On a Conjecture of Jacquet, Lai, and Rallis: Some Exceptional Cases

David Ginzburg and Erez Lapid

Abstract

We prove two spectral identities. The first one relates the relative trace formula for the spherical variety $\operatorname{GSpin}(4,3) / G_{2}$ with a weighted trace formula for $G L_{2}$. The second relates a spherical variety pertaining to F_{4} to one of $\operatorname{GSp}(6)$. These identities are in accordance with a conjecture made by Jacquet, Lai, and Rallis, and are obtained without an appeal to a geometric comparison.

1 Introduction

Let G be a reductive group over a number field F and let H be a subgroup of G which is obtained as the fixed points of an involution θ defined over F. One can relate the double coset space $H \backslash G / H$ to conjugacy classes of a third group G^{\prime} [KR71]. In a paper whose importance, we believe, is underestimated, Jacquet, Lai, and Rallis [JLR93] conjectured that there is a functorial relation between automorphic representations π^{\prime} of $G^{\prime}(\mathbb{A})$ and automorphic representations π which are H-distinguished, i.e., for which the functional $\ell_{H}(\varphi)=\int_{H(F) \backslash H(A)} \varphi(h) d h$ (suitably regularized if π is noncuspidal) is non-zero on V_{π}. (The group G^{\prime} may be non-algebraic in this setup.) Moreover, roughly speaking, for test functions f and f^{\prime} on $G(\mathbb{A})$ and $G^{\prime}(\mathbb{A})$ satisfying certain compatibility conditions, there should exist trace identities

$$
\begin{align*}
& \int_{(H(F) \backslash H(\mathbb{A}))^{2}} K_{f}\left(h_{1}, h_{2}\right) d h_{1} d h_{2}=\int_{G^{\prime} \backslash G^{\prime}(\mathbb{A})} K_{f^{\prime}}(x, x) \Theta^{\prime}(x) d x, \tag{1}\\
& \int_{(H(F) \backslash H(\mathbb{A}))^{2}} K_{f}\left(h_{1}, h_{2}\right) \Theta\left(h_{2}\right) d h_{1} d h_{2}=\int_{G^{\prime} \backslash G^{\prime}(\mathbb{A})} K_{f^{\prime}}(x, x) d x . \tag{2}
\end{align*}
$$

for appropriate automorphic weight functions Θ and Θ^{\prime} on $H(\mathbb{A})$ and $G^{\prime}(\mathbb{A})$, respectively. (It may be necessary to vary over inner forms of either H or G^{\prime}.) The test case considered in [JLR93] was $G=G L_{2} / E, H$ ranges over unitary similitude groups, $G^{\prime}=G L_{2} / F$ and E / F is a quadratic extension. Identities like (1) and (2) lead, with some effort, to spectral identities of the form

$$
\begin{align*}
& \mathcal{B}_{\ell_{H}, \ell_{H}}^{\pi}(f)=\mathcal{T}_{\Theta^{\prime}} \pi^{\prime}\left(f^{\prime}\right), \tag{3}\\
& \mathcal{B}_{\ell_{H}, \ell_{\Theta, H}}^{\pi}(f)=\operatorname{tr} \pi^{\prime}\left(f^{\prime}\right) . \tag{4}
\end{align*}
$$

Received by the editors March 9, 2005; revised April 15, 2005.
The second named author was partially supported by ISF grant \#0397563.
AMS subject classification: Primary: 11F70; secondary: 11F72, 11F30, 11F67.
(C)Canadian Mathematical Society 2007.

Here $\mathcal{B}_{\ell_{H}, \ell_{H}}^{\pi}(f)$ is the Bessel distribution with respect to ℓ_{H} and ℓ_{H} which is defined by

$$
\mathcal{B}_{\ell_{H}, \ell_{H}}^{\pi}(f)=\sum_{\varphi} \ell_{H}(\pi(f) \varphi) \overline{\ell_{H}(\varphi)}
$$

the sum ranging over an orthonormal basis of V_{π}; similarly for $\mathcal{B}_{\ell_{H}, \ell_{\theta, H}}^{\pi}(f)$, where

$$
\ell_{\Theta, H}(\varphi)=\int_{H(F) \backslash H(\mathbb{A})} \varphi(h) \Theta(h) d h .
$$

Finally, $\mathcal{T}_{\Theta^{\prime}} \pi^{\prime}\left(f^{\prime}\right)$ is the "weighted trace"

$$
\sum_{\varphi^{\prime}} \int_{G^{\prime}(F) \backslash G^{\prime}(\mathbb{A})}\left[\pi^{\prime}\left(f^{\prime}\right) \varphi^{\prime}\right](x) \overline{\varphi^{\prime}(x)} \Theta^{\prime}(x) d x
$$

Our goal here is to give some more examples where relations like (3), (4) and similar ones hold. The cases we consider are special cases of the following setup. Let P be a maximal subgroup of G with Levi part M. Let ϖ be the fundamental weight corresponding to P, considered as a (fractional power of a) rational character of M. We will assume that G (or, equivalently, M) is quasi-split, and consider Eisenstein series $E(\cdot, \varphi, s \varpi)$ induced from cuspidal representations of $M(\mathbb{A})$ which admit a non-zero, non-degenerate Fourier coefficient. A residue $E_{-1}(\cdot, \varphi)$ of such an Eisenstein series (necessarily belonging to the discrete spectrum of $G(F) \backslash G(\mathbb{A})$) is often distinguished with respect to a spherical subgroup H. (In all known cases, and presumably in general, there is at most one residue point $s_{0} \varpi$ for $\operatorname{Re}(s)>0$, and s_{0} is either $\frac{1}{2}$ or 1.) Moreover, one can relate the period integral of this residue to a period integral over $M_{H}=M \cap H$ of the section inducing it. On the other hand, no cuspidal representation of $G(\mathbb{A})$ (generic or not) is distinguished with respect to H.

The first identity (3) was previously considered in [LR04] and [JLR04]. It relies on an additional formula of the period integral of $E_{-1} \varphi$ in terms of a "co-period" of the constant term. In the first part of the current paper we consider the group $G=\operatorname{GSpin}(4,3)$ of semi-simple rank 3 containing $M=G L_{2} \times G L_{2}$ as a Levi subgroup. The period subgroup H is the exceptional rank two group G_{2}. The new feature in this case is that we are able to prove the second identity (4) by obtaining a formula for the co-period of $E_{-1} \varphi$ in terms of its constant term. There seem to be difficult analytic, and perhaps conceptual, problems in deriving such formulas (and therefore, identity 4) in the cases considered in [JLR04, LR04]. In the second part of the paper we consider the exceptional group F_{4} and its Levi subgroup $G S p_{6}$. The period is obtained by integrating a certain Fourier coefficient over its reductive stabilizer. This is the first time a non-reductive period subgroup is considered for spectral identities analogous to the ones above. This gives rise to additional complications in the derivation of the spectral identities from the period and co-periods formulas. This case can be viewed as "unipotent thickening" of the previous case, in the sense that the stabilizer of the Fourier coefficient is G_{2} as before. This procedure is common in integral representations of L-functions, and go back to the exterior square L-function of Jacquet-Shalika [JS90]. Finally, we mention that the spectral identities and the period formulas in this paper are very much inspired by the work of Jiang and Ginzberg [Jia98, GJ00].

1.1 Notation and Preliminaries

We will consider split groups G over a number field F and choose a Borel subgroup $B=T_{0} U_{0}$, as well as a "good" maximal compact \mathbf{K} of $G(\mathbb{A})$. If X is defined over F we will often write X for the F-points of X as well. For any rational character λ of T_{0} we will extend the character $|\lambda|(t)=\prod_{v}\left|\lambda\left(t_{v}\right)\right|_{v}$ on $T_{0}(\mathbb{A})$ to a left- $U_{0}(\mathbb{A})$ and right-K-invariant function on $G(\mathbb{A})$. We will still denote this function by $|\lambda|$.

Let $P=M U$ be a maximal parabolic of G and ϖ the corresponding fundamental weight. The intersection T_{M} of the center of M with the derived group of G is a onedimensional torus. We will imbed \mathbb{R}_{+}in $T_{M}(\mathbb{A})$ diagonally in the archimedean places. For any cuspidal automorphic function φ on $M(F) U(\mathbb{A}) \backslash G(\mathbb{A})$ satisfying

$$
\varphi(a g)=\delta_{P}(a)^{\frac{1}{2}} \varphi(g) \quad \forall a \in \mathbb{R}_{+}
$$

we consider the Eisenstein series defined for $\operatorname{Re}(s) \gg 0$ by

$$
E(g, \varphi, s)=\sum_{\gamma \in P \backslash G} \varphi(\gamma g)|\varpi|^{s}(\gamma g)
$$

It admits a meromorphic continuation to the complex plane and a functional equation $s \mapsto-s, \varphi \mapsto M(s) \varphi$, where $M(s)$ is the usual intertwining operator.

