing edge in the special diamond D.
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Then {x7, x8} ⊆ S. To dominate x7 and x8, we must have y6 ∈ S. If y6x2 ∈ E(G), then
y6 ∈ ipn2(y1, S) which contradicts y1 ∈ CS

0̃
. Thus, y6x2 � E(G). Similarly, y6x3 � E(G).

Let N(y6) = {x7, x8, x9}. We note that y6 ∈ ipn2(v, S) for some vertex v ∈ S so
call v = y7. Then y7x9 ∈ E(G). Recall that {y3, y4} ∩ (AS

2 \ AS
2̃
) = ∅. If y7x2 ∈ E(G) or

y7x3 ∈ E(G), then y7 = y3 or y4 and y7 ∈ AS
2 \ AS

2̃
, which is a contradiction. Thus,

y7x2 � E(G) and y7x3 � E(G). If y7 � ipn2(y6, S), then S1 = (S \ {y1, y2, y6}) ∪ {x1, x7}
is a semi-TD-set of G, which is a contradiction. Hence, y7 ∈ ipn2(y6, S). Let S1 =

(S \ {y5}) ∪ {x6}. Clearly, S1 is a γt2(G)-set, λ(S1) = λ(S) and |D ∩ S1| = |D ∩ S|. We
note that y2 ∈ ipn2(y1, S1) and {x6, y7} ⊂ ipn2(y6, S1). Further, {y1, y2, x6, y6, y7} ⊆ BS1

and |CS1

0̃
| < |CS

0̃
|, which contradicts the choice of S.

By Claim 7, each vertex of {y2, y3, y4} belongs to CS
0 ∪ CS

1̃
.

Claim 8. {y2, y3, y4} ∩ CS
1̃
� ∅.

Suppose to the contrary that {y2, y3, y4} ∩ CS
1̃
= ∅. Then {y2, y3, y4} ⊆ CS

0. Since G is
claw-free, there exists an edge in G[{x1, x2, x3}], say x1x2. If y2 � y3, then x3y2 � E(G)
or x3y3 � E(G), as x3 has only one neighbour in S \ {y1}. By symmetry, consider
y2x3 � E(G) (that is, y2 � y4). Then S1 = (S \ {y1, y2}) ∪ {x1} is a dominating set of G
as y2 ∈ CS

0 and y1 ∈ CS
0̃
. Since |S1| < |S|, S1 cannot be a semi-TD-set of G. Combined

with {y1, y2} ⊆ CS
0, y1 and y2 are the only two vertices of S within distance 2 from

y4 in G, and y4 � y3. Thus, all vertices of NS(y4) \ {x3} are adjacent to y2. Further,
S1 = (S \ {y1, y3}) ∪ {x2} is a semi-TD-set of G as y3 ∈ CS

0 and y1 ∈ CS
0̃
, which contra-

dicts the minimality of S. Hence, y2 = y3.
Since y1 � ipn2(y2, S), y2x3 � E(G) (that is, y2 � y4). Let S2 = (S \ {y1, y4}) ∪ {x3}.

As y4 ∈ CS
0, S2 is a dominating set of G. If d(y2, x3) ≤ 2, then S2 is a semi-TD-set

of G, which is a contradiction. Thus, d(y2, x3) > 2. Further, x1x3 � E(G) and x2x3 �
E(G). Combining d(x3) ≥ 3 and the claw-freeness of G, there exists a vertex x4 such
that x4x3 ∈ E(G) and x4y4 ∈ E(G). By Claim 1, x4 ∈ S. We note that y2x4 � E(G) as
d(y2, x3) > 2. Since y4 ∈ CS

0, x4 � epn(y4, S) and x4 has a neighbour y5 in S other
than y4. As S2 cannot be a semi-TD-set of G, y1 and y4 are the only two vertices of
S within distance 2 from y2 in G. Thus, all vertices of NS(y2) \ {x1, x2} are adjacent
to y4.

Let x5 be a vertex in NS(y2) \ {x1, x2}. Then x5y4 ∈ E(G). If x1x5 ∈ E(G), then
(S \ {y1, y2}) ∪ {x1} is a semi-TD-set of G, which is a contradiction. Thus, x1x5 � E(G).
Recall that x1x3 � E(G). This implies that d(x1) = 3. Similarly, d(x2) = 3. Note that
x5x3 � E(G) as d(y2, x3) > 2. Since G is claw-free, x5x4 � E(G) and each vertex of
N(y4) \ {x3, x5} is adjacent to either x3 or x5. Let S3 = (S \ {y1, y2, y4}) ∪ {x1, x3, x5}.
Then S3 is a γt2(G)-set and λ(S3) = λ(S). If d(y2) = 3, then G[{y1, y2, x1, x3}] is
a special diamond. Further, |D ∩ S2| < |D ∩ S|, which contradicts the choice of S.
Thus, d(y2) ≥ 4. Let x6 be a vertex in NS(y2) \ {x1, x2, x5}. Then x6y4 ∈ E(G). We note
that {y2, y4} ∈ CS

