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On a Conjecture of Jacquet, Lai, and Rallis:
Some Exceptional Cases

David Ginzburg and Erez Lapid

Abstract. We prove two spectral identities. The first one relates the relative trace formula for the spher-

ical variety GSpin(4, 3)/G2 with a weighted trace formula for GL2. The second relates a spherical

variety pertaining to F4 to one of GSp(6). These identities are in accordance with a conjecture made

by Jacquet, Lai, and Rallis, and are obtained without an appeal to a geometric comparison.

1 Introduction

Let G be a reductive group over a number field F and let H be a subgroup of G which
is obtained as the fixed points of an involution θ defined over F. One can relate the
double coset space H\G/H to conjugacy classes of a third group G ′ [KR71]. In a pa-
per whose importance, we believe, is underestimated, Jacquet, Lai, and Rallis [JLR93]

conjectured that there is a functorial relation between automorphic representations
π ′ of G ′(A) and automorphic representations π which are H-distinguished, i.e., for
which the functional ℓH(ϕ) =

∫

H(F)\H(A)
ϕ(h) dh (suitably regularized if π is non-

cuspidal) is non-zero on Vπ . (The group G ′ may be non-algebraic in this setup.)
Moreover, roughly speaking, for test functions f and f ′ on G(A) and G ′(A) satisfy-
ing certain compatibility conditions, there should exist trace identities

∫

(H(F)\H(A))2

K f (h1, h2) dh1dh2 =

∫

G ′\G ′(A)

K f ′(x, x)Θ ′(x) dx,(1)

∫

(H(F)\H(A))2

K f (h1, h2)Θ(h2) dh1dh2 =

∫

G ′\G ′(A)

K f ′(x, x) dx.(2)

for appropriate automorphic weight functions Θ and Θ ′ on H(A) and G ′(A), respec-
tively. (It may be necessary to vary over inner forms of either H or G ′.) The test case
considered in [JLR93] was G = GL2 /E, H ranges over unitary similitude groups,

G ′
= GL2 /F and E/F is a quadratic extension. Identities like (1) and (2) lead, with

some effort, to spectral identities of the form

B
π
ℓH ,ℓH

( f ) = TΘ ′π ′( f ′),(3)

B
π
ℓH ,ℓΘ,H ( f ) = trπ ′( f ′).(4)
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1324 D. Ginzburg and E. Lapid

Here Bπ
ℓH ,ℓH

( f ) is the Bessel distribution with respect to ℓH and ℓH which is defined
by

B
π
ℓH ,ℓH

( f ) =

∑

ϕ

ℓH(π( f )ϕ)ℓH(ϕ),

the sum ranging over an orthonormal basis of Vπ; similarly for Bπ
ℓH ,ℓΘ,H

( f ), where

ℓΘ,H(ϕ) =

∫

H(F)\H(A)

ϕ(h)Θ(h) dh.

Finally, TΘ ′π ′( f ′) is the “weighted trace”

∑

ϕ ′

∫

G ′(F)\G ′(A)

[π ′( f ′)ϕ ′](x)ϕ ′(x)Θ ′(x) dx.

Our goal here is to give some more examples where relations like (3), (4) and similar

ones hold. The cases we consider are special cases of the following setup. Let P be a
maximal subgroup of G with Levi part M. Let ̟ be the fundamental weight corre-
sponding to P, considered as a (fractional power of a) rational character of M. We
will assume that G (or, equivalently, M) is quasi-split, and consider Eisenstein series

E( · , ϕ, s̟) induced from cuspidal representations of M(A) which admit a non-zero,
non-degenerate Fourier coefficient. A residue E−1( · , ϕ) of such an Eisenstein series
(necessarily belonging to the discrete spectrum of G(F)\G(A)) is often distinguished
with respect to a spherical subgroup H. (In all known cases, and presumably in gen-

eral, there is at most one residue point s0̟ for Re(s) > 0, and s0 is either 1
2

or 1.)
Moreover, one can relate the period integral of this residue to a period integral over
MH = M ∩ H of the section inducing it. On the other hand, no cuspidal representa-
tion of G(A) (generic or not) is distinguished with respect to H.

The first identity (3) was previously considered in [LR04] and [JLR04]. It relies
on an additional formula of the period integral of E−1ϕ in terms of a “co-period”
of the constant term. In the first part of the current paper we consider the group
G = GSpin(4, 3) of semi-simple rank 3 containing M = GL2 ×GL2 as a Levi sub-

group. The period subgroup H is the exceptional rank two group G2. The new fea-
ture in this case is that we are able to prove the second identity (4) by obtaining a
formula for the co-period of E−1ϕ in terms of its constant term. There seem to be
difficult analytic, and perhaps conceptual, problems in deriving such formulas (and

therefore, identity 4) in the cases considered in [JLR04, LR04]. In the second part
of the paper we consider the exceptional group F4 and its Levi subgroup GSp6. The
period is obtained by integrating a certain Fourier coefficient over its reductive stabi-
lizer. This is the first time a non-reductive period subgroup is considered for spectral

identities analogous to the ones above. This gives rise to additional complications
in the derivation of the spectral identities from the period and co-periods formulas.
This case can be viewed as “unipotent thickening” of the previous case, in the sense
that the stabilizer of the Fourier coefficient is G2 as before. This procedure is com-

mon in integral representations of L-functions, and go back to the exterior square
L-function of Jacquet–Shalika [JS90]. Finally, we mention that the spectral identities
and the period formulas in this paper are very much inspired by the work of Jiang
and Ginzberg [Jia98, GJ00].
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1.1 Notation and Preliminaries

We will consider split groups G over a number field F and choose a Borel subgroup
B = T0U0, as well as a “good” maximal compact K of G(A). If X is defined over F

we will often write X for the F-points of X as well. For any rational character λ of

T0 we will extend the character |λ|(t) =
∏

v|λ(tv)|v on T0(A) to a left-U0(A) and
right-K-invariant function on G(A). We will still denote this function by |λ|.