2 The Pair $\left(\operatorname{GSpin}(4,3), G_{2}\right)$

We first consider the group $G=\operatorname{GSpin}(4,3)$. Write the simple roots of G as γ_{1}, γ_{2} and γ_{3} where γ_{1} and γ_{2} are contained in $G L_{3}$ and the root groups $X_{\gamma_{1}}$ and $X_{\gamma_{3}}$ commute. We take the maximal parabolic subgroup P defined by γ_{2}. Its Levi part is $M=G L(2) \times \operatorname{GSpin}(3)=G L(2) \times G L(2)$. Under this identification, $\varpi\left(g_{1}, g_{2}\right)=$ $\operatorname{det}\left(g_{1}\right)$. The modulus function of $P(\mathbb{A})$ is $|\varpi|^{4}$. We set $\rho_{P}=2$ so that the modulus function is $|\varpi|^{2 \rho_{P}}$. Starting from a cuspidal automorphic representation of π of $G L_{2}$ we construct the Eisenstein series on G induced from $\pi \otimes \pi$. We have

$$
M(s) \varphi=\frac{L(s, \pi \otimes \tilde{\pi}) L(2 s, \pi, \mathrm{Ad})}{L(s+1, \pi \otimes \tilde{\pi}) L(2 s+1, \pi, \mathrm{Ad})} M_{S}(s) \varphi_{S}
$$

(cf. [Asg02]). We consider the residue $E_{-1}(g, \varphi)$ of $E(g, \varphi, s)$ at $s_{0}=1$.
We now consider the period subgroup $H=G_{2}$ imbedded in G in the usual way (see [Jia98]). In particular, we denote by α and β the simple roots of H so that X_{α} is contained in $X_{\gamma_{1}} \cdot X_{\gamma_{3}}$ and $X_{\beta}=X_{\gamma_{2}}$. The other positive roots are $\alpha+\beta, 2 \alpha+\beta$, $3 \alpha+\beta$ and $3 \alpha+2 \beta$. In this case $M_{H}=M \cap H=G L(2)$ imbedded diagonally in M. It is the Levi part of the "Heisenberg" parabolic $P_{H}=P \cap H$ of H defined by β. The unipotent radical is $U_{H}=U \cap H$. The restriction ϖ_{H} of ϖ to M_{H} is the determinant, which is also the fundamental weight of P_{H}. We will simply identify ϖ_{H} with ϖ. The modulus function of $P_{H}(\mathbb{A})$ is $|\varpi|^{3}$. Set $\rho_{P_{H}}=3 / 2$.

Jiang [Jia98] considered the H-period of $E_{-1}(\cdot, \varphi)$ and obtained the formula

$$
\begin{equation*}
\int_{H \backslash H(\mathbb{A})} E_{-1}(h, \varphi) d h=\int_{\mathbf{K}_{H}} \int_{M_{H} \backslash M_{H}(\mathbb{A})^{1}} \varphi(m k) d m d k . \tag{5}
\end{equation*}
$$

In particular, this H-period is non-zero. ${ }^{1}$
Consider the Eisenstein series

$$
\mathcal{E}(h, s)=\sum_{\gamma \in P_{H} \backslash H}|\varpi|^{s+\rho \rho_{H}}(\gamma h)
$$

(unitarily) induced from $|\varpi|^{s}$ on M_{H}. This Eisenstein series was considered in [GJ00]. Its singularities for $\operatorname{Re}(s)>0$ are a simple pole at $s=\rho_{P_{H}}=\frac{3}{2}$, where the residue is the constant function $\lambda_{-1} / \zeta_{F}(6)$ (with $\lambda_{-1}=\operatorname{res}_{s=1} \zeta_{F}(s)=\operatorname{vol}\left(F^{*} \backslash \mathbb{I}_{F}^{1}\right)$), and a double pole at $s=\frac{1}{2} .{ }^{2}$ We write the Laurent expansion near $s=\frac{1}{2}$ as

$$
\mathcal{E}(\cdot, s)=\frac{\mathcal{E}_{-2}(\cdot)}{\left(s-\frac{1}{2}\right)^{2}}+\frac{\mathcal{E}_{-1}(\cdot)}{s-\frac{1}{2}}+O(1)
$$

We also have the right- $K \cap M_{H}(\mathbb{A})$-invariant Eisenstein series $\mathbb{E}(\cdot, s)$ on $M_{H}(\mathbb{A})$ (unitarily) induced from Ind $\left|t_{1} / t_{2}\right|^{s / 2}$.

The following theorem gives an alternative formula for the H-period, as well as formulas for certain co-periods.

Theorem 2.1 We have
(6) $\int_{H \backslash H(\mathbb{A})} E_{-1}(h, \varphi) d h=\frac{\zeta_{F}(2)}{\zeta_{F}(3)} \frac{\zeta_{F}(6)}{\lambda_{-1}} \int_{\mathbf{K}_{H}} \int_{M_{H} \backslash M_{H}(\mathbb{A})^{1}} M_{-1} \varphi(m k) \mathbb{E}(m, 5) d m d k$.

$$
\begin{gather*}
\int_{H \backslash H(\mathbb{A})} E_{-1}(h, \varphi) \mathcal{E}(h, s) d h=0 \text { for }|\operatorname{Re}(s)|<\frac{1}{2} \tag{7}\\
\int_{H \backslash H(\mathbb{A})} E_{-1}(h, \varphi) \mathcal{E}_{-2}(h) d h=0 . \tag{8}\\
\int_{H \backslash H(\mathbb{A})} E_{-1}(h, \varphi) \mathcal{E}_{-1}(h) d h=\int_{\mathbf{K}_{H}} \int_{M_{H} \backslash M_{H}(\mathbb{A})^{1}} M_{-1} \varphi(m k) d m d k . \tag{9}
\end{gather*}
$$

In contrast, for cusp forms of $G(\mathbb{A}), \int_{H \backslash H(\mathbb{A})} \phi(h) \mathcal{E}(h, s) d h$ gives the L-function corresponding to the second fundamental weight [GR94].

To prove Theorem 2.1 we define, for a holomorphic function $\sigma \in \mathcal{P}(\mathbb{C})$ of the Paley-Wiener type, a function θ_{σ} on $H \backslash H(\mathbb{A})$ by

$$
\begin{equation*}
\theta_{\sigma}(h)=\int_{\operatorname{Re}(s) \gg 0} \sigma(s) \mathcal{E}(h, s) d s=\sum_{\gamma \in P_{H} \backslash H} \mathcal{F}_{\sigma}(\gamma h), \tag{10}
\end{equation*}
$$

where

$$
\mathcal{F}_{\sigma}(h)=\int_{\operatorname{Re}(s)=0} \sigma(s)|\varpi|^{s+\rho_{P_{H}}}(h) d s .
$$

[^0](The function θ_{σ} is not rapidly decreasing.) Set
$$
\mathfrak{P}(\sigma, \varphi)=\int_{H \backslash H(\mathbb{A})} E_{-1}(h, \varphi) \theta_{\sigma}(h) d h .
$$

The main assertion is the following.
Theorem 2.2 We have

$$
\begin{align*}
\mathfrak{P}(\sigma, \varphi)=2 \pi i \sigma & \left(\frac{1}{2}\right) \int_{\mathbf{K}_{H}} \int_{M_{H} \backslash M_{H}(\mathbb{A})^{1}} M_{-1} \varphi(m k) d m d k \tag{11}\\
& +2 \pi i \sigma\left(\frac{3}{2}\right) \frac{\zeta_{F}(2)}{\zeta_{F}(3)} \int_{\mathbf{K}_{H}} \int_{M_{H} \backslash M_{H}(\mathbb{A})^{1}} M_{-1} \varphi(m k) \mathbb{E}(m, 5) d m d k
\end{align*}
$$

We will prove Theorem 2.2 in the next section. To see that Theorem 2.2 implies Theorem 2.1, we write

$$
\mathfrak{P}(\sigma, \varphi)=\int_{H \backslash H(\mathbb{A})} \int_{\operatorname{Re} s \gg 0} E_{-1}(h, \varphi) \sigma(s) \mathcal{E}(h, s) d s d h .
$$

Shifting the contour of integration to the imaginary axis we obtain

$$
\begin{aligned}
2 \pi i \sigma\left(\frac{3}{2}\right) \frac{\lambda_{-1}}{\zeta_{F}(6)} & \int_{H \backslash H(\mathbb{A})} E_{-1}(h, \varphi) d h+2 \pi i \sigma\left(\frac{1}{2}\right) \int_{H \backslash H(\mathbb{A})} E_{-1}(h, \varphi) \mathcal{E}_{-1}(h) d h \\
& +2 \pi i \sigma^{\prime}\left(\frac{1}{2}\right) \int_{H \backslash H(A)} E_{-1}(h, \varphi) \mathcal{E}_{-2}(h) d h \\
& +\int_{\operatorname{Re} s=0} \sigma(s) \int_{H \backslash H(A)} E_{-1}(h, \varphi) \mathcal{E}(h, s) d h d s .
\end{aligned}
$$

Compare this with (11). We obtain Theorem 2.1 as in [JLR04, Lemma 3]. For this we need to know the following lemma.

