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Chaotic Vibration of a Two-dimensional
Non-strictly Hyperbolic Equation

Liangliang Li, Jing Tian, and Goong Chen

Abstract. _e study of chaotic vibration for multidimensional PDEs due to nonlinear boundary
conditions is challenging. In this paper, we mainly investigate the chaotic oscillation of a two-
dimensional non-strictly hyperbolic equation due to an energy-injecting boundary condition and
a distributed self-regulating boundary condition. By using themethod of characteristics, we give a
rigorous proof of the onset of the chaotic vibration phenomenon of the 2D non-strictly hyperbolic
equation. We have also found a regime of the parameters when the chaotic vibration phenomenon
occurs. Numerical simulations are also provided.

1 Introduction

_e main objective of this research is to study chaotic vibration of the wave equa-
tion in multidimensional domains due to boundary nonlinearities. Here, the spatial
dimension under consideration is n = 2.
For the wave equation in 1D on the unit interval:

(1.1)
1
c2

∂2w(x , t)
∂t2

− ∂2w(x , t)
∂x2 = 0, x ∈ (0, 1), t > 0,

when the boundary conditions at the le� end x = 0 and the right end x = 1 are,
respectively, energy-pumping and self-regulating of the van der Pol type,many articles
have already been published (cf. [2–6]) on the chaotic vibration of (1.1) (at the level of
(wx ,wt))when the parameter (η) enters a certain regime. _emain methodology in
proving the onset of chaos is the determination and analysis of the nonlinear interval
map between the twoRiemann invariants through the boundary re�ection relation and
ray tracing.
For the wave equation in multidimensional setting, namely,

(1.2)
1
c2

∂2w(x , t)
∂t2

−∇2w(x , t) = 0, x ∈ Ω ⊆ Rn , t > 0,

we havemade repeated attempts to generalize the 1D theory andmethodology to (1.2),
but with extremely limited success. For example, we can think about the case n = 2
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in (1.2) with certain spherical geometry. _en the use of polar coordinates gives

(1.3) ∇2 = 1
r2

∂
∂r

( r2 ∂
∂r

) + 1
r2

∂2

∂θ2 .

Further, for simplicity, assume angular independence. _en one can drop the ∂2

∂θ2

term in (1.3). _us,

1
c2

∂2

∂t2
−∇2 = 1

c2
∂2

∂t2
− 1

r2
∂
∂r

( r2 ∂
∂r

)

= [ 1
c

∂
∂t

− ( ∂
∂r

+ 1
r
)][ 1

c
∂
∂t

+ ( ∂
∂r

+ 1
r
)] ;

i.e., the wave operator factors into a product analogously as the factoring of

(1.4)
1
c2

∂2

∂t2
− ∂2

∂x2 = ( 1
c

∂
∂t

− ∂
∂x

)( 1
c

∂
∂t

+ ∂
∂x

)

for (1.1). _erefore, for a 2D annular domain Ω bounded by two concentric circles:

Ω = {(r, θ)∣r1 < r < r2 , 0 ≤ θ < 2π},
for given positive r1 , r2, the wave equation is reduced to a 1D problem on the interval
(r1 , r2). _erefore, the 1D methodology can be extended to cover the case of the 2D
angular-independent wave equation

1
c2

∂2w(x , t)
∂t2

− 1
r2

∂
∂r

( r2 ∂w(x , t)
∂r

) = 0, r1 < r < r2 , t > 0,

on an annular disk.
In reviewing the discussions in the preceding paragraph, several key elements have

come to our attention:
(a) _e operator-factoring method and the resulting Riemann invariants are use-

ful ideas for possibly treating multidimensional problems.
(b) _e geometry/shape ofmultidimensional domains poses a new challenge. For

example, if the boundary of the annular domain Ω were formed by circles that are not
concentric, then themethod will not work.

(c) _e dimension n of the domain strongly matters. For example, when n = 3,
under the assumption of independence of the polar and azimuth angles θ and ϕ, the
Laplacian in spherical coordinates is reduced to

∇2 = 1
r3

∂
∂r

( r3 ∂
∂r

) .

However, the wave operator

1
c2

∂2

∂t2
− 1

r3
∂
∂r

( r3 ∂
∂r

)

does not admit a factoring as (1.4) such as the 2D case.
Motivated by the above understanding, especially item (a), the authors began to

study a second order factorizable partial diòerential equation in 2D of the form

(1.5) ( ∂
∂t

+ a ∂
∂x

+ b ∂
∂y

)( ∂
∂t

+ c ∂
∂x

+ d ∂
∂y

)w(x , y, t) = 0.
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But, again, on a bounded domainwe face challenging and complicated ray tracing and
re�ection situations as the coeõcients a, b, c and d are somewhat arbitrary (as long
as the two 3D vectors (a, b, 1) and (c, d , 1) are linearly independent). Equation (1.5)
has two directions for its rays:

ℓ1 = (a, b, 1) and ℓ2 = (c, d , 1),
i.e., straight lines in the (x , y, t)-space satisfying, respectively,

x − x1

a
= y − y1

b
= t − t1

1
= σ ,

x − x2

c
= y − y2

d
= t − t2

1
= τ, (σ , τ) ∈ R2 ,

(1.6)

for any given (x1 , y1 , t1), (x2 , y2 , t2). For a general 2D bounded domain Ω with
boundary Γ, a ray can travel an arbitrarily short time before it hits the boundary Γ×R+,
while other rays may not have hit any boundary point on Γ ×R+ at all. Also, the for-
mation of foci (where many rays converge) and also possibly that of caustics causing
the development of singularities is a real concern of the involved technical complexity.