Let P = MU be a maximal parabolic of G and ̟ the corresponding fundamental
weight. The intersection TM of the center of M with the derived group of G is a one-

dimensional torus. We will imbed R+ in TM(A) diagonally in the archimedean places.
For any cuspidal automorphic function ϕ on M(F)U (A)\G(A) satisfying

ϕ(ag) = δP(a)
1
2ϕ(g) ∀a ∈ R+

we consider the Eisenstein series defined for Re(s) ≫ 0 by

E(g, ϕ, s) =

∑

γ∈P\G

ϕ(γg)|̟|s(γg).

It admits a meromorphic continuation to the complex plane and a functional equa-
tion s 7→ −s, ϕ 7→ M(s)ϕ, where M(s) is the usual intertwining operator.

2 The Pair (GSpin(4, 3),G2)

We first consider the group G = GSpin(4, 3). Write the simple roots of G as γ1, γ2

and γ3 where γ1 and γ2 are contained in GL3 and the root groups Xγ1
and Xγ3

com-

mute. We take the maximal parabolic subgroup P defined by γ2. Its Levi part is
M = GL(2) × GSpin(3) = GL(2) × GL(2). Under this identification, ̟(g1, g2) =

det(g1). The modulus function of P(A) is |̟|4. We set ρP = 2 so that the modulus
function is |̟|2ρP . Starting from a cuspidal automorphic representation of π of GL2

we construct the Eisenstein series on G induced from π ⊗ π. We have

M(s)ϕ =
L(s, π ⊗ π̃)L(2s, π,Ad)

L(s + 1, π ⊗ π̃)L(2s + 1, π,Ad)
MS(s)ϕS

(cf. [Asg02]). We consider the residue E−1(g, ϕ) of E(g, ϕ, s) at s0 = 1.
We now consider the period subgroup H = G2 imbedded in G in the usual way

(see [Jia98]). In particular, we denote by α and β the simple roots of H so that Xα

is contained in Xγ1
· Xγ3

and Xβ = Xγ2
. The other positive roots are α + β, 2α + β,

3α + β and 3α+ 2β. In this case MH = M ∩ H = GL(2) imbedded diagonally in M.
It is the Levi part of the “Heisenberg” parabolic PH = P ∩ H of H defined by β. The
unipotent radical is UH = U ∩H. The restriction̟H of̟ to MH is the determinant,

which is also the fundamental weight of PH . We will simply identify̟H with̟. The
modulus function of PH(A) is |̟|3. Set ρPH

= 3/2.
Jiang [Jia98] considered the H-period of E−1( · , ϕ) and obtained the formula

(5)

∫

H\H(A)

E−1(h, ϕ) dh =

∫

KH

∫

MH\MH (A)1

ϕ(mk) dmdk.

https://doi.org/10.4153/CJM-2007-057-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2007-057-9


1326 D. Ginzburg and E. Lapid

In particular, this H-period is non-zero.1

Consider the Eisenstein series

E(h, s) =

∑

γ∈PH\H

|̟|s+ρPH (γh)

(unitarily) induced from |̟|s on MH . This Eisenstein series was considered in [GJ00].

Its singularities for Re(s) > 0 are a simple pole at s = ρPH
=

3
2
, where the residue

is the constant function λ−1/ζF(6) (with λ−1 = ress=1ζF(s) = vol(F∗\I
1
F)), and a

double pole at s =
1
2
.2 We write the Laurent expansion near s =

1
2

as

E( · , s) =
E−2( · )

(s − 1
2
)2

+
E−1( · )

s − 1
2

+ O(1).

We also have the right-K∩MH(A)-invariant Eisenstein series E( · , s) on MH(A) (uni-
tarily) induced from Ind|t1/t2|

s/2.

The following theorem gives an alternative formula for the H-period, as well as
formulas for certain co-periods.

Theorem 2.1 We have

∫

H\H(A)

E−1(h, ϕ) dh =
ζF(2)

ζF(3)

ζF(6)

λ−1

∫

KH

∫

MH\MH (A)1

M−1ϕ(mk)E(m, 5) dmdk.(6)

∫

H\H(A)

E−1(h, ϕ)E(h, s) dh = 0 for |Re(s)| <
1

2
.(7)

∫

H\H(A)

E−1(h, ϕ)E−2(h) dh = 0.(8)

∫

H\H(A)

E−1(h, ϕ)E−1(h) dh =

∫

KH

∫

MH\MH (A)1

M−1ϕ(mk) dmdk.(9)

In contrast, for cusp forms of G(A),
∫

H\H(A)
φ(h)E(h, s) dh gives the L-function

corresponding to the second fundamental weight [GR94].
To prove Theorem 2.1 we define, for a holomorphic function σ ∈ P(C) of the

Paley–Wiener type, a function θσ on H\H(A) by

(10) θσ(h) =

∫

Re(s)≫0

σ(s)E(h, s) ds =

∑

γ∈PH\H

Fσ(γh),

where

Fσ(h) =

∫

Re(s)=0

σ(s)|̟|s+ρPH (h) ds.