Lemma 2.3 The integrals

$$
\begin{gathered}
\int_{H \backslash H(\mathbb{A})} E_{-1}(h, \varphi) d h, \quad \int_{H \backslash H(\mathbb{A})} E_{-1}(h, \varphi) \mathcal{E}_{-1}(h) d h \\
\int_{H \backslash H(\mathbb{A})} E_{-1}(h, \varphi) \mathcal{E}_{-2}(h) d h, \quad \int_{H \backslash H(\mathbb{A})} E_{-1}(h, \varphi) \mathcal{E}(h, s) d h \quad \text { for }|\operatorname{Re} s|<\frac{1}{2},
\end{gathered}
$$

are absolutely convergent. Moreover, for any $0<s_{1}<\frac{1}{2}$,

$$
\sup _{\operatorname{Re} s=s_{1}} \int_{H \backslash H(\mathbb{A})}\left|E_{-1}(h, \varphi) \mathcal{E}(h, s)\right| d h<\infty .
$$

Proof The only exponent of $E_{-1}(h, \varphi)$ is along P and it is $-s_{0} \varpi$. Since the Siegel set of H can be chosen to be contained in that of G, the condition on an automorphic form f on H for $\int_{H \backslash H(A)} E_{-1}(h, \varphi) f(h) d h$ to converge is that $-s_{0}+\rho_{P}+\operatorname{Re} \mu+$ $\rho_{P_{H}}-2 \rho_{P_{H}}<0$ for any exponent of $\mu \varpi$ of f along P_{H}. Substituting, this becomes $\operatorname{Re} \mu<1 / 2$. The exponents of $\mathcal{E}(\cdot, s)$ along the Borel are

$$
\begin{gathered}
\left(s-\frac{1}{2}, s+\frac{1}{2}\right),\left(s-\frac{1}{2},-1\right),\left(-1, s-\frac{1}{2}\right) \\
\left(-1,-\frac{1}{2}-s\right),\left(-\frac{1}{2}-s,-1\right),\left(-\frac{1}{2}-s, \frac{1}{2}-s\right)
\end{gathered}
$$

where (x, y) corresponds to the character $t_{1}, t_{2} \mapsto\left|t_{1}\right|{ }^{x}\left|t_{2}\right|^{y}$ of the standard torus of $M_{H}=G L_{2}$. Hence, the exponents of $\mathcal{E}(\cdot, s)$ along P_{H} are

$$
s \varpi, \quad \frac{1}{2}\left(s-\frac{3}{2}\right) \varpi, \quad \frac{1}{2}\left(-s-\frac{3}{2}\right) \varpi, \quad-s \varpi .
$$

For \mathcal{E}_{-1} and \mathcal{E}_{-2} the exponent $\frac{1}{2} \varpi$ does not appear [GJ00]. Therefore the exponents of $f=1, \mathcal{E}_{-1}(h), \mathcal{E}_{-2}(h)$ and $\mathcal{E}(h, s)$ with $|\operatorname{Re}(s)|<\frac{1}{2}$ all satisfy $\operatorname{Re} \mu<\frac{1}{2}$ as required. The last part of the lemma is proved exactly as in [LR04].

As a conclusion from Theorem 2.1, we obtain the following.
Theorem 2.4 Let Π be the automorphic representation of $G(\mathbb{A})$ on $E_{-1}(\cdot, \varphi)$. Then

$$
\mathcal{B}_{\ell_{H}, \ell_{H}}^{\Pi}(f)=\frac{\zeta_{F}(2)}{\zeta_{F}(3)} \frac{\zeta_{F}(6)}{\lambda_{-1}} \cdot \mathcal{B}_{\ell_{M_{H}}, \ell_{M_{H}, \mathrm{E}(, 5)}}^{\pi}\left(f_{\mathrm{K}_{H}}^{\prime}\right),
$$

where $f_{\mathbf{K}_{H}}^{\prime}$ is the function on $M(\mathbb{A})$ defined by

$$
f_{\mathbf{K}_{H}}^{\prime}(m)=e^{\left\langle\varpi+\rho_{P}, H_{M}(m)\right\rangle} \cdot \int_{\mathbf{K}_{H}} \int_{\mathbf{K}_{H}} \int_{U(\mathbb{A})} f\left(k^{\prime} m u k\right) d u d k^{\prime} d k
$$

Similarly,

$$
\mathcal{B}_{\ell_{H}, \ell_{H, \varepsilon}-1}^{\Pi}(f)=\mathcal{B}_{\ell_{M_{H}}, \ell_{M_{H}}}^{\pi}\left(f_{\mathbf{K}_{H}}^{\prime}\right)
$$

This is proved exactly as in [JLR04].
Before proving Theorem 2.2 in the next section, we recall a useful computational trick.

2.1 Exchange of Roots

This procedure was first employed by Jacquet and Shalika [JS90]. It is often used in the study of integral representations [GR94, Gin95a, Gin95b, BG00, GR00], but it is very useful in other instances as well [GRS99, GRS02]. For the convenience of the reader, we record it in much greater generality than needed for the purpose of this paper. It is a global version of [GRS99, Lemma 2.2].

Whenever U is a unipotent group and ψ_{U} is a character on $U \backslash U(\mathbb{A})$, we write $f^{\psi_{U}}(g)$ for the Fourier coefficient $\int f(u g) \psi_{U}(u) d u$.

Lemma 2.5 Let $X, Y, X^{\prime}, Y^{\prime}$ be unipotent subgroups of G and let ψ be a character of $Y^{\prime} \backslash Y^{\prime}(\mathbb{A})$. Suppose that the following conditions are satisfied.
(i) $X\left(\right.$ resp. $\left.X^{\prime}\right)$ is a normal subgroup of $Y\left(\right.$ resp. $\left.Y^{\prime}\right)$ and $Y / X\left(\right.$ resp $\left.Y^{\prime} / X^{\prime}\right)$ is Abelian.
(ii) $Y \cap Y^{\prime}=1$.
(iii) Y normalizes X^{\prime} and Y^{\prime} normalizes $W=Y \ltimes X^{\prime}$.
(iv) The character $\left.\psi\right|_{X^{\prime} \backslash X^{\prime}(\mathbb{A})}$ is normalized by $Y(\mathbb{A})$; we denote its extension to $W \backslash W(\mathbb{A})$ (trivial on $Y(\mathbb{A})$) by ψ_{W}.
(v) $\left(Y^{\prime}, \psi\right)$ is normalized by X; we denote by $\psi_{W^{\prime}}$ the extension of ψ to $W^{\prime} \backslash W^{\prime}(\mathbb{A})$ (trivial on $X(\mathbb{A})$) where $W^{\prime}=X \ltimes Y^{\prime}$.
(vi) The set $\left\{\psi_{W}\left(\gamma \cdot \gamma^{-1}\right): \gamma \in Z=Y^{\prime} / X^{\prime}\right\}$ ranges over the characters of $X(\mathbb{A}) Y \backslash Y(\mathbb{A})$.
Then for any smooth function on $G \backslash G(\mathbb{A})$ we have

$$
\begin{equation*}
\phi^{\psi_{W^{\prime}}}(g)=\int_{Z(\mathrm{~A})} \phi^{\psi_{W}}(z g) \psi(z) d z \tag{12}
\end{equation*}
$$

Proof It is enough to check this for $g=e$. Using (iv) we write the right-hand side as

$$
\begin{aligned}
& \int_{Z \backslash Z(\mathbb{A})} \sum_{\gamma \in Z} \int_{W \backslash W(\mathbb{A})} \phi\left(\gamma^{-1} w \gamma z\right) \psi_{W}(w) \psi(z) d w d z \\
&= \int_{Z \backslash Z(\mathbb{A})} \sum_{\gamma \in Z} \int_{W \backslash W(\mathbb{A})} \phi(w z) \psi_{W}\left(\gamma w \gamma^{-1}\right) \psi(z) d w d z \\
&= \int_{Z \backslash Z(\mathbb{A})} \sum_{\gamma \in Z} \int_{Y \backslash Y(\mathbb{A})} \int_{X^{\prime} \backslash X^{\prime}(\mathbb{A})} \phi\left(y x^{\prime} z\right) \psi(y) \psi_{W}\left(\gamma x^{\prime} \gamma^{-1}\right) \psi(z) d y d x^{\prime} d z \\
&= \int_{Z \backslash Z(\mathbb{A})} \sum_{\gamma \in Z} \int_{X(\mathbb{A}) Y \backslash Y(\mathbb{A})} \int_{X \backslash X(\mathbb{A})} \int_{X^{\prime} \backslash X^{\prime}(\mathbb{A})} \phi\left(y x x^{\prime} z\right) \psi(y) \\
& \times \psi_{W}\left(\gamma x^{\prime} \gamma^{-1}\right) \psi(z) d y d x d x^{\prime} d z
\end{aligned}
$$

By assumption (vi), the sum over γ is the Fourier expansion along Y / X of the function $\int_{X \backslash X(\mathbb{A})} \int_{X^{\prime} \backslash X^{\prime}(\mathbb{A})} \phi(y x \cdot z) \psi(y) d y d x$. By (v), we obtain

$$
\begin{aligned}
\int_{Z \backslash Z(\mathbb{A})} \int_{X \backslash X(\mathbb{A})} \int_{X^{\prime} \backslash X^{\prime}(\mathbb{A})} \phi & \phi(y x z) \psi(y) \psi(z) d y d x d z \\
& =\int_{X^{\prime}(\mathbb{A}) X Y^{\prime} \backslash X Y^{\prime}(\mathbb{A})} \int_{X^{\prime} \backslash X^{\prime}(\mathbb{A})} \phi(y z) \psi(y) \psi_{W^{\prime}}(z) d y d z
\end{aligned}
$$

This is equal to the left-hand side of (12).