In view of the above, we consider a special case of (1.5), namely,

( ∂
∂t

− ∂
∂x

− ∂
∂y

)( ∂
∂t

+ ∂
∂x

+ ∂
∂y

)w(x , y, t) = 0, (x , y) ∈ Ω, t > 0,

as the governing equation. _e abovemakes

(1.7) wt t −∇2w − 2wx y = 0, (∇2 = ∂2
x + ∂2

y).
It has the advantage that it somehow resembles the wave equation.
As noted in item (b) previously, in order tomake our problem tractable, the choice

of Ω is important. Here we choose

(1.8) Ω = {(x , y) ∈ R2 ∣ −1 < x + y < 1, −1 < x − y < 1} .

Its boundary Γ, where Γ = ∂Ω, consists of four parts:

Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 ,

where

Γ1 ={(x , y) ∈ Ω ∣ x + y = −1} , Γ2 = {(x , y) ∈ Ω ∣ x − y = −1} ,
Γ3 ={(x , y) ∈ Ω ∣ x + y = 1} , Γ4 = {(x , y) ∈ Ω ∣ x − y = 1} ;

see Figure 1.

Remark 1.1 In order to make themethod of characteristics and ray tracing work
for a generally given bounded convex domain Ω, the following assumption is needed.
For any given ray satisfying (1.6), let P1 = (a1 , b1 , t(1)), P2 = (a2 , b2 , t(2)) be twopoints
on the same ray such that p1 = (a1 , b1), p2 = (a2 , b2) are their respective projections
on the (x , y)-plane. Consider

S = { ∣ÐÐ→p1p2∣ ∣ p1 , p2 ∈ Γ;ÐÐ→p1p2 is the (x,y)-plane projection of a ray
ÐÐ→P1P2} .

If

(1.9) inf S = supS > 0,
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Figure 1. _e domain Ω.

then every ray starting on a boundary point on Γ×R+ will hit another boundary point
on Γ ×R+ in exactly the same duration of time.

One can easily check that for the domain Ω in (1.8), the condition (1.9) is satisûed.

Remark 1.2 Equation of the type (1.7) is called a non-strictly hyperbolic equation,
as its (negative) elliptic part

∇2 + 2
∂2

∂x∂y
satisûes the condition

2

∑
i=1

ξ2i + 2ξ1ξ2 = (ξ1 + ξ2)2 ≥ 0 for ξ = (ξ1 , ξ2) ∈ R2 ,

but not
2

∑
i=1

ξ2i + 2ξ1ξ2 > 0 for ξ ∈ R2 .

_e reader can ûnd some literature about relevant non-strictly hyperbolic equations
in [8–10].

Equation (1.7) is invariant under translations

(x , y, t)z→ (x − x0 , y − y0 , t − t0)
and re�ections

(x , y)z→ (−x ,−y).
However, it is not invariant under single axis re�ections

x z→ −x or y z→ −y, (mutually exclusively),

nor under rotations

(x , y)z→ (x cos θ + y sin θ ,−x sin θ + y cos θ).
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_us, the lack of such invariance makes (1.7) physically unnatural. Admittedly,
this is a shortcoming of our model. Nevertheless, we hope that our work here can
stimulate better,more physical multidimensional models in the future.

Now we describes the boundary conditions. On the boundary Γ1, we have a linear
boundary condition

(1.10) wt(x , y, t) = −η(wx(x , y, t) +wy(x , y, t)) , (x , y) ∈ Γ1 , t > 0, 0 < η /= 1.

When (x , y) ∈ Γ3, we have a nonlinear boundary condition

wt(x , y, t) = α(wx(x , y, t) +wy(x , y, t))(1.11)

− β(wx(x , y, t) +wy(x , y, t))
3
, t > 0,

where 0 < α < 1, β > 0. On Γ2 and Γ4, we have the Dirichlet boundary conditions:

w(t, x , y) = 0, (x , y) ∈ Γ2 ∪ Γ4 , t > 0.

_us, the overall system is:

(1.12)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt t = ∆w + 2wx y , (x , y) ∈ Ω, t > 0,
wt = −η(wx +wy), (x , y) ∈ Γ1 , t > 0,

wt = α(wx +wy) − β(wx +wy)3 , (x , y) ∈ Γ3 , t > 0,
w(x , y, t) = 0, (x , y) ∈ Γ2 ∪ Γ4 , t > 0,

w(x , y, 0) = w0(x , y), wt(x , y, 0) = w1(x , y), (x , y) ∈ Ω,

where 0 < η /= 1, 0 < α < 1, β > 0, and the initial data w0 and w1 satisfy

w0 ∈ C2(Ω), w1 ∈ C2(Ω);
and

w0(x , y) = w1(x , y) = 0, (x , y) ∈ Γ2 ∪ Γ4;

w1(x , y) = −η(
∂w0

∂x
+ ∂w0

∂y
) , (x , y) ∈ Γ1;

wt = α(
∂w0

∂x
+ ∂w0

∂y
) − β( ∂w0

∂x
+ ∂w0

∂y
)

3
, (x , y) ∈ Γ3 .

Remark 1.3 When η = 1, the system is not well posed [13].