1Strictly speaking [Jia98,GJ00,GR94] deal with G = SO(4, 3), but the extension to GSpin(7) is straight-
forward.

2Note that our normalization differs from that of [GJ00].
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(The function θσ is not rapidly decreasing.) Set

P(σ, ϕ) =

∫

H\H(A)

E−1(h, ϕ)θσ(h) dh.

The main assertion is the following.

Theorem 2.2 We have

(11) P(σ, ϕ) = 2πiσ
( 1

2

)

∫

KH

∫

MH\MH (A)1

M−1ϕ(mk) dmdk

+ 2πiσ
( 3

2

) ζF(2)

ζF(3)

∫

KH

∫

MH\MH (A)1

M−1ϕ(mk)E(m, 5) dmdk.

We will prove Theorem 2.2 in the next section. To see that Theorem 2.2 implies

Theorem 2.1, we write

P(σ, ϕ) =

∫

H\H(A)

∫

Re s≫0

E−1(h, ϕ)σ(s)E(h, s) dsdh.

Shifting the contour of integration to the imaginary axis we obtain

2πiσ
( 3

2

) λ−1

ζF(6)

∫

H\H(A)

E−1(h, ϕ) dh + 2πiσ
( 1

2

)

∫

H\H(A)

E−1(h, ϕ)E−1(h) dh

+ 2πiσ ′
( 1

2

)

∫

H\H(A)

E−1(h, ϕ)E−2(h) dh

+

∫

Re s=0

σ(s)

∫

H\H(A)

E−1(h, ϕ)E(h, s) dhds.

Compare this with (11). We obtain Theorem 2.1 as in [JLR04, Lemma 3]. For this
we need to know the following lemma.

Lemma 2.3 The integrals

∫

H\H(A)

E−1(h, ϕ) dh,

∫

H\H(A)

E−1(h, ϕ)E−1(h) dh,

∫

H\H(A)

E−1(h, ϕ)E−2(h) dh,

∫

H\H(A)

E−1(h, ϕ)E(h, s) dh for |Re s| <
1

2
,

are absolutely convergent. Moreover, for any 0 < s1 <
1
2
,

sup
Re s=s1

∫

H\H(A)

|E−1(h, ϕ)E(h, s)| dh <∞.
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Proof The only exponent of E−1(h, ϕ) is along P and it is −s0̟. Since the Siegel set
of H can be chosen to be contained in that of G, the condition on an automorphic

form f on H for
∫

H\H(A)
E−1(h, ϕ) f (h) dh to converge is that −s0 + ρP + Reµ +

ρPH
− 2ρPH

< 0 for any exponent of µ̟ of f along PH . Substituting, this becomes
Reµ < 1/2. The exponents of E( · , s) along the Borel are

(

s −
1

2
, s +

1

2

)

,
(

s −
1

2
,−1

)

,
(

−1, s −
1

2

)

,

(

−1,−
1

2
− s

)

,
(

−
1

2
− s,−1

)

,
(

−
1

2
− s,

1

2
− s

)

,

where (x, y) corresponds to the character t1, t2 7→ |t1|
x|t2|

y of the standard torus of
MH = GL2. Hence, the exponents of E( · , s) along PH are

s̟,
1

2

(

s −
3

2

)

̟,
1

2

(

−s −
3

2

)

̟, −s̟.

For E−1 and E−2 the exponent 1
2
̟ does not appear [GJ00]. Therefore the exponents

of f = 1, E−1(h), E−2(h) and E(h, s) with |Re(s)| < 1
2

all satisfy Reµ < 1
2

as required.
The last part of the lemma is proved exactly as in [LR04].

As a conclusion from Theorem 2.1, we obtain the following.

Theorem 2.4 Let Π be the automorphic representation of G(A) on E−1( · , ϕ). Then

B
Π

ℓH ,ℓH
( f ) =

ζF(2)

ζF(3)

ζF(6)

λ−1
· Bπ

ℓMH
,ℓMH ,E(·,5)

( f ′
KH

),

where f ′
KH

is the function on M(A) defined by

f ′
KH

(m) = e〈̟+ρP ,HM (m)〉 ·

∫

KH

∫

KH

∫

U (A)

f (k ′muk) dudk ′dk.

Similarly,

B
Π

ℓH ,ℓH,E
−1

( f ) = B
π
ℓMH

,ℓMH
( f ′

KH
).

This is proved exactly as in [JLR04].

Before proving Theorem 2.2 in the next section, we recall a useful computational
trick.

2.1 Exchange of Roots

This procedure was first employed by Jacquet and Shalika [JS90]. It is often used in
the study of integral representations [GR94, Gin95a, Gin95b, BG00, GR00], but it is
very useful in other instances as well [GRS99, GRS02]. For the convenience of the

reader, we record it in much greater generality than needed for the purpose of this
paper. It is a global version of [GRS99, Lemma 2.2].

Whenever U is a unipotent group and ψU is a character on U\U (A), we write
f ψU (g) for the Fourier coefficient

∫

f (ug)ψU (u) du.
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Lemma 2.5 Let X, Y , X ′, Y ′ be unipotent subgroups of G and let ψ be a character of

Y ′\Y ′(A). Suppose that the following conditions are satisfied.

(i) X (resp. X ′) is a normal subgroup of Y (resp. Y ′) and Y/X (resp Y ′/X ′) is Abelian.

(ii) Y ∩ Y ′ = 1.

(iii) Y normalizes X ′ and Y ′ normalizes W = Y ⋉ X ′.