3 Proof of Theorem 2.2

To begin the proof of Theorem 2.2 we unfold $\theta_{\sigma}(h)$. Thus,

$$
\begin{equation*}
\mathfrak{P}(\sigma, \varphi)=\int_{U_{H}(\mathbb{A}) M_{H} \backslash H(\mathbb{A})} \int_{U_{H} \backslash U_{H}(\mathbb{A})} E_{-1}(u h, \varphi) \mathcal{F}_{\sigma}(h) d u d h \tag{13}
\end{equation*}
$$

Using Fourier analysis, we expand $\int_{U_{H} \backslash U_{H}(\mathbb{A})} E_{-1}(u h, \varphi)$ along the quotient group $U_{H} \backslash U$ with points in $F \backslash \mathbb{A}$. The space $U_{H} \backslash U$ is two dimensional and M_{H} acts on it as the standard representation. Thus there are two orbits on the dual space. The trivial orbit gives

$$
\int_{U_{H}(\mathbb{A}) M_{H} \backslash H(\mathbb{A})} E_{-1}^{U}(h, \varphi) \mathcal{F}_{\sigma}(h) d h,
$$

which can be written as

$$
\int_{K_{H}} \int_{M_{H} \backslash M_{H}(\mathbb{A})^{1}} \int_{\mathbb{R}_{+}}|\varpi|^{-s_{0}+\rho_{P}-2 \rho_{P_{H}}}(z) \mathcal{F}_{\sigma}(z) d z M_{-1} \varphi(m k) d m d k .
$$

Since $-s_{0}+\rho_{P}-2 \rho_{P_{H}}=-2=-\left(\frac{1}{2}+\rho_{P_{H}}\right)$, the inner integral is $2 \pi i \sigma(1 / 2)$ which gives the first contribution to (11).

To compute the contribution from the other orbit, we take as a representative the character $\psi_{U}(u)=\psi_{G}\left(x_{\gamma_{1}+\gamma_{2}}\left(r_{1}\right)+x_{\gamma_{2}+\gamma_{3}}\left(r_{2}\right)\right)=\psi\left(r_{1}+r_{2}\right)$. Its stabilizer in M_{H} is of the form $T^{\prime} U^{\prime}$ where U^{\prime} is the unipotent subgroup corresponding to α and T^{\prime} is a one dimensional torus. We denote by $\psi_{U U^{\prime}}$ its extension to $U U^{\prime}(\mathbb{A})$, which is trivial on $U^{\prime}(\mathbb{A})$. The contribution is

$$
\int_{U_{H}(\mathbb{A}) T^{\prime} U^{\prime} \backslash H(\mathbb{A})} E_{-1}^{\psi_{U}}(h, \varphi) \mathcal{F}_{\sigma}(h) d h=\int_{N_{H}(\mathbb{A}) T^{\prime} \backslash H(\mathbb{A})} E_{-1}^{\psi_{U U}}(h, \varphi) \mathcal{F}_{\sigma}(h) d h
$$

where $N_{H}=U_{0} \cap H$ is the maximal unipotent of H.
Let V be the unipotent radical of the rank-one parabolic Q containing the root γ_{2} in its Levi part.

We now use Lemma 2.5 with $X=U^{\prime}, Y=M \cap V, X^{\prime}=U \cap V, Y^{\prime}=U$. We obtain

$$
\int_{N_{H}(\mathbb{A}) T^{\prime} \backslash H(\mathbb{A})} \int_{X_{\gamma_{2}}(\mathbb{A})} E_{-1}^{\psi_{V}}(u h, \varphi) d u \mathcal{F}_{\sigma}(h) d h
$$

where ψ_{V} is trivial on $M(\mathbb{A}) \cap V(\mathbb{A})$ and coincides with ψ_{U} on $U(\mathbb{A}) \cap V(\mathbb{A})$. We can write this as

$$
\int_{V(\mathbb{A}) T^{\prime} \backslash H(\mathbb{A})} E_{-1}^{\psi_{V}}(h, \varphi) \mathcal{F}_{\sigma}(h) d h .
$$

Note that $E_{-1}^{\psi_{V}}(h)=E_{-1}^{\psi_{V}^{\prime}}\left(w_{\beta} h\right)$ where ψ^{\prime} is trivial on $U \cap V$ and is non-degenerate on γ_{1}, γ_{3}. We have $E_{-1}^{\psi_{1}^{\prime}}=\left(E_{-1}^{U}\right)^{U_{0} \cap M, \psi^{\prime}}=\left(M_{-1} \varphi\right)^{U_{0} \cap M, \psi}$. Indeed, when we expand $E_{-1}^{\psi_{V_{1}}^{\prime}}$ along $X_{\gamma_{2}}$ only the trivial orbit contributes since E_{-1} is not generic. Thus, we obtain

$$
\int_{V(\mathbb{A}) T^{\prime} \backslash H(A)}\left(M_{-1} \varphi\right)^{\psi_{U_{0}^{M}}}\left(w_{\beta} h\right) \mathcal{F}_{\sigma}(h) d h .
$$

Changing the variable and noting that $w_{\beta} T^{\prime} w_{\beta}^{-1}$ is the center Z of M_{H}, we obtain

$$
\begin{aligned}
\int_{V(\mathrm{~A}) Z \backslash H(A \mathbb{A})}\left(M_{-1} \varphi\right)^{\psi_{U_{0}^{M}}}(h) \mathcal{F}_{\sigma}\left(w_{\beta} h\right) & d h \\
& =\int_{N_{H}(\mathbb{A}) Z \backslash H(\mathbb{A})}\left(M_{-1} \varphi\right)^{\psi_{U_{0}^{M}}}(h) M_{w_{\beta}} \mathcal{F}_{\sigma}(h) d h,
\end{aligned}
$$

where $M_{w_{\beta}} \mathcal{F}_{\sigma}(h)=\int_{X_{\beta}(\mathbb{A})} \mathcal{F}_{\sigma}\left(w_{\beta} u h\right) d u$. We have

$$
M_{w_{\beta}} \mathcal{F}_{\sigma}(h)=\int_{\operatorname{Re}(s) \gg 0} \sigma(s) \frac{\zeta_{F}\left(s+\frac{1}{2}\right)}{\zeta_{F}\left(s+\frac{3}{2}\right)}\left|\left(s+\rho_{P_{H}}\right) w_{\beta} \varpi+\beta\right|(h) .
$$

Using the Iwasawa decomposition with resect to P_{H}, we obtain

$$
\int_{K_{H}} \int_{X_{\alpha}(\mathbb{A}) Z \backslash M_{H}(\mathbb{A})^{1}} \int_{\mathbb{R}_{+}}|\varpi|^{-s_{0}+\rho_{P}-2 \rho_{P_{H}}}(z) M_{w_{\beta}} \mathcal{F}_{\sigma}(z m) d z\left(M_{-1} \varphi\right)^{\psi_{U_{0}^{M}}}(m k) d m d k
$$

The inner integral is $2 \pi i \sigma\left(s_{1}\right)\left|\left(s_{1}+\rho_{P_{H}}\right) w_{\beta} \varpi+\beta\right|(m)$ for the s_{1} such that

$$
\left(-s_{0}+\rho_{P}-2 \rho_{P_{H}}\right) \varpi+\left(s_{1}+\rho_{P_{H}}\right) w_{\beta} \varpi+\beta=\kappa \alpha
$$

for some κ. We obtain $s_{1}=3 / 2$ and $\kappa=3$, and the result is

$$
2 \pi i \sigma(3 / 2) \frac{\zeta_{F}(2)}{\zeta_{F}(3)} \int_{K_{H}} \int_{X_{\alpha}(\mathrm{A}) Z \backslash M_{H}(\mathrm{~A})^{1}}\left(M_{-1} \varphi\right)^{\psi_{U_{0}^{M}}^{M}}(m k)|\kappa \alpha|(m) d m d k
$$

Using the usual unfolding of the Rankin-Selberg integral, we obtain

$$
2 \pi i \sigma(3 / 2) \frac{\zeta_{F}(2)}{\zeta_{F}(3)} \int_{K_{H}} \int_{M_{H} \backslash M_{H}(A)^{1}}\left(M_{-1} \varphi\right)(m k) \mathbb{E}(m, 2 \kappa-1) d m d k
$$

as required.

4 The F_{4} Case

We let $G=F_{4}$ and enumerate its simple roots as $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ with

$$
\left\langle\alpha_{1}, \alpha_{2}^{\vee}\right\rangle=\left\langle\alpha_{2}, \alpha_{1}^{\vee}\right\rangle=\left\langle\alpha_{3}, \alpha_{4}^{\vee}\right\rangle=\left\langle\alpha_{4}, \alpha_{3}^{\vee}\right\rangle=\frac{1}{2}\left\langle\alpha_{2}, \alpha_{3}^{\vee}\right\rangle=-1
$$

For integers $n_{1}, n_{2}, n_{3}, n_{4}$, we denote by $\left(n_{1} n_{2} n_{3} n_{4}\right)$ the weight $n_{1} \alpha_{1}+n_{2} \alpha_{2}+n_{3} \alpha_{3}+$ $n_{4} \alpha_{4}$ and by $\left(n_{1} n_{2} n_{3} n_{4}\right)^{\vee}$ the co-weight $n_{1} \alpha_{1}^{\vee}+n_{2} \alpha_{2}^{\vee}+n_{3} \alpha_{3}^{\vee}+n_{4} \alpha_{4}^{\vee}$. (Note that if $\left(n_{1} n_{2} n_{3} n_{4}\right)$ is a root, then $\left(n_{1} n_{2} n_{3} n_{4}\right)^{\vee}$ is not necessarily a co-root.) Also, for a sequence $x_{i} \in\{1,2,3,4\}$ we define $w\left[x_{1} x_{2} \cdots x_{m}\right]$ to be the element $w\left[x_{1}\right] \cdots w\left[x_{n}\right]$ in the Weyl group of G where $w[j]$ is the simple reflection corresponding to α_{j}.