0 \ CS
0̃

and |{x | x ∈ NS(y2) and NCS
0̃
(x) � ∅}| ≤ 2. From the definition
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of the edge weighting functions, we have w(x1y1) = w(x2y1) = 5
8 and w(x3y1) ≥ 9

16 .
Further, f ({y1}) = w(x1y1) + w(x2y1) + w(x3y1) > 7

4 , which contradicts the choice
of y1.

By Claim 8, we may assume that y2 ∈ CS
1̃
. Then w(x1y1) ≥ 5

8 . If y3 ∈ CS
1̃
, then

w(x2y1) ≥ 5
8 and further f ({y1}) = w(x1y2) + w(x2y2) + w(x3y2) ≥ 5

8 +
5
8 +

1
2 ≥

7
4 ,

which is a contradiction. Thus, y3 ∈ CS
0. Similarly, y4 ∈ CS

0. This implies that y2 � y3
and y2 � y4. Let N(y2) = {x1, x4, x5}, where {x4} = epn(y2, S). If NCS

0̃
(x5) = ∅, then

by the definition of the edge weighting functions, we have w(x1y1) = 3
4 . Further,

f ({y1}) = w(x1y2) + w(x2y2) + w(x3y2) ≥ 3
4 +

1
2 +

1
2 ≥

7
4 , which is a contradiction.

Hence, NCS
0̃
(x5) � ∅. We proceed with a series of claims that culminate in a

contradiction.

Claim 9. |E(G[{x1, x2, x3}])| = 1.

Since G is claw-free, |E(G[{x1, x2, x3}])| ≥ 1. If x2x1 ∈ E(G) and x2x3 ∈ E(G), then
(S \ {y1, y3}) ∪ {x2} is a semi-TD-set of G as y1 ∈ CS

0̃
and y3 ∈ CS

0, which contradicts
the minimality of S. Thus, x2x1 � E(G) or x2x3 � E(G). Similarly, x3x1 � E(G) or
x3x2 � E(G). Suppose that |E(G[{x1, x2, x3}])| ≥ 2. Then x1x2 ∈ E(G), x1x3 ∈ E(G) and
x2x3 � E(G). This means G has a claw, which contradicts the claw-freeness of G.
Hence, |E(G[{x1, x2, x3}])| = 1.

Claim 10. y3 = y4.

Assume, to the contrary, that y3 � y4. By Claim 9, without loss of generality,
we consider E(G[{x1, x2, x3}]) = {x1x2} or {x2x3}. Let S1 = (S \ {y1, y3}) ∪ {x2}. Since
y3 ∈ CS

0, S1 is a dominating set of G. Note that S1 cannot be a semi-TD-set of G.
Thus, there exists a vertex y such that y1 and y3 are the only two vertices of
S within distance 2 from y in G and d(y, x2) > 2. If E(G[{x1, x2, x3}]) = {x2x3},
then d(x2, y4) ≤ 2 and y = y2. This implies that x5y3 ∈ E(G). However, then
(S \ {y1, y4}) ∪ {x3} is a semi-TD-set of G as y4 ∈ CS

0, which contradicts the
minimality of S. Hence, E(G[{x1, x2, x3}]) = {x1x2}. In this case, d(y2, x2) ≤ 2 and
y = y4. Thus, all vertices of NS(y4) \ {x3} are adjacent to y3. Let x be a vertex
in NS(y4) \ {x3}. Then xy3 ∈ E(G). Recall that d(y, x2) > 2. Thus, d(y4, x2) > 2 and
x2x � E(G). Since G is claw-free, NS(y4) \ {x3} is a clique of G. Combining d(x3) ≥ 3
and the claw-freeness of G, there exists a vertex x′ in NS(y4) \ {x3} such that
x3x′ ∈ E(G). Then (S \ {y3, y4}) ∪ {x′} is a semi-TD-set of G as y3 ∈ CS

0, which is a
contradiction.

If y3(= y4) ∈ CS
0 \ CS

0̃
, then w(x2y1) ≥ 9

16 and w(x3y1) ≥ 9
16 . Further, f ({y1}) =

w(x1y2) + w(x2y1) + w(x3y1) ≥ 5
8 +

9
16 +

9
16 ≥

7
4 , which contradicts the choice of y1.

Thus, y3 ∈ CS
0̃
.