(iv) The character ψ|X ′\X ′(A) is normalized by Y (A); we denote its extension to

W\W (A) (trivial on Y (A)) by ψW .

(v) (Y ′, ψ) is normalized by X; we denote by ψW ′ the extension of ψ to W ′\W ′(A)
(trivial on X(A)) where W ′ = X ⋉ Y ′.

(vi) The set {ψW (γ · γ−1) : γ ∈ Z = Y ′/X ′} ranges over the characters of

X(A)Y\Y (A).

Then for any smooth function on G\G(A) we have

(12) φψW ′ (g) =

∫

Z(A)

φψW (zg)ψ(z) dz.

Proof It is enough to check this for g = e. Using (iv) we write the right-hand side

as

∫

Z\Z(A)

∑

γ∈Z

∫

W\W (A)

φ(γ−1wγz)ψW (w)ψ(z) dwdz

=

∫

Z\Z(A)

∑

γ∈Z

∫

W\W (A)

φ(wz)ψW (γwγ−1)ψ(z) dwdz

=

∫

Z\Z(A)

∑

γ∈Z

∫

Y\Y (A)

∫

X ′\X ′(A)

φ(yx ′z)ψ(y)ψW (γx ′γ−1)ψ(z) dydx ′dz

=

∫

Z\Z(A)

∑

γ∈Z

∫

X(A)Y\Y (A)

∫

X\X(A)

∫

X ′\X ′(A)

φ(yxx ′z)ψ(y)

× ψW (γx ′γ−1)ψ(z) dydxdx ′dz.

By assumption (vi), the sum over γ is the Fourier expansion along Y/X of the func-

tion
∫

X\X(A)

∫

X ′\X ′(A)
φ(yx · z)ψ(y) dydx. By (v), we obtain

∫

Z\Z(A)

∫

X\X(A)

∫

X ′\X ′(A)

φ(yxz)ψ(y)ψ(z) dydxdz

=

∫

X ′(A)XY ′\XY ′(A)

∫

X ′\X ′(A)

φ(yz)ψ(y)ψW ′(z) dydz.

This is equal to the left-hand side of (12).
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3 Proof of Theorem 2.2

To begin the proof of Theorem 2.2 we unfold θσ(h). Thus,

(13) P(σ, ϕ) =

∫

UH (A)MH\H(A)

∫

UH\UH (A)

E−1(uh, ϕ)Fσ(h) dudh.

Using Fourier analysis, we expand
∫

UH\UH (A)
E−1(uh, ϕ) along the quotient group

UH\U with points in F\A. The space UH\U is two dimensional and MH acts on it as

the standard representation. Thus there are two orbits on the dual space. The trivial
orbit gives

∫

UH (A)MH\H(A)

EU
−1(h, ϕ)Fσ(h) dh,

which can be written as
∫

KH

∫

MH\MH (A)1

∫

R+

|̟|−s0+ρP−2ρPH (z)Fσ(z) dzM−1ϕ(mk) dmdk.

Since −s0 + ρP − 2ρPH
= −2 = −( 1

2
+ ρPH

), the inner integral is 2πiσ(1/2) which
gives the first contribution to (11).

To compute the contribution from the other orbit, we take as a representative the
character ψU (u) = ψG(xγ1+γ2

(r1) + xγ2+γ3
(r2)) = ψ(r1 + r2). Its stabilizer in MH is of

the form T ′U ′ where U ′ is the unipotent subgroup corresponding to α and T ′ is a
one dimensional torus. We denote by ψUU ′ its extension to UU ′(A), which is trivial

on U ′(A). The contribution is

∫

UH (A)T ′U ′\H(A)

E
ψU

−1(h, ϕ)Fσ(h) dh =

∫

NH (A)T ′\H(A)

E
ψUU ′

−1 (h, ϕ)Fσ(h) dh,

where NH = U0 ∩ H is the maximal unipotent of H.

Let V be the unipotent radical of the rank-one parabolic Q containing the root γ2

in its Levi part.
We now use Lemma 2.5 with X = U ′, Y = M ∩ V , X ′ = U ∩ V , Y ′ = U . We

obtain
∫

NH (A)T ′\H(A)

∫

Xγ2
(A)

E
ψV

−1(uh, ϕ) duFσ(h) dh,

where ψV is trivial on M(A)∩V (A) and coincides with ψU on U (A)∩V (A). We can

write this as
∫

V (A)T ′\H(A)

E
ψV

−1(h, ϕ)Fσ(h) dh.

Note that EψV

−1(h) = E
ψ ′

V

−1(wβh) where ψ ′ is trivial on U ∩ V and is non-degenerate

on γ1, γ3. We have Eψ
′

V
−1 = (EU

−1)U0∩M,ψ ′

= (M−1ϕ)U0∩M,ψ . Indeed, when we expand
Eψ

′

V
−1 along Xγ2

only the trivial orbit contributes since E−1 is not generic. Thus, we

obtain
∫

V (A)T ′\H(A)

(M−1ϕ)
ψ

U M
0 (wβh)Fσ(h) dh.
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Changing the variable and noting that wβT ′w−1
β is the center Z of MH , we obtain

∫

V (A)Z\H(A)

(M−1ϕ)
ψ

U M
0 (h)Fσ(wβh) dh

=

∫

NH (A)Z\H(A)

(M−1ϕ)
ψ

U M
0 (h)Mwβ

Fσ(h) dh,

where Mwβ
Fσ(h) =

∫

Xβ (A)
Fσ(wβuh) du. We have

Mwβ
Fσ(h) =

∫

Re(s)≫0

σ(s)
ζF(s + 1

2
)

ζF(s + 3
2
)

∣

∣ (s + ρPH
)wβ̟ + β

∣

∣ (h).