Remark 1.4 For a linear second order PDE of the form

a00(x1 , x2 , t)wt t −
2

∑
i , j=1

a i j(x1 , x2 , t)wx i x j = 0, ((x1 , x2) = (x , y)) ,

let S(x1 , x2 , t) = c denote its characteristic surface [11]. _en S satisûes

(1.13) a00(x1 , x2 , t)(
∂S
∂t

)
2
−

2

∑
i , j=1

a i j(x1 , x2 , t)
∂S
∂x i

∂S
∂x j

= 0.

It is well known that as a Cauchy problem, PDEs with initial data deûned on char-
acteristic surfaces may lack the existence and uniqueness of solutions, and solutions
may have discontinuities across characteristic surfaces.
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Here, for our PDE problem (1.12), the boundary condition (1.12)4, namely,

w(x , y, t) = 0, on (Γ2 × {t > 0}) ∪ (Γ4 × {t > 0}) ,
the surfaces

S1 ≡ {(x , y, t) ∣ x − y = −1, t > 0, (x , y) ∈ Ω} = Γ2 × {t > 0},
and

S2 ≡ {(x , y, t) ∣ x − y = 1, t > 0, (x , y) ∈ Ω} = Γ4 × {t > 0},
satisfy

S i(x , y, t) = x − y = 2i − 3 = constant, for i = 1, 2.
_us,

∂S i

∂x
= 1,

∂S i

∂y
= −1, ∂S i

∂t
= 0, i = 1, 2.

We see, from (1.13) that for the non-strictly hyperbolic equation (1.12)1 and k = 1, 2,

a00(x1 , x2 , t)(Sk ,t)2 −
2

∑
i , j=1

a i j(x1 , x2 , t)(Sk ,x i )(Sk ,x j) = 0 − [1 ⋅ 1 − 2 ⋅ 1 ⋅ 1 + 1 ⋅ 1]

= 0.

_erefore, S1 and S2 are actually characteristic surfaces, and in general, (1.12) has no
solutions. _is is indeed true. Inwhat follows, the reader can clearly see that compati-
bility conditions need to be imposed on the functions at (Γ2∪Γ4)∩(Γ1∪Γ3). _en the
initial and boundary data for (1.12) become consistent. _en under suõcient smooth-
ness of the data w0 and w1 in (1.12)5, existence and uniqueness of solutions become
self-evident by _eorem 2.6 and Remark 2.7.

At time t, the energy of the system (1.12) is

E(t) = 1
2 ∫Γ

w2
t + (wx +wy)2dS .

By applying the Green’s formula, we see the rate of change of energy is

(1.14) E′(t) =
√

2η∫
Γ1

(wx +wy)2dσ +
√

2∫
Γ3
(wx +wy)2(α − β(wx +wy)2)dσ .

More details about the derivation of (1.14) can be found in the Appendix. We can ûnd
that if η > 0, energy is injected to the system from Γ1. For this reason,we refer to (1.10)
as an energy injecting (or pumping) boundary condition. Note that the nonlinearities
are distributed on the entire Γ3, and the sign of the second term of the RHS of (A.1)
is dependent of the integral; we can call (1.11) a distributed self-regulating boundary
condition.

_is paper is organized as follows. In Section 2, we provide preliminary analysis
of the system (1.12). We transform the system to a new system in terms of two Rie-
mann invariants. _en we ûnd the explicit solutions of the new system in terms of
two composite nonlinear operations of re�ection relations. In Section 3, by applying
the period-doubling bifurcation theorem and investigating the growth rate of total
variation, we study the chaotic dynamics of the composite operations. In Section 4,
we present a theorem proving the occurrence of the chaotic vibration phenomenon
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for the 2D non-strictly hyperbolic system. In Section 5,we provide numerical simula-
tions to illustrate our theoretical results. AnAppendix on the derivation of the energy
function is provided at the end.

2 Preliminary Analysis

Recall that we have the system:

(2.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt t = ∆w + 2wx y , (x , y) ∈ Ω, t > 0,
wt = −η(wx +wy), (x , y) ∈ Γ1 , t > 0,

wt = α(wx +wy) − β(wx +wy)3 , (x , y) ∈ Γ3 , t > 0,
w(x , y, t) = 0, (x , y) ∈ Γ2 ∪ Γ4 , t > 0,

w(x , y, 0) = w0(x , y) ∈ C2(Ω),
wt(x , y, 0) = w1(x , y) ∈ C2(Ω),

where

0 < η /= 1, 0 < α < 1, β > 0.

Deûne two linear operators:

L1 =
∂
∂t

+ ∂
∂x

+ ∂
∂y
, L2 =

∂
∂t

− ∂
∂x

− ∂
∂y

.

If w is a C2 function, we have

L2(w) = wt −wx −wy , L1L2(w) = wt t −wxx −wy y − 2wx y = 0.

Similarly, we have L2L1(w) = 0.
_erefore, we can rewrite the ûrst equation of system (2.1) as

L1L2(w) = L2L1(w) = 0.

Let u and v be the Riemann invariants of (2.1) deûned by

(2.2) u = 1
2
L1(w) =

wt +wx +wy

2
, v = 1

2
L2(w) =

wt −wx −wy

2
.

Consequently,
wx +wy = u − v and wt = u + v .

_erefore, the ûrst equation of system (2.1) can be written as

L2u = 0 or L1v = 0.

For t > 0, the boundary condition on Γ1 can be represented as a re�ection relation
between u and v:

(2.3) v(x , y, t) = η + 1
η − 1

u(x , y, t) ∶= Gη(u(x , y, t)) , (x , y) ∈ Γ1 .