Claim 11. x2x3 � E(G).
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For the sake of contradiction, suppose that x2x3 ∈ E(G). If d(y2, x2) ≤ 2, then
(S \ {y1, y3}) ∪ {x2} is a semi-TD-set of G as y3 ∈ CS

0̃
, which contradicts the minimality

of S. Thus, d(y2, x2) ≥ 3. Similarly, d(y2, x3) ≥ 3. This implies that E[{x1, x4, x5},
{x2, x3}] = ∅. If d(x2) > 3, then there exists a vertex x in S adjacent to x2. Since G
is claw-free, xy3 ∈ E(G). Thus, x has a neighbour in S different from y3 as y3 ∈ CS

0̃
.

Combined with NCS
0̃
(x5) � ∅, (S \ {y1, y3}) ∪ {x2} is a semi-TD-set of G, which is a

contradiction. Thus, d(x2) = 3. Similarly, d(x3) = 3. Observe that y1 and y3 are in the
same special diamond of G.

If x1x4 ∈ E(G), then S1 = (S \ {y1, y2, y3}) ∪ {x1, x2} is a dominating set of G.
Otherwise, x5 is not dominated by S1, and further x5x1 � E(G) and x5y3 ∈ E(G) as
y2 ∈ CS

1̃
and y3 ∈ CS

0̃
. Since d(x5) ≥ 3 and G is claw-free, N(x5) = {y2, y3, x4}. In this

case, G = N2, which is a contradiction. As NS(x5) \ {y2} ⊆ CS
0̃

and y3 ∈ CS
0̃
, there does

not exist a vertex in S \ {y1} such that y2 and y3 are the only two vertices of S within
distance 2 from it in G. Thus, S1 is a semi-TD-set of G which contradicts the minimality
of S. Hence, x1x4 � E(G). Since d(x1) ≥ 3 and G is claw-free, x1x5 ∈ E(G). Note that
d(x1) = 3. If x4x5 ∈ E(G), then G has a claw, for x5 has a neighbour in S other than y2,
which is a contradiction. Thus, x4x5 � E(G). This implies that x1 is not in a special
diamond.

Let S2 = (S \ {y1, y2, y3}) ∪ {x1, x2, x4}. Observe that S2 is a γt2(G)-set and
λ(S2) = λ(S). If x4 is not in a special diamond, then |D ∩ S2| < |D ∩ S|, which
contradicts the choice of S. Thus, x4 is in a special diamond D of G. Let
V(D) = {x4, x6, x7, y5}, where x4y5 is the missing edge in the special diamond D.
Clearly, {x6, x7} ⊆ S and y5 ∈ S. We note that y5 is an S-internal private neighbour. Let
y5 ∈ ipn2(y6, S) and x8 be the vertex of S connecting y5 and y6.

If epn(y6, S) = ∅, then S3 = (S \ {y1, y2, y5, y6}) ∪ {x1, x4, x8} is a dominating set of G.
Since d(x8) ≥ 3, there exists a vertex x adjacent to xx8 ∈ E(G). Further, xy6 ∈ E(G) as
G is claw-free. Combined with epn(y6, S) = ∅, x has a neighbour in S \ {y1, y5, y6}.
Thus, there exists a vertex in S3 within distance 2 from x8. It follows from the
minimality of S that S3 cannot be a semi-TD-set of G. Thus, y3 is at a distance greater
than 2 from every other vertex of S3. This implies that y3x5 � E(G), x′y6 ∈ E(G) and
x′x8 � E(G), where {x′} = N(y3) \ {x2, x3}. We note that neither x8 nor x′ are in a special
diamond. Otherwise, epn(y6, S) � ∅ or G has a claw, which is a contradiction. Further,
(S \ {y1, y2, y3, y5, y6}) ∪ {x1, x2, x6, x8, x′} is a semi-TD-set of G with λ(S3) = λ(S) but
with |D ∩ S3| < |D ∩ S|, which contradicts the choice of S. Hence, epn(y6, S) � ∅.

Let x9 be a vertex in epn(y6, S). Then |D ∩ S2| = |D ∩ S|, {x1, x2} ∩ CS2

0̃
= ∅ and

y6 � CS2
0 . Further, |CS2

0̃
| ≤ |CS

0̃
| and |CS2

0 | ≤ |C
S
0 |. If y6 � CS2

1̃
, then |CS2

1̃
| < |CS

1̃
|, which

contradicts the choice of S. Thus, y6 ∈ CS2

1̃
. Let N(y6) = {x8, x9, x10} (possibly,

x10 = x5). Then x10 has a neighbour in S2 \ {y6, y5, x4, x2}. Hence, x10 has a neighbour
in S \ {y5, y6}. Let S4 = (S \ {y5}) ∪ {x6}. Then S4 is a γt2(G)-set. Now, λ(S4) = λ(S),
|D ∩ S4| = |D ∩ S|, x6 ∈ epn2(y2, S4) and y6 ∈ ipn2(y, S4) for some vertex y of S4. Thus,
|CS4