Using the Iwasawa decomposition with resect to PH , we obtain

∫

KH

∫

Xα(A)Z\MH (A)1

∫

R+

|̟|−s0+ρP−2ρPH (z)Mwβ
Fσ(zm) dz(M−1ϕ)

ψ
U M

0 (mk) dmdk.

The inner integral is 2πiσ(s1)|(s1 + ρPH
)wβ̟ + β|(m) for the s1 such that

(−s0 + ρP − 2ρPH
)̟ + (s1 + ρPH

)wβ̟ + β = κα

for some κ. We obtain s1 = 3/2 and κ = 3, and the result is

2πiσ(3/2)
ζF(2)

ζF(3)

∫

KH

∫

Xα(A)Z\MH (A)1

(M−1ϕ)
ψ

U M
0 (mk)|κα|(m) dmdk.

Using the usual unfolding of the Rankin–Selberg integral, we obtain

2πiσ(3/2)
ζF(2)

ζF(3)

∫

KH

∫

MH\MH (A)1

(M−1ϕ)(mk)E(m, 2κ− 1) dmdk

as required.

4 The F4 Case

We let G = F4 and enumerate its simple roots as α1, α2, α3, α4 with

〈α1, α
∨
2 〉 = 〈α2, α

∨
1 〉 = 〈α3, α

∨
4 〉 = 〈α4, α

∨
3 〉 =

1

2
〈α2, α

∨
3 〉 = −1.

For integers n1, n2, n3, n4, we denote by (n1n2n3n4) the weight n1α1 + n2α2 + n3α3 +

n4α4 and by (n1n2n3n4)∨ the co-weight n1α
∨
1 + n2α

∨
2 + n3α

∨
3 + n4α

∨
4 . (Note that

if (n1n2n3n4) is a root, then (n1n2n3n4)∨ is not necessarily a co-root.) Also, for a
sequence xi ∈ {1, 2, 3, 4} we define w[x1x2 · · · xm] to be the element w[x1] · · ·w[xn]
in the Weyl group of G where w[ j] is the simple reflection corresponding to α j .
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We let P be the maximal parabolic of G corresponding to α1. Its Levi part is
M = GSp6. The fundamental weight ̟ = (2342) is the similitude factor. Here

ρP = 4. Let τ be a cuspidal representation on M(A).
Let Eτ (g, s) denote the Eisenstein series on G(A) induced from τ |̟|s. The poles

of this Eisenstein series are determined by L(s, π, Spin)L(2s, π, St) where the first
L-function is the eight dimensional Spin L-function and the second one is the seven

dimensional Standard L-function.
Let Q ′ = L ′V ′ be the maximal parabolic subgroup of G corresponding to α4

and let Q denote the (non-standard) parabolic wQ ′w−1 where w = w[231234]. Its
Levi subgroup L = wL ′w−1 is isomorphic to GSpin7 and its unipotent radical V =

wV ′w−1 is a two-step nilpotent group of dimension 15. Set γ1 = w(1000) = (0120),
γ2 = w(0100) = (1000), γ3 = w(0010) = (0111). We define the character ψV to
be ψ on the roots (0010), (0001). Its stabilizer H in L is isomorphic to G2. In this
embedding, α∨ corresponds to (0110)∨ and (0211)∨ while β∨ = (1000)∨. We write

the simple roots of H as (0120)(0111) and (1000). The subgroup PH = P ∩ H is
the parabolic subgroup of H considered in Section 2, and the center Z of MH coin-
cides under the embedding above with the center of M. It corresponds to the co-root
(2321)∨. The restriction ψVM

of ψV to VM = M ∩ V is the character considered

in [BG92, §2] (see [Vo97]). Let V1 = Ū ∩ V where Ū is the unipotent radical of the
parabolic subgroup P̄ opposite to P containing M. Explicitly, V1 (which is commu-
tative) is generated by the roots −(1221), −(1110), −(1220), −(1100).

Theorem 4.1 We have

∫

H\H(A)

EψV

−1(h, ϕ) dh =

∫

KH

∫

MH\MH (A)1

∫

V1(A)

ϕψVM (mvk) dvdmdk

=
ζF(2)

ζF(3)

ζF(6)

λ−1

∫

V1(A)

∫

KH

∫

MH\MH (A)1

(M−1ϕ)ψVM (mvk)E(m, 5) dmdkdv,

∫

H\H(A)

EψV

−1(h, ϕ)E−2(h) dh = 0,

∫

H\H(A)

E
ψV

−1(h, ϕ)E−1(h) dh =

∫

KH

∫

MH\MH (A)1

∫

V1(A)

(M−1ϕ)ψVM (mvk) dvdmdk.

Remark 1 For a cusp form ϕ on M\M(A), the integral

∫

MH\MH (A)1

ϕψVM (m)E(m, 2s − 1) dm

is related to the spin L-function at s [BG92]. The residue at s = 1 is essentially
∫

MH\MH (A)1 ϕ
ψVM (m) dm. The integrals over V1 appearing in the theorem have no

bearing on the unramified computation (cf. [GJ00]). We also recall from [GJ00] that
for a cusp form ϕ on G\G(A), the integral

∫

H\H(A)
φψV (h, ϕ)E(h, s) dh represents the

L-function corresponding to the 26-dimensional representation of F4.
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Proof We first consider the integral I =
∫

H\H(A)
Θ
ψV

φ (h, ϕ) dh for a pseudo-Eisen-

stein series Θφ(g) =
∑

P\G f (γg).