Moreover, the nonlinear condition on Γ3 is equivalent to the relation of u and v:

β(u(x , y, t) − v(x , y, t)) 3 + (1 − α)(u(x , y, t) − v(x , y, t))
+ 2v(x , y, t) = 0, (x , y) ∈ Γ3 .
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Since α < 1 and β > 0, let f = u(x , y, t) − v(x , y, t); then f = p(v) satisûes the cubic
equation

(2.4) β f 3 + (1 − α) f + 2v = 0.

Remark 2.1 Since we have β > 0 and 0 < α < 1, the real solution f is uniquely
deûned by Cardano’s formula

f = ( − v
β
+
√
D) 1/3 + ( − v

β
−
√
D) 1/3

, D = (1 − α)3

27β3 + v2

β2 > 0.

_erefore, the re�ection relation between u and v on Γ3 takes the form:

(2.5) u(x , y, t) = v(x , y, t) + p(v(x , y, t)) ∶= Fα ,β(v(x , y, t)) , (x , y) ∈ Γ3 .

On Γ2 ∪ Γ4, we have wt = 0, wx +wy = 0, implying

u(x , y, t) = v(x , y, t) = 0, (x , y) ∈ Γ2 ∪ Γ4 , t > 0.

Consequently, for given smooth initial data w0 ∈ C2(Ω) and w1 ∈ C1(Ω), the sys-
tem (2.1) is equivalent to a system of two coupled ûrst order equations as follows:

(2.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1(v) = L2(u) = 0, (x , y) ∈ Ω, t > 0,
v(x , y, t) = Gη(u(x , y, t)), (x , y) ∈ Γ1 , t > 0,
u(x , y, t) = Fα ,β(v(x , y, t)), (x , y) ∈ Γ3 , t > 0,
u(x , y, t) = v(x , y, t) = 0, (x , y) ∈ Γ2 ∪ Γ4 , t > 0,

u(x , y, 0) = u0(x , y) ∈ C1(Ω),
v(x , y, 0) = v0(x , y) ∈ C1(Ω),

where the initial data u0 and v0 are now in the form

u0 =
w1 + ∂w0

∂x + ∂w0
∂y

2
, v0 =

w1 − ∂w0
∂x − ∂w0

∂y

2
.

In order to ensure u and v are C1 functions, we need u0 and v0 to be in C1, and also
satisfy some compatibility conditions:

v0(x̃ , ỹ) = Gη(u0(x̃ , ỹ)) for (x̃ , ỹ) ∈ Γ1 ,
u0(x̃ , ỹ) = Fα ,β(v0(x̃ , ỹ)) for (x̃ , ỹ) ∈ Γ3 ,
u0(x̃ , ỹ) = v0(x̃ , ỹ) = 0 for (x̃ , ỹ) ∈ Γ2 ∪ Γ4;

DÐ→v v0(x , y)∣(x̃ , ỹ) = DÐ→v Gη(u0(x , y))∣(x̃ , ỹ) for all (x̃ , ỹ) ∈ Γ1 ,
Ð→v ∈ R2;

DÐ→u u0(x , y)∣(x̃ , ỹ) = DÐ→u Fα ,β(v0(x , y))∣(x̃ , ỹ) for all (x̃ , ỹ) ∈ Γ3 ,
Ð→u ∈ R2 ,

where for a vectorÐ→α = (α1 , α2) (Ð→α = (α1 , α2 , α3)),

DÐ→α = α1
∂
∂x

+ α2
∂
∂y

(DÐ→α = α1
∂
∂x

+ α2
∂
∂y

+ α3
∂
∂t

) .

Remark 2.2 Note that the two boundary conditions in (2.6) are “re�ection” bound-
ary conditions that result from wave re�ection on the boundaries.
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_erefore, proving the well-posedness of the main system (2.1) is equivalent to
proving the well-posedness of system (2.6). From now on, we will focus on sys-
tem (2.6).

Lemma 2.3 Let u and v be given by (2.2). _en, u is constant along the direction
Ð→
l1

and v is constant along the direction
Ð→
l2 , where

Ð→
l1 = (−1,−1, 1), Ð→

l2 = (1, 1, 1).

Proof _e proof follows from the fact that

DÐ→l1 u = ( ∂
∂t

− ∂
∂x

− ∂
∂y

)u = L2u = 0.

Similarly, we have DÐ→l2 v = 0.

Next, we show the existence of solutions of system (2.6) on the set Ω × [0, 2].

Lemma 2.4 Let t ∈ [0, 2] and (x , y) ∈ Ω, i.e., −1 ≤ x + y ≤ 1 and −1 ≤ x − y ≤ 1.
_en u(x , y, t) and v(x , y, t) can be uniquely solved.

Proof First, recall that for t > 0,

v(x , y, t) = Gη(u(x , y, t)) for (x , y) ∈ Γ1 ,
u(x , y, t) = Fα ,β(v(x , y, t)) for (x , y) ∈ Γ3 .

Note that the points (x , y, t) and (x + t, y+ t, 0) are on the same characteristics along
Ð→
l1 , by applying Lemma 2.3, we have

u(x , y, t) = u(x + t, y + t, 0) = u0(x + t, y + t), t ≤ 1 − x − y
2

.

When 1−x−y
2 < t ≤ 1−x−y

2 + 1, we have

(x + 1 − x − y
2

, y + 1 − x − y
2

) ∈ Γ3 .