0̃
| ≤ |CS

0̃
|, |CS4

0 | ≤ |C
S
0 | and |CS4

1̃
| < |CS

1̃
|, which contradicts the choice of S.
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By Claims 9–11, we may assume that E(G[{x1, x2, x3}]) = {x1x2}. If x1x4 ∈ E(G),
then (S \ {y1, y2}) ∪ {x1} is a semi-TD-set of G as y2 ∈ CS

1̃
, which contradicts the

minimality of S. Thus, x1x4 � E(G).
Suppose first that x5y3 ∈ E(G). Since d(x3) ≥ 3 and G is claw-free, x5x3 ∈ E(G). If

x5x4 ∈ E(G), then (S \ {y1, y2, y3}) ∪ {x1, x5} is a semi-TD-set of G, which contradicts
the choice of S. Thus, x5x4 � E(G). Combining the claw-freeness of G and x1x4 � E(G),
we have x5x1 ∈ E(G). Since G is claw-free, N(x1) = {y1, y2, x2, x5}, N(x2) = {y1, y3, x1},
N(x3) = {y1, y3, x5}, N(x5) = {y2, y3, x1, x3} and X1 := N(x4) \ {y2} is a clique of G. We
construct G′ from G by removing all vertices of {y1, y3, x1, x2, x3, x5} and adding
the edges between {y2} and X1 such that {y2} ∪ X1 is a clique of G′. Since d(x4) ≥ 3, we
have |X1| ≥ 2. Thus, G′ � N2 is a connected claw-free graph of order n′ = n − 6 with
δ(G′) ≥ 3. Note that X1 ⊆ S as x4 ∈ epn(y2, S). Since S is a semi-TD-set of G, there
exist a vertex y of S \ {y1, y2, y3} adjacent to some vertices of X1 and a vertex y′ of
S \ {y1, y2, y3, y} within distance 2 from y in S. Hence, n′ ≥ 6. By the minimality of G,
γt2(G′) ≤ 4

11 n′. Let S′ be a γt2(G′)-set. When y2 � S′, S′ ∪ {y1, x5} is a semi-TD-set
of G. When y2 ∈ S′, (S′ \ {y2}) ∪ {y1, x5, x4} is a semi-TD-set of G. In both cases,
γt2(G) ≤ 4

11 n′ + 2 = 4
11 (n − 6) + 2 < 4

11 n, which contradicts the choice of G.
Suppose next that x5y3 � E(G). Let NS(x5) \ {y2} = {y5} and N(y3) \ {x2, x3} = {x6}.

Recall that NCS
0̃
(x5) � ∅. Thus, y5 ∈ CS

0̃
. Since d(x3) ≥ 3 and G is claw-free,

x3x6 ∈ E(G). If y5x6 ∈ E(G), then (S \ {y3, y5}) ∪ {x6} is a semi-TD-set of G, which
is a contradiction. Thus, y5x6 � E(G). Let N(y5) = {x5, x7, x8} and NS(x6) \ {y3} = {y6}.
If x5x1 � E(G), then x4x5 ∈ E(G) as G is claw-free and x1x4 � E(G). In this case,
(S \ {y1, y2, y5}) ∪ {x1, x5} is a semi-TD-set of G, which contradicts the minimality
of S. Thus, x5x1 ∈ E(G). If x5x4 ∈ E(G), then (S \ {y2, y5}) ∪ {x5} is a semi-TD-set of G,
which is a contradiction. Thus, x5x4 � E(G). Since G is claw-free, d(x1) = 4, d(x2) = 3,
d(x3) = 3, N(x5) ⊆ {y2, y5, x1, x7, x8} and X2 := N(x6) \ {y3, x3} is a clique of G. Let G′

be the graph obtained from G by removing all vertices of {x1, x2, x3, x6, y1, y3} and
adding the edges between {y2, x5} and X2 such that {y2, x5} ∪ X2 is a clique of G′.
We observe that G′ � N2 is a connected claw-free graph of order n′ = n − 6 ≥ 6 with
δ(G′) ≥ 3. Then G′ has a γt2(G′)-set S′ with at most 4

11 n′ vertices by the minimality
of G. When X2 ∩ S′ � ∅, S′ ∪ {x1, y3} is a semi-TD-set of G. When X2 ∩ S′ = ∅,
S′ ∪ {y1, x6} is a semi-TD-set of G. In either case, γt2(G) ≤ 4

11 n′ + 2 = 4
11 (n − 6) + 2 <

4
11 n, which is a contradiction.
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