We write
G =

⋃

η
PηQ =

⋃

η∈P\G/Q

⋃

γ∈(L∩η−1Pη)\L/H

PηγHV.

It is easy to see that η = e,w[12],w[1234] are representatives for P\G/Q. The sub-

group L∩η−1Pη is a maximal parabolic of L which corresponds to γ2 if η = 1 and to
γ1 otherwise. Thus, if η 6= 1, then L = H · (L∩ η−1Pη) [PSRS92, §1]. For η = w[12]
the contribution of η to I factors through

∫

(V∩η−1Uη)\(V (A)∩η−1U (A)η)

ψV (v) dv,

which is zero since V ∩η−1Uη contains the root (0010). For η = w[1234] the integral
factors through

∫

U1\U1(A)
f (u·) du, where U1 is the subgroup generated by the roots

(0011), (0111), (0121), (0122), (0010)(1122), (0110)(1222), (0120)(1232).

Since f is left-U (A)-invariant, this will be a constant term of f along a parabolic of
M which is zero by cuspidality. For η = 1 there are two orbits in (L ∩ P)\L/H. The

open orbit is γ = w[1323]. Once again, its contribution factors through

∫

(V∩γ−1Uγ)\(V (A)∩γ−1U (A)γ)

ψV (v) dv,

which is zero since V ∩ γ−1Uγ contains the root (0001).
We conclude that only η = γ = 1 contributes, and its contribution is

∫

PH\H(A)

∫

V∩P\V (A)

f (vh)ψV (v) dv =

∫

PH\H(A)

∫

V1(A)

f ψVM (vh) dv.

By Iwasawa decomposition we can write this as

∫

KH

∫

MH\MH (A)1

∫

R+

∫

V1(A)

|̟|−2ρH
P (z) f ψVM (vzmk) dzdvdmdk.

(Recall that R+ is identified with a subgroup of H via ̟∨.) Conjugating z across V1

we obtain a factor of |̟|−2(z) from the change of variables. We finally get

(14) I =

∫

KH

∫

MH\MH (A)1

∫

V1(A)

f̂ (s0)ψVM (vmk) dvdmdk,

where −(s0 + ρP) = −2ρPH
− 2, i.e., s0 = 1. The first part of Theorem 4.1 follows

from (14) by a standard argument.
For the other parts we need to analyze

J =

∫

H\H(A)

E
ψV

−1(h)θσ(h) dh.
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When we unfold the Eisenstein series on H and proceed as in [GJ00, §2], we obtain
that J = J1 + J2, where

J1 =

∫

UH (A)PH\H(A)

∫

V1(A)

E
ψUVM

−1 (vh)Fσ(h) dvdh,

J2 =

∫

NH (A)T ′\H(A)

∫

V2(A)

E
ψN

−1(vw[1]h)Fσ(h) dvdh.

Here, V2 is the unipotent subgroup of G generated by V1 and the roots

−(1000), −(0100), −(0110);

N is the maximal unipotent subgroup of G; ψN is trivial on U and is Whittaker inside

M; and T ′ is the torus of H defined in §2.
As before, we can write J1 as

∫

KH

∫

MH\MH (A)1

∫

V1(A)

∫

R+

|̟|−s0+ρP−2ρPH (z)|̟|−2(z)E
ψUVM

−1 (vmk)Fσ(zm) dzdvdmdk

= 2πiσ(s1)

∫

KH

∫

MH\MH (A)1

∫

V1(A)

E
ψUVM

−1 (vmk) dvdmdk

for s1, so that −(s1 + ρPH
) = −s0 + ρP − 2ρPH

− 2, i.e., s1 =
1
2
.

As for J2, we write it as
∫

V (A)T ′\H(A)

∫

V ′

2 (A)

E
ψN

−1(vw[1]h)Fσ(h) dvdh,

where V ′
2 is generated by V1, and the roots −(0100) and −(0110). As in §2 we rewrite

this as

∫

V (A)Z\H(A)

∫

V ′

2 (A)

E
ψN

−1(vh)Mwβ
Fσ(h) dvdh

=

∫

KH

∫

Xα(A)Z\MH (A)1

∫

V ′

2 (A)

∫

R+

|̟|−s0+ρP−2ρPH
−2(z)Mwβ

Fσ(zm) dz

E
ψN

−1(vmk) dvdmdk.

Exactly the same as before, we obtain (with κ = 3)

2πiσ(3/2)
ζF(2)

ζF(3)

∫

KH

∫

Xα(A)Z\MH (A)1

∫

V ′

2 (A)

(M−1ϕ)
ψ

U M
0 (vmk)|κα|(m) dmdkdv.

Finally, we may conjugate m and use the integral representation of [BG92] to obtain

2πiσ(3/2)
ζF(2)

ζF(3)

∫

V1(A)

∫

KH

∫

MH\MH (A)1

(M−1ϕ)ψVM (mvk)E(m, 2κ− 1) dmdkdv.

We continue as in §2.
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4.1 Matching of Functions

Finally we discuss how to obtain an identity of Bessel distributions from Theorem 4.1.
The recipe for f ′ is slightly more complicated than before due to the appearance of
the extra unipotent integration over V1.

4.2 Nilpotent Groups

Let N be a 3-dimensional Heisenberg group over a local field F. We write N =

Z ·Ṽ ·V ′ where Z is the center, and we identify Z, Ṽ and V ′ with F in such a way that
the commutator [v, v ′] becomes multiplication. We also fix a non-trivial character ψ
of Z.