We let P be the maximal parabolic of G corresponding to α_{1}. Its Levi part is $M=G S p_{6}$. The fundamental weight $\varpi=(2342)$ is the similitude factor. Here $\rho_{P}=4$. Let τ be a cuspidal representation on $M(\mathbb{A})$.

Let $E_{\tau}(g, s)$ denote the Eisenstein series on $G(\mathbb{A})$ induced from $\tau|\varpi|^{s}$. The poles of this Eisenstein series are determined by $L(s, \pi, \operatorname{Spin}) L(2 s, \pi, S t)$ where the first L-function is the eight dimensional Spin L-function and the second one is the seven dimensional Standard L-function.

Let $Q^{\prime}=L^{\prime} V^{\prime}$ be the maximal parabolic subgroup of G corresponding to α_{4} and let Q denote the (non-standard) parabolic $w Q^{\prime} w^{-1}$ where $w=w$ [231234]. Its Levi subgroup $L=w L^{\prime} w^{-1}$ is isomorphic to GSpin ${ }_{7}$ and its unipotent radical $V=$ $w V^{\prime} w^{-1}$ is a two-step nilpotent group of dimension 15. Set $\gamma_{1}=w(1000)=(0120)$, $\gamma_{2}=w(0100)=(1000), \gamma_{3}=w(0010)=(0111)$. We define the character ψ_{V} to be ψ on the roots (0010), (0001). Its stabilizer H in L is isomorphic to G_{2}. In this embedding, α^{\vee} corresponds to $(0110)^{\vee}$ and $(0211)^{\vee}$ while $\beta^{\vee}=(1000)^{\vee}$. We write the simple roots of H as $(0120)(0111)$ and (1000). The subgroup $P_{H}=P \cap H$ is the parabolic subgroup of H considered in Section 2, and the center Z of M_{H} coincides under the embedding above with the center of M. It corresponds to the co-root $(2321)^{\vee}$. The restriction $\psi_{V_{M}}$ of ψ_{V} to $V_{M}=M \cap V$ is the character considered in [BG92, §2] (see [Vo97]). Let $V_{1}=\bar{U} \cap V$ where \bar{U} is the unipotent radical of the parabolic subgroup \bar{P} opposite to P containing M. Explicitly, V_{1} (which is commutative) is generated by the roots $-(1221),-(1110),-(1220),-(1100)$.

Theorem 4.1 We have

$$
\begin{aligned}
& \int_{H \backslash H(\mathbb{A})} E_{-1}^{\psi_{V}}(h, \varphi) d h=\int_{K_{H}} \int_{M_{H} \backslash M_{H}(\mathbb{A})^{1}} \int_{V_{1}(\mathbb{A})} \varphi^{\psi_{V_{M}}}(m v k) d v d m d k \\
& =\frac{\zeta_{F}(2)}{\zeta_{F}(3)} \frac{\zeta_{F}(6)}{\lambda_{-1}} \int_{V_{1}(\mathbb{A})} \int_{K_{H}} \int_{M_{H} \backslash M_{H}(\mathbb{A})^{1}}\left(M_{-1} \varphi\right)^{\psi_{V_{M}}}(m v k) \mathbb{E}(m, 5) d m d k d v \\
& \int_{H \backslash H(\mathbb{A})} E_{-1}^{\psi_{V}}(h, \varphi) \mathcal{E}_{-2}(h) d h=0 \\
& \int_{H \backslash H(\mathbb{A})} E_{-1}^{\psi_{V}}(h, \varphi) \mathcal{E}_{-1}(h) d h=\int_{K_{H}} \int_{M_{H} \backslash M_{H}(\mathbb{A})^{1}} \int_{V_{1}(\mathbb{A})}\left(M_{-1} \varphi\right)^{\psi_{V_{M}}}(m v k) d v d m d k
\end{aligned}
$$

Remark 1 For a cusp form φ on $M \backslash M(\mathbb{A})$, the integral

$$
\int_{M_{H} \backslash M_{H}(\mathbb{A})^{1}} \varphi^{\psi_{V_{M}}(m) \mathbb{E}(m, 2 s-1) d m}
$$

is related to the spin L-function at s [BG92]. The residue at $s=1$ is essentially $\int_{M_{H} \backslash M_{H}(\mathbb{A})^{1}} \varphi^{\psi_{V_{M}}}(m) d m$. The integrals over V_{1} appearing in the theorem have no bearing on the unramified computation (cf. [GJ00]). We also recall from [GJ00] that for a cusp form φ on $G \backslash G(\mathbb{A})$, the integral $\int_{H \backslash H(A)} \phi^{\psi_{V}}(h, \varphi) \mathcal{E}(h, s) d h$ represents the L-function corresponding to the 26-dimensional representation of F_{4}.

Proof We first consider the integral $I=\int_{H \backslash H(\mathbb{A})} \Theta_{\phi}^{\psi_{V}}(h, \varphi) d h$ for a pseudo-Eisenstein series $\Theta_{\phi}(g)=\sum_{P \backslash G} f(\gamma g)$.

We write

$$
G=\bigcup_{\eta} P \eta Q=\bigcup_{\eta \in P \backslash G / Q} \bigcup_{\gamma \in\left(L \cap \eta^{-1} P \eta\right) \backslash L / H} P \eta \gamma H V .
$$

It is easy to see that $\eta=e, w[12], w[1234]$ are representatives for $P \backslash G / Q$. The subgroup $L \cap \eta^{-1} P \eta$ is a maximal parabolic of L which corresponds to γ_{2} if $\eta=1$ and to γ_{1} otherwise. Thus, if $\eta \neq 1$, then $L=H \cdot\left(L \cap \eta^{-1} P \eta\right)$ [PSRS92, §1]. For $\eta=w$ [12] the contribution of η to I factors through

$$
\int_{\left(V \cap \eta^{-1} U \eta\right) \backslash\left(V(\mathbb{A}) \cap \eta^{-1} U(\mathbb{A}) \eta\right)} \psi_{V}(v) d v,
$$

which is zero since $V \cap \eta^{-1} U \eta$ contains the root (0010). For $\eta=w[1234]$ the integral factors through $\int_{U_{1} \backslash U_{1}(\mathrm{~A})} f(u \cdot) d u$, where U_{1} is the subgroup generated by the roots
(0011), (0111), (0121), (0122), (0010)(1122), (0110)(1222), (0120)(1232).

Since f is left- $U(\mathbb{A})$-invariant, this will be a constant term of f along a parabolic of M which is zero by cuspidality. For $\eta=1$ there are two orbits in $(L \cap P) \backslash L / H$. The open orbit is $\gamma=w$ [1323]. Once again, its contribution factors through

$$
\int_{\left(V \cap \gamma^{-1} U \gamma\right) \backslash\left(V(\mathbb{A}) \cap \gamma^{-1} U(\mathbb{A}) \gamma\right)} \psi_{V}(v) d v
$$

which is zero since $V \cap \gamma^{-1} U \gamma$ contains the root (0001).
We conclude that only $\eta=\gamma=1$ contributes, and its contribution is

$$
\int_{P_{H} \backslash H(\mathbb{A})} \int_{V \cap P \backslash V(\mathbb{A})} f(v h) \psi_{V}(v) d v=\int_{P_{H} \backslash H(\mathbb{A})} \int_{V_{1}(\mathbb{A})} f^{\psi_{V_{M}}}(v h) d v .
$$

By Iwasawa decomposition we can write this as

$$
\int_{K_{H}} \int_{M_{H} \backslash M_{H}(\mathbb{A})^{1}} \int_{\mathbb{R}_{+}} \int_{V_{1}(\mathbb{A})}|\varpi|^{-2 \rho_{P}^{H}}(z) f^{\psi_{V_{M}}}(v z m k) d z d v d m d k .
$$

(Recall that \mathbb{R}_{+}is identified with a subgroup of H via ϖ^{\vee}.) Conjugating z across V_{1} we obtain a factor of $|\varpi|^{-2}(z)$ from the change of variables. We finally get

$$
\begin{equation*}
I=\int_{K_{H}} \int_{M_{H} \backslash M_{H}(\mathbb{A})^{1}} \int_{V_{1}(\mathbb{A})} \hat{f}\left(s_{0}\right)^{\psi_{V_{M}}}(v m k) d v d m d k, \tag{14}
\end{equation*}
$$

where $-\left(s_{0}+\rho_{P}\right)=-2 \rho_{P_{H}}-2$, i.e., $s_{0}=1$. The first part of Theorem 4.1 follows from (14) by a standard argument.

