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ROOT SYSTEMS AND CARTAN MATRICES 

R. V. MOODY AND T. YOKONUMA 

1. Introduction. This paper is concerned with two things. The first 
is a (primarily) geometric axiomatic description for the systems of real 
roots of Lie algebras arising from (generalized) Cartan matrices. The 
description is base free and is a natural extension of the well-known 
axiomatic description of finite root systems. The primary component of 
our description is an open convex cone which, following Looijenga [3], 
we call the Tits cone. In fact it was Looijenga's paper that led to this 
axiomatic formulation. Unlike his construction, the dimension of the 
Tits cone is not tightly connected to the dimension of the Cartan matrix 
which it eventually yields. This leads us to the second part of the paper 
which concerns the construction of Cartan matrices of low row rank. We 
can show that if we have an / X / Cartan matrix of row rank n, then we 
can model an axiomatic description of it with a cone of dimension n + 1. 
We show how to construct I X / Cartan matrices for all Z ^ 3 (including 
/ = oo ) with row rank 3, thus providing us with root systems of arbitrary 
rank (rank: = /) modelled in 4-dimensional cones. 

A generalized Cartan matrix of rank / ( l ^ Z ^ o o ) i s b y definition an 
/ X / matrix A = (Ai:}) of integers satisfying: 

Atj = 2 for all i 

A fj ^ 0 if i 5* j 

Atj = 0 <=» Aji = 0. 

Notice that the "rank" / is not the same as the row rank in general. 
Given a finite (/ < oo ) Cartan matrix A we may define two /-dimen

sional real vector spaces Vo and H0 with bases au . . . , at; «iV, . . . , a? 
respectively and a bilinear pairing 

( • , . ) : Vo XHo-^R 

through 

(aua^) = Aji. 

In general this is degenerate, but it is an easy exercise to see that an 
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64 R. V. MOODY AND T. YOKONUMA 

extension of (•, • ) to extensions V and H of Vo and H0 with dimensions 
21 — row rank (A) is possible so t h a t ( • , • ) : VXH—>R is non-
degenerate. 

Let re V —» V (1 S i ^ /) be the linear mapping 

r f : ^ »—>v — (v, oci
s/)ai. 

Then r\, . . . , rx are involutions and generate a group, W, called the 
Weyl group of A. W is a Coxeter group with r±, . . . , rx as Coxeter 
generators and the relations (rir0)

m^ = 1 (i ^ 7) where the w i ; are given 
by the values of the products AijAji according to : 

AijAji 0 1 2 3 ^ 4 

mtj 2 3 4 6 00 See [7]. 

T h e r i ac t by transpose action on H where they are given by 

r{: A »-> h — (au h)a?. 

In this way W acts on H. W e have (wa, x) = (a, w - 1 x ) for all w ^ W, 
a £ V, x e H. 

T h e set 

A = U U w*iCV 

is called the set of real roots of V relative to the base a\, . . . , a*. T h e 
terminology arises from the theory of Lie algebras where these elements 
index certain impor tan t one-dimensional subspaces. Obviously A depends 
on the choice of the basis «i , . . . , ah and one of our objects is to provide 
an axiomatic description of A wi thout reference to this par t icular basis. 
We might note t h a t there is obviously a set Av of "coroots" obtained 
by W act ing on c*iV, . . . , a z

v . 
Each a G A has an involution ra associated with i t ; namely if a = wau 

ra = WTiW~l. This is independent of the representat ion of a in the form 
woii. So is av : = wa^, and 

ra: <f) 1—> <f> — (<£, a v ) a , r a : x H x - (a, x)ay 

describes the action of ra on V and H respectively. 
Let 

C = {x e H\ (at,x) > 0, i = 1, . . . , / } . 

Then C is an open convex cone. Following [3] we let 

A = int I U w a) , 

the interior of the union of the W — transla tes of the closure of C. A is 
an open convex cone [3], stable by W, called the T i t s cone. 
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Among the properties of A and A we single out those listed under 
I, II, III in Section 2. These are proved in [3]. The purpose of Sections 
2 and 3 is to prove that they suffice to characterize a Car tan matrix A 
and A as the translates of a base under the action of a Coxeter group W, 
precisely as we have described it above. 