Let D be a function on N satisfying

(15)

∫

V ′

Dψ(vv ′) dv ′
= 1 for all v ∈ Ṽ .

For any function f on N define TN f (n) =
∫

N
D(x) f (xn) dx.

Lemma 4.2 Let l be a function on N such that l(zv ′n) = ψ(z)l(n) for all z ∈ Z,

v ′ ∈ V ′, n ∈ N. Then

(16)

∫

Ṽ

∫

N

f (n)l(vn) dndv =

∫

N

TN f (n)l(n) dn.

In particular, let φ ∈ C∞
c (Z) and φ ′ ∈ C∞

c (V ′) be such that

∫

Z

φ(z) dz =

∫

V ′

φ ′(v ′) dv ′
= 1.

Set

(17) D(zvv ′) = ψ(z)
φ(z/v)

|v|
φ ′(v ′).

Then D satisfies (15) and

(18) f ∈ S(N) =⇒ TN f ∈ S(N).

If F is p-adic, ψ has conductor O, and φ = φ ′ = 1O, then TN f = f for any f which is

left-K-invariant.

Proof The right-hand side of (16) is equal to

∫

Z

∫

Ṽ

∫

V ′

∫

Z

∫

Ṽ

∫

V ′

D(zvv ′) f (zvv ′wu ′u)ψ(w)l(u) dv ′dvdzdu ′dudw.
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By a change of variables we get

∫

Ṽ

∫

V ′

∫

Ṽ

∫

V ′

Dψ(vv ′) f ψ(vv ′u ′u)l(u) dv ′dvdu ′du,

or
∫

Ṽ

∫

V ′

∫

Ṽ

∫

V ′

Dψ(vv ′) f ψ(vu ′u)l(u) dv ′dvdu ′du.

Using (15) we get
∫

Ṽ

∫

V ′

∫

Ṽ

f ψ(vu ′u)l(u) dvdu ′du.

Evidently, this is equal to the left-hand side of (16).

Clearly, D defined in (17) satisfies (15). It is also obvious that

TN ( f1⋆ f2) = TN ( f1)⋆ f2.

Hence, by the Dixmier–Malliavin theorem, it is enough to check (18) for f ∈ C∞
c (N).

In fact, it is enough to show that TN f is rapidly decreasing, since left-invariant dif-
ferential operators commute with TN . Write F(z, v, v ′) = f (zvv ′). Thus, F ∈
C∞

c (Z × Ṽ ×V ′). Similarly, write F ′(w, u, u ′) = TN f (wuu ′). Then

F ′(w, u, u ′) =

∫

Z

∫

Ṽ

∫

V ′

ψ(z)
φ(z/v)

|v|
φ ′(v ′) f (zvv ′wuu ′) dv ′dvdz

=

∫

Z

∫

Ṽ

∫

V ′

ψ(z)
φ(z/v)

|v|
φ ′(v ′)F(z + w + [v ′, u], u + v, u ′ + v ′) dv ′dvdz,

which after a change of variable becomes

∫

Z

∫

Ṽ

∫

V ′

ψ(vz)φ(z)φ ′(v ′)F(vz + w + v ′u, u + v, u ′ + v ′) dv ′dvdz

=

∫

Z

∫

Ṽ

∫

V ′

ψ(vz)ψ(uz)φ(z)φ ′(v ′ + z)F(vz + w + v ′u, v, v ′ + z + u ′) dv ′dvdz.

Clearly this is zero unless u ′ is confined to a compact set which is independent of w

and u. Similarly, z, v and v ′ are integrated over a fixed compact set, independently
of w and u and u ′. Hence, in the support of F ′ we have |w| ≤ C(1 + |u|) for some

constant C . Therefore, in order to show that TN f ∈ S(N), it is enough to show that
F ′(w, u, u ′) is rapidly decreasing in u, uniformly in w. However, F ′(w, u, u ′) is the
Fourier transform at u of the function

z 7→ ψ(vz)φ(z)φ ′(v ′ + z)F(vz + w + v ′u, v, v ′ + z + u ′)

and the latter is a normal family in S(Z) when we vary v, v ′, u, u ′, w. The result
follows.
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To show the last part of the lemma, it is enough to check that T1K = 1K . The
previous computation gives that T1K (wuu ′) equals

∫

Z

∫

Ṽ

∫

V ′

ψ(vz)ψ(uz)1O(z)1O(v ′+z−u ′)1O(vz+w+v ′u)1O(v)1O(v ′+z) dv ′dvdz

=

∫

Z

∫

Ṽ

∫

V ′

ψ(uz)1O(z)1O(u ′)1O(w + v ′u)1O(v)1O(v ′) dv ′dvdz,

which is equal to 1O(u)1O(u ′)1O(w) since
∫

Z

ψ(uz)1O(z) = 1O(u).

Remark 2 The lemma still holds for a group N isomorphic to the maximal unipo-
tent of O(3, 2) (with roots α, β, α + β, α + 2β) with Z = Xα+β , Ṽ = Xα, V ′ =

Xβ · Xα+2β . (Note that Z is not the center of N .) The proof is only slightly different.
We omit the details.

Let U1 = X−(1221), U2 = X−(1110), U3 = X−(1220), U4 = X−(1100). Also, set

N1 = U1 · X(1231) · X(0010),

N2 = U2 · X(1111) · X(0001),

N3 = U3 · X(1221) · X(0001) · X(1222),

N4 = U4 · X(1110) · X(0010) · X(1120).