For the other parts we need to analyze

$$
J=\int_{H \backslash H(A)} E_{-1}^{\psi_{V}}(h) \theta_{\sigma}(h) d h .
$$

When we unfold the Eisenstein series on H and proceed as in [GJ00, §2], we obtain that $J=J_{1}+J_{2}$, where

$$
\begin{aligned}
& J_{1}=\int_{U_{H}(\mathbb{A}) P_{H} \backslash H(\mathbb{A})} \int_{V_{1}(\mathbb{A})} E_{-1}^{\psi_{U V_{M}}}(v h) \mathcal{F}_{\sigma}(h) d v d h \\
& J_{2}=\int_{N_{H}(\mathbb{A}) T^{\prime} \backslash H(A)} \int_{V_{2}(\mathbb{A})} E_{-1}^{\psi_{N}}(v w[1] h) \mathcal{F}_{\sigma}(h) d v d h .
\end{aligned}
$$

Here, V_{2} is the unipotent subgroup of G generated by V_{1} and the roots

$$
-(1000),-(0100),-(0110)
$$

N is the maximal unipotent subgroup of G; ψ_{N} is trivial on U and is Whittaker inside M; and T^{\prime} is the torus of H defined in $\S 2$.

As before, we can write J_{1} as

$$
\begin{aligned}
& \int_{K_{H}} \int_{M_{H} \backslash M_{H}(\mathbb{A})^{1}} \int_{V_{1}(\mathbb{A})} \int_{\mathbb{R}_{+}}|\varpi|^{-s_{0}+\rho_{P}-2 \rho_{P_{H}}}(z)|\varpi|^{-2}(z) E_{-1}^{\psi_{U V_{M}}}(v m k) \mathcal{F}_{\sigma}(z m) d z d v d m d k \\
&=2 \pi i \sigma\left(s_{1}\right) \int_{K_{H}} \int_{M_{H} \backslash M_{H}(\mathbb{A})^{1}} \int_{V_{1}(\mathbb{A})} E_{-1}^{\psi_{U V_{M}}}(v m k) d v d m d k
\end{aligned}
$$

for s_{1}, so that $-\left(s_{1}+\rho_{P_{H}}\right)=-s_{0}+\rho_{P}-2 \rho_{P_{H}}-2$, i.e., $s_{1}=\frac{1}{2}$.
As for J_{2}, we write it as

$$
\int_{V(\mathbb{A}) T^{\prime} \backslash H(\mathbb{A})} \int_{V_{2}^{\prime}(\mathbb{A})} E_{-1}^{\psi_{N}}(v w[1] h) \mathcal{F}_{\sigma}(h) d v d h,
$$

where V_{2}^{\prime} is generated by V_{1}, and the roots $-(0100)$ and $-(0110)$. As in $\S 2$ we rewrite this as

$$
\begin{aligned}
& \int_{V(\mathrm{~A}) Z \backslash H(\mathbb{A})} \int_{V_{2}^{\prime}(\mathbb{A})} E_{-1}^{\psi_{\mathbb{N}}}(v h) M_{w_{\beta}} \mathcal{F}_{\sigma}(h) d v d h \\
&= \int_{K_{H}} \int_{X_{\alpha}(\mathbb{A}) Z \backslash M_{H}(\mathbb{A})^{1}} \int_{V_{2}^{\prime}(\mathbb{A})} \int_{\mathbb{R}_{+}}|\varpi|^{-s_{0}+\rho_{P}-2 \rho_{P_{H}}-2}(z) M_{w_{\beta}} \mathcal{F}_{\sigma}(z m) d z \\
& E_{-1}^{\psi_{N}}(v m k) d v d m d k
\end{aligned}
$$

Exactly the same as before, we obtain (with $\kappa=3$)

$$
2 \pi i \sigma(3 / 2) \frac{\zeta_{F}(2)}{\zeta_{F}(3)} \int_{K_{H}} \int_{X_{\alpha}(\mathbb{A}) Z \backslash M_{H}(\mathbb{A})^{1}} \int_{V_{2}^{\prime}(\mathbb{A})}\left(M_{-1} \varphi\right)^{\psi_{U_{0}^{M}}^{M}}(v m k)|\kappa \alpha|(m) d m d k d v
$$

Finally, we may conjugate m and use the integral representation of [BG92] to obtain

$$
2 \pi i \sigma(3 / 2) \frac{\zeta_{F}(2)}{\zeta_{F}(3)} \int_{V_{1}(\mathrm{~A})} \int_{K_{H}} \int_{M_{H} \backslash M_{H}(\mathrm{~A})^{1}}\left(M_{-1} \varphi\right)^{\psi_{V_{M}}}(m v k) \mathbb{E}(m, 2 \kappa-1) d m d k d v
$$

We continue as in $\S 2$.

4.1 Matching of Functions

Finally we discuss how to obtain an identity of Bessel distributions from Theorem 4.1. The recipe for f^{\prime} is slightly more complicated than before due to the appearance of the extra unipotent integration over V_{1}.

4.2 Nilpotent Groups

Let N be a 3-dimensional Heisenberg group over a local field F. We write $N=$ $Z \cdot \tilde{V} \cdot V^{\prime}$ where Z is the center, and we identify Z, \tilde{V} and V^{\prime} with F in such a way that the commutator $\left[v, v^{\prime}\right]$ becomes multiplication. We also fix a non-trivial character ψ of Z.

Let D be a function on N satisfying

$$
\begin{equation*}
\int_{V^{\prime}} D^{\bar{\psi}}\left(v v^{\prime}\right) d v^{\prime}=1 \text { for all } v \in \tilde{V} \tag{15}
\end{equation*}
$$

For any function f on N define $\mathcal{T}_{N} f(n)=\int_{N} D(x) f(x n) d x$.
Lemma 4.2 Let l be a function on N such that $l\left(z v^{\prime} n\right)=\psi(z) l(n)$ for all $z \in Z$, $v^{\prime} \in V^{\prime}, n \in N$. Then

$$
\begin{equation*}
\int_{\tilde{V}} \int_{N} f(n) l(v n) d n d v=\int_{N} \mathcal{T}_{N} f(n) l(n) d n \tag{16}
\end{equation*}
$$

In particular, let $\phi \in C_{c}^{\infty}(Z)$ and $\phi^{\prime} \in C_{c}^{\infty}\left(V^{\prime}\right)$ be such that

$$
\int_{Z} \phi(z) d z=\int_{V^{\prime}} \phi^{\prime}\left(v^{\prime}\right) d v^{\prime}=1
$$

Set

$$
\begin{equation*}
D\left(z v v^{\prime}\right)=\psi(z) \frac{\phi(z / v)}{|v|} \phi^{\prime}\left(v^{\prime}\right) \tag{17}
\end{equation*}
$$

Then D satisfies (15) and

$$
\begin{equation*}
f \in \mathcal{S}(N) \Longrightarrow \mathcal{T}_{N} f \in \mathcal{S}(N) \tag{18}
\end{equation*}
$$

If F is p-adic, ψ has conductor \mathcal{O}, and $\phi=\phi^{\prime}=1_{\mathcal{O}}$, then $\mathcal{T}_{N} f=f$ for any f which is left-K-invariant.

Proof The right-hand side of (16) is equal to

$$
\int_{Z} \int_{\tilde{V}} \int_{V^{\prime}} \int_{Z} \int_{\tilde{V}} \int_{V^{\prime}} D\left(z v v^{\prime}\right) f\left(z v v^{\prime} w u^{\prime} u\right) \psi(w) l(u) d v^{\prime} d v d z d u^{\prime} d u d w
$$

By a change of variables we get

$$
\int_{\tilde{V}} \int_{V^{\prime}} \int_{\tilde{V}} \int_{V^{\prime}} D^{\bar{\psi}}\left(v v^{\prime}\right) f^{\psi}\left(v v^{\prime} u^{\prime} u\right) l(u) d v^{\prime} d v d u^{\prime} d u
$$

or

$$
\int_{\tilde{V}} \int_{V^{\prime}} \int_{\tilde{V}} \int_{V^{\prime}} D^{\bar{\psi}}\left(v v^{\prime}\right) f^{\psi}\left(v u^{\prime} u\right) l(u) d v^{\prime} d v d u^{\prime} d u
$$

Using (15) we get

$$
\int_{\tilde{V}} \int_{V^{\prime}} \int_{\tilde{V}} f^{\psi}\left(v u^{\prime} u\right) l(u) d v d u^{\prime} d u
$$

Evidently, this is equal to the left-hand side of (16).
Clearly, D defined in (17) satisfies (15). It is also obvious that

$$
\mathcal{T}_{N}\left(f_{1} \star f_{2}\right)=\mathcal{T}_{N}\left(f_{1}\right) \star f_{2}
$$