The relation of the dimension of V to the rank of A is rather flexible 
and does not emerge from the axiomatization as in the construction 
above. Indeed the dimension of V can be reduced to row rank (A) + 1. 
A problem that arose in our work was that we were unable to prove that 
rank A is finite even though we assume that the dimension of V is finite. 
The question thus arose: Do there exist infinite (/ = co ) Cartan matrices 
of finite rank? In attempting to answer this question we produced the 
construction in Section 6 which produces non-symmetric Cartan 
matrices of row rank 3 and arbitrarily large /. After the paper was sub
mitted for publication George Maxwell showed us a beautiful con
struction of infinite symmetric matrices of row rank 3. This is described 
in Section 9. We are very grateful to Professor Maxwell for this con
tribution. 

2. The set-up. Let V, H be two finite dimensional real vector spaces 
and suppose that ( • , • ) : V X H —-> R is a non-degenerate pairing. 

Let O ^ a ^ V. A symmetry in a is an endomorphism r of V having a 
point-wise fixed hyperplane L and satisfying ra — —a. For such a 
symmetry there is a unique ay Ç H such that (L, av) = 0, (a, av) = 2. 
In terms of this, thç. action of r on V is 

<t> h-> <f) — (4>, ay)a. 

Clearly r2 = idF. 
Let A be a non-empty subset of V — {0}. We assume that: 

(I) For each a £ A there is a symmetry ra in a such that raA C A. 
(II) For all a, 0 Ç A, (a, 0V> Ç Z. 

Let W C GL(V) be the group generated by the symmetries ra. For 
each a Ç A let 

Ha: = {x Ç H\ <«,*> = 0}. 

W acts by transpose action on H and thereby ra is seen to induce the 
symmetry in av with fixed hyperplane Ha. 

Use the hyperplanes Hai a G A, to introduce the standard equivalence 
relation ^ ' on H: x ~ y if and only if for each a G A either x, y lie on Ha 

or on the same side of Ha [1]. The equivalence classes are called facettes, 
those facettes with non-empty interiors are chambers, and those facettes 
which support a hyperplane Ha are called faces. Since raH$ = HTap for 
all a, j8 G A, the facettes are permuted by W. 

Next we assume: 
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(III) There exists a W-invariant non-empty open convex cone A 
which is a union of facettes such that 

(a) if x, y G A then there is a cover by finitely many facettes of the 
line segment [x, y] in H. 

(b) for all a G A the point-wise stabilizer of Ha in W is finite. 

Later we will see that, with the other assumptions, III (a), (b) are 
equivalent to 

(III)7 W acts properly discontinuously on A. 

A is called a Tits cone. 
Let a G A. Then for x G A the line segment joining x and rax lies in A 

and meets Ha. Hence Ha meets A. 
For a G A, ra is the only involution in W with Ha as its 1-eigenspace. 

Indeed if s is such an involution sra fixes Ha pointwise, has finite order 
and hence is semi-simple (111(b)), and has determinant 1, whence 
sra = id. Thus for a, @ G A, Ha = Hp =» 0 G Ra. As usual Ra Pi A C 
{±ia, =fca, ±2a} [1, VI § 1]. 

Let 

Ared: = {a G A |a /2 g A}. 

Are(i satisfies I, II, III with the same cone A. 

THEOREM 1. Suppose that A satisfies I, II, III. 
(1) W is simply transitive on the chambers of A. 
(2) Let C be a chamber in A and let 

Ared"l_: = ( « ^ Aredl OL is positive on C). 

Let 

II: = {a G Ared+| -#a w a wa// 0/ C} 

{see below for definition). II w countable. For a, 0 G n /e£ ^4a/3 = (0, a v ) . 
r&ew <4: = {Aa$) is a Cartan matrix. Let A' be the root system defined by A 
on a base 11': = {a'\ a G II} with Weyl group W generated by the reflections 
ra>. Then W is generated by the symmetries ra, a G II and W ~ W through 
ra' •—> r<x- Furthermore there is a unique (W, W) — equivariant bijective 
mapping A' —> Ared such that a' y-> a for all a' G II'. 

3. Proof of theorem 1. It is a straightforward consequence of III (a) 
that 

(a) The decomposition of a closed interval / C A by facettes appears 
as a finite set of points separated by open intervals. 