Also, (x , y, t) and (x + 1−x−y
2 , y + 1−x−y

2 , t − 1−x−y
2 ) are on the same characteristics

along
Ð→
l1 . (x + 1−x−y

2 , y + 1−x−y
2 , t − 1−x−y

2 ) and (1− y − t, 1− x − t, 0) are on the same

characteristics along
Ð→
l2 . By applying the re�ection relation (2.5) and Lemma 2.3, we

have

u(x , y, t) = u(x + 1 − x − y
2

, y + 1 − x − y
2

, t − 1 − x − y
2

)

= Fα ,β(v(x +
1 − x − y

2
, y + 1 − x − y

2
, t − 1 − x − y

2
))

= Fα ,β(v(1 − y − t, 1 − x − t, 0))
= Fα ,β(v0(1 − y − t, 1 − x − t)) .
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When 1−x−y
2 + 1 < t ≤ 2, note that

(x + 1 − x − y
2

− 1, y + 1 − x − y
2

− 1) ∈ Γ1 ,

(x + 1 − x − y
2

, y + 1 − x − y
2

) ∈ Γ3 .

From the re�ection relations (2.3), (2.5) and Lemma 2.3, we have

u(x , y, t) = u(x + 1 − x − y
2

, y + 1 − x − y
2

, t − 1 − x − y
2

)

= Fα ,β(v(x +
1 − x − y

2
, y + 1 − x − y

2
, t − 1 − x − y

2
))

= Fα ,β(v(x +
1 − x − y

2
− 1, y + 1 − x − y

2
− 1, t − 1 − x − y

2
− 1))

= Fα ,β ○Gη(u(x + 1 − x − y
2

− 1, y + 1 − x − y
2

− 1, t − 1 − x − y
2

− 1))

= Fα ,β ○Gη(u(x + t − 2, y + t − 2, 0))
= Fα ,β ○Gη(u0(x + t − 2, y + t − 2)) .

So u can be solved as:

u(t, x , y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0(x + t, y + t), 0 ≤ t ≤ 1 − x − y
2

,

Fα ,β(v0(1 − y − t, 1 − x − t)), 1 − x − y
2

< t ≤ 1 − x − y
2

+ 1,

Fα ,β ○Gη(u0(x + t − 2, y + t − 2)), 1 − x − y
2

+ 1 < t ≤ 2.

Similarly, v can be solved as:

v(t, x , y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v0(x − t, y − t), 0 ≤ t ≤ x + y + 1
2

,

Gη(u0(t − y − 1, t − x − 1)), x + y + 1
2

< t ≤ x + y + 1
2

+ 1,

Gη ○ Fα ,β(v0(x + 2 − t, y + 2 − t)), x + y + 1
2

+ 1 < t ≤ 2.

For the uniqueness, suppose there is another pair of solution (u′ , v′), and we set
(r, s) = (u′ − u, v′ − v). _en (r, s) will satisfy (2.6) with zero initial data. From the
explicit solution formulas we obtained above, we have (r, s) = (0, 0). So the solution
is unique.

Lemma 2.5 For t ≥ 0 and (x , y) ∈ Ω,we have u(x , y, t+2) = Fα ,β ○ Gη(u(x , y, t)),
v(x , y, t) = Gη ○ Fα ,β(v(x , y, t)).
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Proof We have

u(x , y, t + 2) =u(x + 1 − x − y
2

, y + 1 − x − y
2

, t + 2 − 1 − x − y
2

)

=Fα ,β(v(x +
1 − x − y

2
, y + 1 − x − y

2
, t + 2 − 1 − x − y

2
))

=F(v(x + 1 − x − y
2

− 1, y + 1 − x − y
2

− 1, t + 2 − 1 − x − y
2

− 1))

=F ○Gη(u(x + 1 − x − y
2

− 1, y + 1 − x − y
2

− 1, t + 1 − 1 − x − y
2

))

=F ○G(u(x , y, t)) .

Similarly, we have v(x , y, t + 2) = Gη ○ Fα ,β(v(x , y, t)).

_eorem 2.6 _e system (2.6) is uniquely solvable on Ω × [0,+∞). Moreover, for
any t ≥ 0, we can write t = 2n+ τ where n ∈ N and τ ∈ [0, 2). _en the solution of (2.6)
is given by

(2.7) u(x , y, t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(Fα ,β ○Gη)n(u0(x + τ, y + τ)), 0 ≤ τ ≤ 1−x−y
2 ,

(Fα ,β ○Gη)n(Fα ,β(v0(1 − y − τ, 1 − x − τ))), 1−x−y
2 < τ ≤ 1−x−y

2 + 1,
(Fα ,β ○Gη)n(Fα ,β ○Gη(u0(x + τ − 2, y + τ − 2))), 1−x−y

2 + 1 < τ ≤ 2,

and

(2.8) v(x , y, t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(Gη ○ Fα ,β)n(v0(x − τ, y − τ)), 0 ≤ τ ≤ x+y+1
2 ,

(Gη ○ Fα ,β)n(Gη(u0(τ − y − 1, τ − x − 1))), x+y+1
2 < τ ≤ x+y+1

2 + 1,
(Gη ○ Fα ,β)n(Gη ○ Fα ,β(v0(x + 2 − τ, y + 2 − τ))), x+y+1

2 + 1 < τ ≤ 2,

where (Fα ,β ○ Gη)n represents the n-times iterative composition of Fα ,β ○ Gη and
(Gη ○ Fα ,β)n represents the n-times iterative composition of Gη ○ Fα ,β .