Thus, N1, N2, are Heisenberg groups and N3, N4 are of the type considered in Re-
mark 2. Thus we may apply Lemma 4.2 with N = Ni , Ṽ = Ui , Z = X(0010) for
i = 1, 4 and Z = X(0001) for i = 2, 3, and ψ = ψV |Z . On each Ni , fix functions Di as
before.

Note that Y1 = [N1,U2U3U4] = X−(1100) · X(0121) · X(0011). Thus,

(19) Y1 ⊂ Ker(ψVM
) ·U4 and [Y1,U1] ⊂ U4.

Similarly, Y2 = [N2,U3U4] = X(0011), and hence, ψVM
is trivial on Y2 and Y2 com-

mutes with U2. Finally, Y3 = [N3,U4] = X(0121). Again ψVM
is trivial on Y3 and Y3

commutes with U3.
Set

ℓψV

H (ϕ) =

∫

H\H(A)

ϕψVM (h) dh.

For f ∈ S(G), define Ti f (x) =
∫

Ni
Di(n) f (nx) dn, x ∈ G.

Lemma 4.3 The function Ti f belongs to S(G). We have
∫

Ui

∫

Ni (A)

f (nx)ℓ
ψVM

MH
ϕ(vnx) dndv =

∫

Ni (A)

Ti f (nx)ℓ
ψVM

MH
ϕ(nx) dn.

If F is p-adic, then Ti acts as the identity on the Hecke algebra.
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Proof Let w be a Weyl group element so that wNiw
−1 ⊂ U0. Let C be the variety

T0 ·
∏

β Xβ , where the product (in a prescribed order) is over the roots β not inside

Ni such that wβ > 0. Thus, C is a complement of Ni in w−1Bw. Since Ti f (nck) =

TNi
f ( · ck), the first and last assertions follow from Lemma 4.2. The second statement

follows from (16).

Define T f = T4(T3(T2(T1 f KH ))). (We could have taken KH at the end.)

Theorem 4.4 Let Π be the automorphic representation of G(A) on E−1(·, ϕ). Then

B
Π

ℓ
ψV
H ,ℓ

ψV
H

( f ) =
ζF(2)

ζF(3)

ζF(6)

λ−1
· Bπ

ℓ
ψVM
MH

,ℓ
ψVM
MH ,E(·,5)

(T f ).

Similarly,

B
Π

ℓ
ψV
H ,ℓ

ψV
H,E

−1

( f ) = B
π

ℓ
ψVM
MH

,ℓ
ψVM
MH

(T f ).

The theorem will follow from the next lemma, as in [JLR04].

Lemma 4.5 The linear form

(20) ϕ 7→ ℓψV

H (Π( f )E−1( · , ϕ))

on I(π,̟) is given by Ψ ∈ I(π∨,−̟), where

(21) Ψ(g) = ℓ
ψVM

MH
◦ π((RgT f )U ),

where Rg f ( · ) = f ( · g) and

f U (m) = e〈̟+ρP ,HM (m)〉 ·

∫

U (A)

f (mu) du.

Proof First, one easily checks that Ψ lies in I(π∨,−̟).

By Theorem 4.1, ℓψV

H ◦ Π( f ) equals

∫

KH

∫

V1(A)

∫

MH\MH (A)1

I( f , π,̟)ϕψVM (lv1k ′) dldv1dk ′

=

∫

KH

∫

V1(A)

∫

G(A)

f (x)ℓ
ψVM

MH
ϕ(v1k ′x) dxdv1dk ′

=

∫

V1(A)

∫

G(A)

f KH (x)ℓ
ψVM

MH
ϕ(v1x) dxdv1

=

∫∫∫∫

Ui (A)

∫

G(A)

f KH (x)ℓ
ψVM

MH
ϕ(u1u2u3u4x) dx ⊗ dui.
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We now write this as

∫∫∫∫

Ui (A)

∫

N1(A)\G(A)

∫

N1(A)

f KH (nx)ℓ
ψVM

MH
ϕ(u1u2u3u4nx) dndx ⊗ dui

=

∫∫∫∫

f KH (nx)ℓ
ψVM

MH
ϕ(u1nu2u3u4x) dndx ⊗ dui.

The last step is justified by (19) using a change of variables in u4. Using Lemma 4.3,

the integrals over n1 and u1 become

∫

N1(A)

T1( f KH )(nx)ℓ
ψVM

MH
ϕ(nu2u3u4x) dn.

Commuting n back over u2u3u4 and combining the integral over N1(A) with
N1(A)\G(A), we obtain

∫

U2(A)

∫

U3(A)

∫

U4(A)

∫

G(A)

T1( f KH )(x)ℓ
ψVM

MH
ϕ(u2u3u4x) dxdu2du3du4.

Continuing this way with U2, U3 and U4 we finally get

∫

G(A)

T f (x)ℓ
ψVM

MH
ϕ(x) dx.

Using Iwasawa decomposition we get

∫

K

∫

U (A)

∫

M(A)

T f (muk)ℓ
ψVM

MH
ϕ(mk) dmdudk.

Viewing ϕ as an element I(π,̟) we get

∫

K

∫

U (A)

∫

M(A)

T f (muk)ℓMH
(π(m)ϕ(k))e〈̟+ρP ,HM (m)〉 dmdudk

=

∫

K

ℓ
ψVM

MH
◦ π((RkT f )U )(ϕ(k)) dk = Ψ(ϕ),

as required.
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