Hence, by the Dixmier-Malliavin theorem, it is enough to check (18) for $f \in C_{c}^{\infty}(N)$. In fact, it is enough to show that $\mathcal{T}_{N} f$ is rapidly decreasing, since left-invariant differential operators commute with \mathcal{T}_{N}. Write $F\left(z, v, v^{\prime}\right)=f\left(z v v^{\prime}\right)$. Thus, $F \in$ $C_{c}^{\infty}\left(Z \times \tilde{V} \times V^{\prime}\right)$. Similarly, write $F^{\prime}\left(w, u, u^{\prime}\right)=\mathcal{T}_{N} f\left(w u u^{\prime}\right)$. Then

$$
\begin{aligned}
F^{\prime}\left(w, u, u^{\prime}\right) & =\int_{Z} \int_{\tilde{V}} \int_{V^{\prime}} \psi(z) \frac{\phi(z / v)}{|v|} \phi^{\prime}\left(v^{\prime}\right) f\left(z v v^{\prime} w u u^{\prime}\right) d v^{\prime} d v d z \\
& =\int_{Z} \int_{\tilde{V}} \int_{V^{\prime}} \psi(z) \frac{\phi(z / v)}{|v|} \phi^{\prime}\left(v^{\prime}\right) F\left(z+w+\left[v^{\prime}, u\right], u+v, u^{\prime}+v^{\prime}\right) d v^{\prime} d v d z
\end{aligned}
$$

which after a change of variable becomes

$$
\begin{aligned}
& \int_{Z} \int_{\tilde{V}} \int_{V^{\prime}} \psi(v z) \phi(z) \phi^{\prime}\left(v^{\prime}\right) F\left(v z+w+v^{\prime} u, u+v, u^{\prime}+v^{\prime}\right) d v^{\prime} d v d z \\
& =\int_{Z} \int_{\tilde{V}} \int_{V^{\prime}} \psi(v z) \overline{\psi(u z)} \phi(z) \phi^{\prime}\left(v^{\prime}+z\right) F\left(v z+w+v^{\prime} u, v, v^{\prime}+z+u^{\prime}\right) d v^{\prime} d v d z
\end{aligned}
$$

Clearly this is zero unless u^{\prime} is confined to a compact set which is independent of w and u. Similarly, z, v and v^{\prime} are integrated over a fixed compact set, independently of w and u and u^{\prime}. Hence, in the support of F^{\prime} we have $|w| \leq C(1+|u|)$ for some constant C. Therefore, in order to show that $\mathcal{T}_{N} f \in \mathcal{S}(N)$, it is enough to show that $F^{\prime}\left(w, u, u^{\prime}\right)$ is rapidly decreasing in u, uniformly in w. However, $F^{\prime}\left(w, u, u^{\prime}\right)$ is the Fourier transform at u of the function

$$
z \mapsto \psi(v z) \phi(z) \phi^{\prime}\left(v^{\prime}+z\right) F\left(v z+w+v^{\prime} u, v, v^{\prime}+z+u^{\prime}\right)
$$

and the latter is a normal family in $\mathcal{S}(Z)$ when we vary $v, v^{\prime}, u, u^{\prime}, w$. The result follows.

To show the last part of the lemma, it is enough to check that $\mathcal{T} 1_{K}=1_{K}$. The previous computation gives that $\mathcal{T}_{K}\left(w u u^{\prime}\right)$ equals

$$
\begin{gathered}
\int_{Z} \int_{\tilde{V}} \int_{V^{\prime}} \psi(v z) \overline{\psi(u z)} 1_{\mathcal{O}}(z) 1_{\mathcal{O}}\left(v^{\prime}+z-u^{\prime}\right) 1_{\mathcal{O}}\left(v z+w+v^{\prime} u\right) 1_{\mathcal{O}}(v) 1_{\mathcal{O}}\left(v^{\prime}+z\right) d v^{\prime} d v d z \\
=\int_{Z} \int_{\tilde{V}} \int_{V^{\prime}} \overline{\psi(u z)} 1_{\mathcal{O}}(z) 1_{\mathcal{O}}\left(u^{\prime}\right) 1_{\mathcal{O}}\left(w+v^{\prime} u\right) 1_{\mathcal{O}}(v) 1_{\mathcal{O}}\left(v^{\prime}\right) d v^{\prime} d v d z
\end{gathered}
$$

which is equal to $1_{\mathcal{O}}(u) 1_{\mathcal{O}}\left(u^{\prime}\right) 1_{\mathcal{O}}(w)$ since

$$
\int_{Z} \overline{\psi(u z)} 1_{\mathcal{O}}(z)=1_{\mathcal{O}}(u)
$$

Remark 2 The lemma still holds for a group N isomorphic to the maximal unipotent of $O(3,2)$ (with roots $\alpha, \beta, \alpha+\beta, \alpha+2 \beta$) with $Z=X_{\alpha+\beta}, \tilde{V}=X_{\alpha}, V^{\prime}=$ $X_{\beta} \cdot X_{\alpha+2 \beta}$. (Note that Z is not the center of N.) The proof is only slightly different. We omit the details.

$$
\begin{aligned}
& \text { Let } U_{1}=X_{-(1221)}, U_{2}=X_{-(1110)}, U_{3}=X_{-(1220)}, U_{4}=X_{-(1100)} . \text { Also, set } \\
& \qquad \begin{array}{l}
N_{1}=U_{1} \cdot X_{(1231)} \cdot X_{(0010)}, \\
\\
N_{2}=U_{2} \cdot X_{(1111)} \cdot X_{(0001)}, \\
\\
N_{3}=U_{3} \cdot X_{(1221)} \cdot X_{(0001)} \cdot X_{(1222)}, \\
\\
N_{4}=U_{4} \cdot X_{(1110)} \cdot X_{(0010)} \cdot X_{(1120)} .
\end{array}
\end{aligned}
$$

Thus, N_{1}, N_{2}, are Heisenberg groups and N_{3}, N_{4} are of the type considered in Remark 2. Thus we may apply Lemma 4.2 with $N=N_{i}, \tilde{V}=U_{i}, Z=X_{(0010)}$ for $i=1,4$ and $Z=X_{(0001)}$ for $i=2,3$, and $\psi=\left.\psi_{V}\right|_{Z}$. On each N_{i}, fix functions D_{i} as before.

Note that $Y_{1}=\left[N_{1}, U_{2} U_{3} U_{4}\right]=X_{-(1100)} \cdot X_{(0121)} \cdot X_{(0011)}$. Thus,

$$
\begin{equation*}
Y_{1} \subset \operatorname{Ker}\left(\psi_{V_{M}}\right) \cdot U_{4} \text { and }\left[Y_{1}, U_{1}\right] \subset U_{4} \tag{19}
\end{equation*}
$$

Similarly, $Y_{2}=\left[N_{2}, U_{3} U_{4}\right]=X_{(0011)}$, and hence, $\psi_{V_{M}}$ is trivial on Y_{2} and Y_{2} commutes with U_{2}. Finally, $Y_{3}=\left[N_{3}, U_{4}\right]=X_{(0121)}$. Again $\psi_{V_{M}}$ is trivial on Y_{3} and Y_{3} commutes with U_{3}.

Set

$$
\ell_{H}^{\psi_{V}}(\varphi)=\int_{H \backslash H(\mathrm{~A})} \varphi^{\psi_{V_{M}}}(h) d h
$$

For $f \in \mathcal{S}(G)$, define $\mathcal{T}_{i} f(x)=\int_{N_{i}} D_{i}(n) f(n x) d n, x \in G$.
Lemma 4.3 The function $\mathcal{T}_{i} f$ belongs to $\mathcal{S}(G)$. We have

$$
\int_{U_{i}} \int_{N_{i}(\mathbb{A})} f(n x) \ell_{M_{H}}^{\psi_{V_{M}}} \varphi(v n x) d n d v=\int_{N_{i}(\mathbb{A})} \mathcal{T}_{i} f(n x) \ell_{M_{H}}^{\psi_{V_{M}}} \varphi(n x) d n
$$

If F is p-adic, then \mathcal{T}_{i} acts as the identity on the Hecke algebra.

Proof Let w be a Weyl group element so that $w N_{i} w^{-1} \subset U_{0}$. Let C be the variety $T_{0} \cdot \prod_{\beta} X_{\beta}$, where the product (in a prescribed order) is over the roots β not inside N_{i} such that $w \beta>0$. Thus, C is a complement of N_{i} in $w^{-1} B w$. Since $\mathcal{T}_{i} f(n c k)=$ $\mathcal{T}_{N_{i}} f(\cdot c k)$, the first and last assertions follow from Lemma 4.2. The second statement follows from (16).

Define $\mathcal{T} f=\mathcal{T}_{4}\left(\mathcal{T}_{3}\left(\mathcal{T}_{2}\left(\mathcal{T}_{1} f^{K_{H}}\right)\right)\right.$). (We could have taken ${ }^{K_{H}}$ at the end.)
Theorem 4.4 Let Π be the automorphic representation of $G(\mathbb{A})$ on $E_{-1}(\cdot, \varphi)$. Then

$$
\mathcal{B}_{\ell_{H}^{\psi_{V}},,_{H}^{\ell_{H}^{\psi_{V}}}}^{\Pi}(f)=\frac{\zeta_{F}(2)}{\zeta_{F}(3)} \frac{\zeta_{F}(6)}{\lambda_{-1}} \cdot \mathcal{B}_{\ell_{M_{H}}^{\psi_{V_{M}}},,_{M_{H}, \mathbb{E}(, 5)}^{\psi_{\nu_{M}}}}^{\pi}(\mathcal{T} f)
$$

Similarly,

$$
\mathcal{B}_{\ell_{H}^{\psi_{V}}, \ell_{H, \varepsilon_{-1}}^{\psi_{V}}}(f)=\mathcal{B}_{\ell_{M_{H}}^{\psi_{M_{M}}}, \ell_{M_{H}}^{\psi_{V_{M}}}}^{\pi}(\mathcal{T} f) .
$$

The theorem will follow from the next lemma, as in [JLR04].