Proof Let t ≥ 0, there exist unique τ ∈ [0, 2) and an integer n ∈ N such that t = 2n+τ.
For (x , y) ∈ Ω, by applying Lemmas 2.3–2.5 and by induction, we have

u(x , y, t) = u(x , y, τ + 2n) = (Fα ,β ○Gη)n(u(x , y, τ)) ,

and

v(x , y, t) = v(x , y, τ + 2n) = (Gη ○ Fα ,β)n(v(x , y, τ)) .

Proof of the uniqueness is similar to the proof in Lemma 2.4.

Remark 2.7 (i) From (2.7) and (2.8), u and v are chaotic if F ○ G or G ○ F are
chaotic. (ii) A�er we have obtained the explicit formulas of (u, v), (wx ,wy ,wt) can
be computed by

wx +wy = u − v and wt = u + v .
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Together with the initial data, we can solve for w by the formula

w(x , y, t) = ∫
t

0
(u + v)dt +w0(x , y).

From this, we then also obtain wx and wt .

To summarize, we ûnd that the solution (u, v) is fully determined by the maps
G ○ F( ⋅ ) and F ○G( ⋅ ). Before introducing the properties of the composite function
Hη( ⋅ ), we display the graphics of the composite functions Gη ○ Fα ,β( ⋅ ) and Fα ,β ○
Gη( ⋅ ) for certain values of η, α and β. See Figures 2 and 3. Since F ○G = G−1 ○ (G ○
F) ○ G, these two maps are topologically conjugate. So we only need to study one of
them. Let us focus on G ○ F( ⋅ ); from now on, we ûx α and β. So G ○ F( ⋅ ) is a family
ofmaps with a varying parameter η, denoted as
(2.9) Hη( ⋅ ) ≜ Gη ○ Fα ,β( ⋅ ).
Moreover, for the case η > 1,we can apply the transformation H1/η( ⋅ ) = −Hη( ⋅ ). For
this reason, from now on we will only study themap Hη( ⋅ ) for the case η ∈ (0, 1).
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2
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v−axis

η=0.45 η=0.6

Figure 2. _e graphs of G ○ F(v), when α = 0.5, β = 1 and (le�)
η = 0.45, (right) η = 0.6.
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Figure 3. _e graphs of G ○ F(v), when α = 0.5, β = 1 and (le�)
η = 0.45, (right) η = 0.6.
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3 Chaotic Dynamics of the Composite Maps

Recall from (2.3), (2.4), (2.5), and (2.9), the deûnition of the composite re�ectionmap
Hη . We now study the basic properties of Hη . Much of the analysis of Hη is already
available in [3]. Our work in what follows is somewhat more concise, provided here
for the purpose of easier referencing and self-containedness.

Lemma 3.1 Let 0 < α < 1, β > 0. Assume η is varying on the interval (0, 1). _en
Hη( ⋅ ) is odd, and
(i) Hη( ⋅ ) has three ûxed points: 0, x0 and −x0, where

x0 =
η + 1
2

√
η + α
β

;

(ii) −Hη( ⋅ ) has three ûxed points: 0, x1 and −x1, where

x1 =
η + 1
2η

√
1 + αη
βη

;

(iii) the equation Hη(x) = 0 has three roots: 0, x2 and −x2, where

x2 =
√

1 + α
β

;

(iv) the equation ∂Hη(x)
∂x = 0 has two roots: x3 and −x3, where

x3 =
2 − α

3

√
1 + α
3β

;

(v) Hη( ⋅ ) has two local extremal values M andm :

M = Hη(x3) =
1 + α

3
⋅ 1 + η
1 − η ⋅

√
1 + α
3β

,

m = Hη(−x3) = −Hη(x3) = −M ,

andHη( ⋅ ) is strictly increasing on (−x3 , x3), but strictly decreasing on (−∞,−x3]
and [x3 ,+∞).

Proof All of the proofs are straightforward.

Remark 3.2 From Figure 2, we ûnd that 0 < x3 < x0 < x2 < x1.

Fix 0 < α < 1, β > 0. Consider the equations

(M =) 1 + α
3

⋅ 1 + η
1 − η ⋅

√
1 + α
3β

=
√

1 + α
β

(= x2),

(M =) 1 + α
3

⋅ 1 + η
1 − η ⋅

√
1 + α
3β

= η + 1
2η

√
1 + αη
βη

(= x1).

(3.1)
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_e ûrst and second equations in (3.1) determine two critical values: η1 and η2, re-
spectively. More speciûcally, we have

(3.2) η1 =
3
√

3 − (1 + α)
3
√

3 + 1 + α
,

whereas η2 satisûes the equation

(3.3) ( 1
η2

− 1)
√

1
η2

+ α = 2( 1 + α
3

)
3
2
.

Since

( 1
η1
− 1)

√
1
η1
+ α = ( 1

η1
+ 1) 1 + α

3
√

3

√
1
η1
+ α > 2

1 + α
3
√

3

√
1 + α = 2( 1 + α

3
)

3
2
,

we have 0 < η1 < η2 < 1.

Lemma 3.3 Let 0 < α < 1, β > 0 and η ∈ (0, 1). _e following hold:
(i) If 0 < η ≤ η2, i.e., M ≤ x1 , then the iterates of every point in the set V =

(−∞,−x1)⋃(x1 ,∞) escape to±∞,while those of any point in R∖V are attracted
to the bounded invariant interval I = [−M ,M] of Hη( ⋅ ).