(b) For each x G A there is a ball B about x in A such that for all 
a G A, 

Ha Pi B 5* 0 => x G Ha. 
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To see this, let Iu . . . , In (n = dim V) be closed line segments in A 
o 

in independent directions with x 6 Iô for each I. By (a) there is an open 
interval Jj about x in 7 ; such that any Ha meeting Jj meets it in x. Let 
B be an open ball about x in the interior of the convex hull of the J ; . 

(c) For each x £ A there are only finitely many Ha through x. For 
any x, y G A there are only finitely many hyperplanes Ha separating 
x and y. 

o 

For the first statement let 5 be a solid simplex such that x Ç 5 C 
S C A. 

Any Ha passing through x is supported by its set of cuts with the 
vertices and edges of S of which there are only finitely many. 

(d) A is countable. 
To see this cover A by open balls of the type in (b) and take a count

able subcover. 
There are at least two chambers in A. Let C be one. For each a £ A, 

a as a function on C takes values of constant sign. Partition A, Ared 
according to sign to get A+(C), ATea

+(C), — A+(C), and — Ared+(C). A 
face F is called a face of C \l F C\ C supports F. A face of C supports a 
unique Ha which is called a wall of C. It should be noted that the facettes 
lying in the closure of a chamber C of A are not in general in A. 
However, 

(e) The faces of a chamber in A are in A. 

Let F C Ha be a face of the chamber C C A. It suffices to see that 
F C\ A y* 0. Let Xo £ C and let x\ be a point of F C\ C. Then 

[xo, xi) C C and [rax0j Xi) C raC 

which is a chamber in A on the opposite side of Ha. Points close to x\ 
on these two intervals have joins in A which meet Ha in F. We note 
that F is a face of raC. 

(f) Let C be a chamber of A and let Fa C Ha be a face of C, 
a G Ared

+(C). Then 

Fa = {x 6 H\ <fl, x) > 0 if p e Ared
+(C) - {a} and (a, x> = 0}. 

The only other chamber with Fa as a face is r a C 

(g) Let C be a chamber of A and let x G C, ;y G A — C If £ is any 
ball about y in A — C then the cone of rays UÔÉB i?(#, 6), where R(x, b) 
is the ray through x towards b, cuts at least one face of C in an open 
subset of that face. 

Choose one point V G B on each ray above and let this set of b"s be 
denoted by B0. For each V Ç -Bo the interval [x, b'] is covered by finitely 
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many facettes of which x lies in C whereas V $ C. Let Fb> be the first 
facette cutting [x, V] after C. This cut is a point c(bf) 6 A and there is 
a hyperplane Ha(b>), a(b') (E A, through c(b'). Seeing as A is countable 
whereas B0 is uncountable, a(bf) is some fixed a £ A for infinitely many 
V. Furthermore a may be taken so that Ha is supported by the c(b') 
lying in it, for otherwise a countable number of affine spaces of dimension 
less than n are required to cover our cone of rays which has non-empty 
interior. 

Thus affinely independent cQ>\), . . . , c(bn) exist on some Ha. The open 
simplex 5 in Ha of' which they are the vertices is an open subset of 
Ha C\ A. Now SC1C, for if not some hyperplane Hp separates x from 
some z G 5. This hyperplane meets at least one segment (x, c(bi)) 
contrary to the choice of c{bt). This proves (g). 

(h) Let C be a chamber in A and let x G C. Let 

ye A - U Ha. 

Then there is a ball B about y in A such that for all z G B the number 
Nx(z) of hyperplanes separating x and z is dominated by Nx(y). 

Cover [x, y] with finitely many balls Bj of the type described in (b). 
For all z close to y, [x, z] C H Bù and Nx(z) ^ Nx(y). 

Let C be a fixed chamber in A . Let 

U = {a e A red
+(C)| Ha is a wall of C\. 

By (g), II 9^ 0. Let IV c be the subgroup of Wgenerated by the ra, a G II. 

(i) W c is transitive on the chambers of A. 

Let C be a chamber of A. Let x G C and let 

i W ) : = min{iVx(y)|y G C"} and 

iV = N(C, C): = min {A^(C7)| x G C}. 