Lemma 4.5 The linear form

$$
\begin{equation*}
\varphi \mapsto \ell_{H}^{\psi_{V}}\left(\Pi(f) E_{-1}(\cdot, \varphi)\right) \tag{20}
\end{equation*}
$$

on $I(\pi, \varpi)$ is given by $\Psi \in I\left(\pi^{\vee},-\varpi\right)$, where

$$
\begin{equation*}
\Psi(g)=\ell_{M_{H}}^{\psi_{V_{M}}} \circ \pi\left(\left(R_{g} \mathcal{T} f\right)^{U}\right) \tag{21}
\end{equation*}
$$

where $R_{g} f(\cdot)=f(\cdot g)$ and

$$
f^{U}(m)=e^{\left\langle\varpi+\rho_{P}, H_{M}(m)\right\rangle} \cdot \int_{U(\mathbb{A})} f(m u) d u
$$

Proof First, one easily checks that Ψ lies in $I\left(\pi^{\vee},-\varpi\right)$.
By Theorem 4.1, $\ell_{H}^{\psi_{V}} \circ \Pi(f)$ equals

$$
\begin{aligned}
& \int_{\mathbf{K}_{H}} \int_{V_{1}(\mathrm{~A})} \int_{M_{H} \backslash M_{H}(\mathbb{A})^{1}} I(f, \pi, \varpi) \varphi^{\psi_{V_{M}}}\left(l v_{1} k^{\prime}\right) d l d v_{1} d k^{\prime} \\
&=\int_{\mathbf{K}_{H}} \int_{V_{1}(\mathrm{~A})} \int_{G(\mathrm{~A})} f(x) \ell_{M_{H}}^{\psi_{V_{M}}} \varphi\left(v_{1} k^{\prime} x\right) d x d v_{1} d k^{\prime} \\
&=\iint_{V_{1}(\mathbb{A})} \int_{G(A)} f^{K_{H}}(x) \ell_{M_{H}}^{\psi_{V_{M}}} \varphi\left(v_{1} x\right) d x d v_{1} \\
&=\iiint \int_{U_{i}(\mathrm{~A})} \int_{G(\mathrm{~A})} f^{K_{H}}(x) \ell_{M_{H}}^{\psi_{V_{M}}} \varphi\left(u_{1} u_{2} u_{3} u_{4} x\right) d x \otimes d u_{i}
\end{aligned}
$$

We now write this as

$$
\begin{aligned}
\iiint \int_{U_{i}(\mathbb{A})} \int_{N_{1}(\mathrm{~A}) \backslash G(\mathbb{A})} \int_{N_{1}(\mathbb{A})} & f^{K_{H}}(n x) \ell_{M_{H}}^{\psi_{V_{M}}} \varphi\left(u_{1} u_{2} u_{3} u_{4} n x\right) d n d x \otimes d u_{i} \\
& =\iiint \int f^{K_{H}}(n x) \ell_{M_{H}}^{\psi_{V_{M}}} \varphi\left(u_{1} n u_{2} u_{3} u_{4} x\right) d n d x \otimes d u_{i}
\end{aligned}
$$

The last step is justified by (19) using a change of variables in u_{4}. Using Lemma 4.3, the integrals over n_{1} and u_{1} become

$$
\int_{N_{\mathrm{l}}(\mathbb{A})} \mathcal{T}_{1}\left(f^{K_{H}}\right)(n x) \ell_{M_{H}}^{\psi_{V_{M}}} \varphi\left(n u_{2} u_{3} u_{4} x\right) d n
$$

Commuting n back over $u_{2} u_{3} u_{4}$ and combining the integral over $N_{1}(\mathbb{A})$ with $N_{1}(\mathbb{A}) \backslash G(\mathbb{A})$, we obtain

$$
\int_{U_{2}(\mathbb{A})} \int_{U_{3}(\mathbb{A})} \int_{U_{4}(\mathbb{A})} \int_{G(\mathbb{A})} \mathcal{T}_{1}\left(f^{K_{H}}\right)(x) \ell_{M_{H}}^{\psi_{V_{M}}} \varphi\left(u_{2} u_{3} u_{4} x\right) d x d u_{2} d u_{3} d u_{4}
$$

Continuing this way with U_{2}, U_{3} and U_{4} we finally get

$$
\int_{G(\mathbb{A})} \mathcal{T} f(x) \ell_{M_{H}}^{\psi_{V_{M}}} \varphi(x) d x
$$

Using Iwasawa decomposition we get

$$
\int_{\mathbf{K}} \int_{U(A)} \int_{M(A)} \mathcal{T} f(m u k) \ell_{M_{H}}^{\psi_{V_{M}}} \varphi(m k) d m d u d k
$$

Viewing φ as an element $I(\pi, \varpi)$ we get

$$
\begin{aligned}
& \int_{\mathrm{K}} \int_{U(\mathbb{A})} \int_{M(A)} \mathcal{T} f(m u k) \ell_{M_{H}}(\pi(m) \varphi(k)) e^{\left\langle\varpi+\rho_{P}, H_{M}(m)\right\rangle} d m d u d k \\
&=\int_{\mathbf{K}} \ell_{M_{H}}^{\psi_{V_{M}}} \circ \pi\left(\left(R_{k} \mathcal{T} f\right)^{U}\right)(\varphi(k)) d k=\Psi(\varphi)
\end{aligned}
$$

as required.

References

[Asg02]	M. Asgari, Local L-functions for split spinor groups. Canad. J. Math. 54(2002), no. 4, 673-693. D. Bump and D. Ginzburg, Spin L-functions on symplectic groups. Internat. Math. Res.
$[$ BG92]	Notices (1992), no. 8, 153-160.
$[$ BG00]	875-899. Spin L-functions on GSp_{8} and GSp_{10}. Trans. Amer. Math. Soc. 352(2000), no. 2,
$[$ Gin95a]	D. Ginzburg, On spin L-functions for orthogonal groups. Duke Math. J. 77(1995), no. 3, $753-798$.

[Gin95b]	standard L-functions for E_{6} and E_{7}. J. Reine Angew. Math. 465(1995), 101-1
[GJ00]	D. Ginzburg and D. Jiang, A Siegel-Weil identity for G_{2} and poles of L-functions. J. Number Theory 82(2000), no. 2, 256-287.
[GR94]	D. Ginzburg and S. Rallis, A tower of Rankin-Selberg integrals. Internat. Math. Res. Notices (1994), no. 5, p. 201 ff. (electronic).
[GR00]	\qquad , The exterior cube L-function for $G L(6)$. Compositio Math. 123(2000), no. 3, 243-272.
[GRS99]	D. Ginzburg, S. Rallis, and D. Soudry, On a correspondence between cuspidal representations of $G L_{2 n}$ and $\widetilde{\mathrm{Sp}}_{2 n}$. J. Amer. Math. Soc. 12(1999), no. 3, 849-907.
[GRS02]	_, Endoscopic representations of $\widetilde{S p}_{2 n}$. J. Inst. Math. Jussieu 1(2002), no. 1, 77-123.
[Jia98]	D. Jiang, G_{2}-periods and residual representations. J. Reine Angew. Math. (1998), 17-46.
[JLR93]	H. Jacquet, K. F. Lai, and S. Rallis, A trace formula for symmetric spaces. Duke Math. J. 70(1993), no. 2, 305-372.
[JLR04]	H. Jacquet, E. Lapid, and S. Rallis, A spectral identity for skew symmetric matrices. In: Contributions to Automorphic Forms, Geometry, and Number Theory. Johns Hopkins University Press, Baltimore, MD, 2004, pp. 421-455.
[JS90]	H. Jacquet and J. Shalika, Exterior square L-functions. In: Automorphic Forms, Shimura Varieties, and L-Functions, Vol. II. Academic Press, Boston, MA, 1990, pp. 143-226.
[KR71]	B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces. Amer. J. Math. 93(1971), 753-809.
[LR04]	E. Lapid and S. Rallis, A spectral identity between symmetric spaces. Israel J. Math. 140(2004) 221-244.
[PSRS92]	I. Piatetski-Shapiro, S. Rallis, and G. Schiffmann, Rankin-Selberg integrals for the group G_{2}. Amer. J. Math. 114(1992), no. 6, 1269-1315.
[Vo97]	S. C. Vo, The spin L-function on the symplectic group GSp(6). Israel J. Math. 101(1997), 1-71
School of	athematical Sciences Einstein Institute of Mathematics
Tel Aviv U	niversity Edmond J. Safra Campus
Ramat Avi	v The Hebrew University of Jerusalem
Tel Aviv 69	978 Jerusalem 91904
Israel	Israel

[^0]: ${ }^{1}$ Strictly speaking [Jia98,GJ00,GR94] deal with $G=\mathrm{SO}(4,3)$, but the extension to GSpin(7) is straightforward.
 ${ }^{2}$ Note that our normalization differs from that of [GJ00].