(ii) If η2 < η < 1, then there is no bounded invariant interval for themap Hη .

Proof _e results follow from Lemma 3.1 and the piecewise monotonic properties
of Gη ○ Fα ,β , as can be conûrmed from Fig. 2.

We recall some properties about periodic points and total variations from the lit-
erature for use in the next section (in particular, as the prerequisites for _eorem4.2).

Lemma 3.4 ([7,Main _eorem 8]) Let f ( ⋅ ) ∈ C0(I, I), where I is a bounded inter-
val, and V is the total variation. Assume that f ( ⋅ ) has two distinct ûxed points and a
periodic point with period 2. _en V[x0 ,p]( ⋅ ); the total variation on the interval [x0 , p]
satisûes

(3.4) lim
n→∞

V[x0 ,p]( f n( ⋅ )) =∞,

where x0 is the smaller ûxed point and p is the periodic point with period 2.

Note that the rate of growth with respect to n in (3.4) is not exponential.

Lemma 3.5 ([1, Section II, Lemma 3]) Let f ( ⋅ ) ∈ C0(I, I). If f ( ⋅ ) is turbulent, then
f ( ⋅ ) has periodic points of all periods.

Lemma 3.6 ([7, Lemma 7.4]) Let f ( ⋅ ) ∈ C0(I, I) and f be piecewise monotone.
_en the following conditions are equivalent:
(i) f ( ⋅ ) has a periodic point whose period is not a power of 2 (1 = 20 is regarded as a

power of 2);
(ii) the growth rate of the total variation of f n( ⋅ ) is exponential w.r.t. n.
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Now, return to the dynamics of themapHη( ⋅ )deûned by (2.9). Recall thenotation
used in Lemmas 3.1 and 3.3 about x i , i = 0, 1, 2, 3, M and m.

Proposition 3.7 Let 0 < α < 1, β > 0 be ûxed, and let η ∈ (0, 1) be a varying variable.
Given η1 and η2, deûned by (3.2) and (3.3) , respectively. _en, if η ∈ [η1 , η2], Hη( ⋅ )
has periodic points in [−M ,M] with periods which are not a power of 2.

Proof _e proof follows from [12,_eorem 3.1].

From Lemmas 3.4–3.6 and Proposition 3.7, we have the following result.

Proposition 3.8 Let 0 < α < 1, β > 0 be ûxed, and let η ∈ (0, 1) be a varying variable.
_en, for every η ∈ [η1 , η2], there are positive constants ε, c1 and c2 such that

VIε(Hn
η) ≥ c1(exp(c2n)), as n →∞,

where Iε = [0, ε] or [−ε, 0]. _us, the rate of growth is exponential.

4 Chaotic Vibration Phenomenon of the PDE System

Recall the PDE system considered in Section 1:

(4.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt t = ∆w + 2wx y , (x , y) ∈ Ω, t > 0,
wt = −η(wx +wy), (x , y) ∈ Γ1 , t > 0,

wt = α(wx +wy) − β(wx +wy)3 , (x , y) ∈ Γ3 , t > 0,
w(x , y, t) = 0, (x , y) ∈ Γ2 ∪ Γ4 , t > 0,

w(x , y, 0) = w0(x , y), wt(x , y, 0) = w1(x , y), (x , y) ∈ Ω.

To our knowledge, there is no universally accepted deûnition of chaos for PDEs
in 2D. Following [7], where those authors characterized the chaotic behavior by the
growth rate of the total variation, we give a suitable deûnition of chaos for system
(4.1).
First, recall that a simple curveC in a 2Ddomain Ω is deûned through a continuous

function g from a real number interval I = [a, b] to Ω. _e image g(I) is called a
curve. _e adjective “simple” heremeans that g is injective. More speciûcally, C is the
set of all g(s) when s ∈ [a, b], where

g(s) = (xC(s), yC(s)) ∈ Ω.

Deûnition 4.1 We say that a PDE system of w on the 2D domain Ω is chaotic or
has chaotic vibration phenomenon, if there exists at least one direction

Ð→
l inR3, such

that for any simple curve C with g(a), g(b) ∈ Γ and g(ξ) ∈ Ω, for any ξ ∈ (a, b), the
directional derivative DÐ→l w satisûes

(i) DÐ→l w(xC(s), yC(s), t) is uniformly bounded;
(ii) V[a ,b](DÐ→l w(xC( ⋅ ), yC( ⋅ ), t)) is exponentially increasing as time t increases.

With the above prerequisites ready,we are now in a position to state the ûnal main
theorem of this section.
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_eorem 4.2 Consider the system (2.1). Let 0 < α < 1, β > 0 be ûxed, for η ∈ [η1 , η2],
where η1 and η2 are given by (3.2) and (3.3), respectively. _en, for a certain class of
initial conditions, the system (4.1) is chaotic.

Proof Let η ∈ [η1 , η2]. From Lemma 3.3, Gη ○ Fα ,β has an invariant interval
[−M ,M], where M is a local maximum of Gη ○ Fα ,β given by

M = 1 + α
3

⋅ 1 + η
1 − η ⋅

√
1 + α
3β

.

Choose the initial data w0 = 0 and w1 ∈ C2(Ω) satisfying

(4.2) w1(x , y)
⎧⎪⎪⎨⎪⎪⎩

> 0 for (x , y) ∈ Γ,
= 0 for (x , y) ∈ Ω.

Furthermore, assume that

(4.3) Range(w1) ∪ Range ( η + 1
η − 1

⋅w1) ∪ Range ( η + 1
η − 1

(Fα ,β(w1))) ⊂ [−M ,M].

Consider the direction vector
Ð→
l = (− 1

2 ,−
1
2 ,

1
2 ), and let v = DÐ→l w . In fact, v is the

same deûnition as (2.5).
Consider any simple curve C in Ω with

(4.4) g(a), g(b) ∈ Γ, g(ξ) ∈ Ω for any ξ ∈ (a, b).

Under assumption (4.3), from Lemmas 2.4 and 3.3, we have

∣v (xC(s), yC(s), t) ∣ ≤ M for t ≥ 0, s ∈ [a, b],

which is to say that DÐ→l w(xC(s), yC(s), t) is uniformly bounded.
Moreover, given any t ≥ 0, let t = 2n + τ where τ ∈ [0, 2) and n ∈ N. From

_eorem 2.6, we have

v(xC(ξ), yC(ξ), t) = (Gη ○ Fα ,β)n(v(xC(ξ), yC(ξ), τ)) for ξ ∈ [a, b].

It follows from Proposition 3.8(iii) that there exist constants c1 > 0 and c2 > 0 such
that for any є > 0,

(4.5) V[0,є] (Gη ○ Fα ,β)
n ≥ c1ec2n , n ∈ N.

Under assumptions (4.2) and (4.4), we have an є0 > 0 such that

[0, є0] ⊂ Range (v(xC( ⋅ ), yC( ⋅ ), τ)) .

Take є = є0 in (4.5). Consequently, we have

V[a ,b](DÐ→l w(xC( ⋅ ), yC( ⋅ ), t)) = V[a ,b](v(xC( ⋅ ), yC( ⋅ ), t))
= V[a ,b]((Gη ○ Fα ,β)n(v(xC( ⋅ ), yC( ⋅ ), τ)))

≥ c1ec2n ≥ c1ec2
t−τ
2 .

_us, system (4.1) is chaotic.
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5 Numerical Simulations

In this section, we present numerical simulations for system (1.12) to illustrate the
theoretical results.

_roughout, we ûx α = 0.5, β = 1, and let η be a varying parameter. _e initial
conditions are chosen to be

w0(x , y) = 0, w1(x , y) =
1
10
⋅ ((x + y)2 − 1) 3 ⋅ ((x − y)2 − 1) 3

,

for all (x , y) ∈ Ω, and these satisfy the conditions in the proof of_eorem 4.2.
We can obtain the three critical parameter values by following our established

recipes:

η1 ≈ 0.552, η2 ≈ 0.667.

_eorem 4.2 shows thatwhen η ∈ [0.552, 0.667] the system (1.12) is chaotic. To verify
this, in our numerical simulation, we compare two cases: η = 0.45 and η = 0.6.

Numerical simulations for wt are provided in Figures 4 and 5.

Figure 4. _e proûle of wt at t=11.49 for η = 0.45(le�) and η = 0.6(right).

Figure 5. _e proûle of wt at t=18.36 for η = 0.45(le�) and η = 0.6(right).
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Since chaotic vibration is a dynamics process, we provide video animations for
visualization, viewable at the following URLs :
for η = 0.45 in time duration [0, 20],

https://www.dropbox.com/s/m9o7zffmj39ewd7/nonchaotic.mp4?dl=0;
for η = 0.6 in time duration [0, 20],

https://www.dropbox.com/s/4exocjirixmre7g/chaotic2.mp4?dl=0.
_ese numerical simulations are also consistent with _eorem 4.2.

Concluding Remarks

Chaos in multidimensional dynamic processes manifests complex behavior and phe-
nomena. Here we get to see some of these through rigorously justiûed simulations
and video animations. But there is toomuchwe have not been able to rigorously treat
or to even just simulate computationally. _e authors hope to continue this investiga-
tion ofmultidimensional chaos by improving and generalizing themethodology here
as well as by developing new,more powerful techniques.

A Appendix: Derivation of E′(t)
_eorem A.1 Consider the system (1.12) and the energy function

E(t) = 1
2 ∫Ω

w2
t + (wx +wy)2dS , t > 0.

_en for suõciently smooth data, the derivative of the energy functional has the follow-
ing form:

E′(t) =
√

2η∫
Γ1

(wx +wy)2dσ +
√

2∫
Γ3
(wx +wy)2(α−β(wx +wy)2)dσ , t > 0.

Proof Let w be up to C2-smooth. Consider the vector ûeld

H = (wx +wy ,wx +wy).
_en

div(H) = ∇2w + 2wx y .

For t > 0, we have

E′(t) = ∫
Ω
wt div(H) +H ⋅ ▽wtdS ,

since

div(wtH) = wt div(H) +H ⋅ ▽wt .

Applying Green’s formula, we have

E′(t) = ∫
Ω
wt div(H) +H ⋅ ▽wtdS = ∫

Ω
div(wtH)dS = ∫

Γ
(wtH ⋅ n⃗)dσ .

Note thatH⋅n⃗ = 0on the boundaries Γ∖(Γ1∪Γ3). By applying the boundary conditions
on Γ1 and Γ3, respectively, we have for all t > 0,

(A.1) E′(t) =
√

2η∫
Γ1

(wx +wy)2dσ +
√

2∫
Γ3
(wx +wy)2(α−β(wx +wy)2)dσ .
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