Use induction on N to show that there is a w G IVC with wC = C7. There 
is nothing to do if N = 0. Assume N > 0. Fix x0 G C, y G C7 for which 
^ o ( y ) = N. P u t a ball 5 about y in C such that i\^0(s) = N for all 
z (z B (see (h)). By (g) there is a s G ^ such that [x0, 2] is on a ray 
meeting a face Fa of C. Let xiy . . . , xk be the (interior) points of [x0, 2] 
at which hyperplane cuts occur. By assumption x\ G Fa. Let u G (xi, JC2) 
(or (xi, 2) if fe = 1). Then w necessarily lies in raC. Now [w, z]} hence 
[rau, raz]> cuts only N — 1 hyperplanes, so there is a w G IV c such that 
wC = raC

7. 

(j) Ared = ivn, w = wc. 
For the first statement take any f3 G Ared and any x G Hp C\ A such 
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that x lies on no other hyperplane. Then x lies in the face F& of some 
chamber C = wC (w G Wc). Note w~lFp C w~lH$ = Hw-i^ is a face 
of C, so w-1/? G dt a for some a G II. For the second statement, note 
that w~lr$w is a symmetry in i7a hence is ra (see Section 2). Thus r̂  G HTc 
for arbitrary 0 G Ared and W = Wc-

(k) If a, 0 G U,a^ /3 then (a, 0V> ^ 0. 

Let x0 G C Then T̂ XO G rpC and r^C is defined by the inequalities 
(y,x) > 0 for all y G Ared

+(C) - {0} and (0, x) < 0. In particular 
(a, rpXo) > 0 so 

(a, xo - (0, x0)/3
v) = (a, *o> ~ <|8, Xo)<<*, /3V) > 0 . 

Let xo approach face Fa and conclude that 

- < 0 , *„><«, 0V> è 0. 

With </3, xo) > 0 we have (a, 0V) ^ 0. 

(1) For a, 0 G A, (13, av) = 0 <=» (a, £v) = 0: 

(0, a:v ) = 0 => ra0 = £ => ra#0 = Hp =ï rar0ra = rfi. 

Computing rar^a = r ^ a in two ways gives (a, /3V) = 0. 
After (k), (1), A: = ((#, a v ) ) a, 0 G II is a Cartan matrix, though not 

necessarily finitely dimensioned. The quantity card (II) is usually called 
the rank of the root system A. This obviously leaves something to be 
desired and in order to avoid confusion we will use the term row rank for 
the maximum number of independent rows. 

The rest of the argument follows a well-worn trail. The proof of 
Bourbaki's Theorem 1, Chapter V, § 3 [1] can be taken without change 
to give: 

(m) W is a Coxeter group with Coxeter generators ra, a G II, and W 
is simply transitive on the chambers of A. 

For Ha a wall of C, define 

Fa = {w G W\ wC and C are on the same side of Ha), 

and define Aa to be the open half space in H defined by Ha and containing 
C. Then 

Pa = {w G W\ l(raw) > l(w)) 

[1, Chapter IV, § 1, Proposition 6] and hence for a G n , 

l(raw) < l(w) t=> raw £ Pa<=5 rawC C Aa <=» wC C raAa. 

With this equivalence, one may apply Proposition 5 of Chapter V, § 4 [1]. 
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Thus for each X C n define 

Cx= HHar\ D-AaC C. 

Once that we know that Q = C (which we show below (p)), Cx can be 
seen to lie in C by considering the line segment joining any point of Cx 

to any point of C. 

(n) For X, X' C n , wCx C\ Cx. ^ 0 => X = X', Cx = O , w 6 W*: 
= <rtt|a G X). 

(o) For all x 6 A, the stabilizer stabIF(x) of x in M7 is finite. 

Considering a small ball about x we see that there are only finitely 
many chambers whose closures contain x. These are necessarily permuted 
by stab^(x) which is then finite by (m). 

In particular notice that (n) and (o) show that the stabilizer of any 
facette lying in A is finite. This is false for facettes of A" — A . 

To finish off the theorem we need to look at the abstract root system 
A' based on IT = {a'\ a £ n} in the real space V whose basis is IT' (see 
Section 1). Let ir: V —> V be the linear mapping defined by ir(a') = a, 
a G n . The Weyl group W of A' is generated by \ra>\ a Ç IT} where 

Now Wf = W through ra> i—•> ra. Then w is a (W, l/F)-equivariant 
mapping and in particular 

7r(A') = 7 r (^ / n / ) = WU = Ared. 

Finally 7T|A' is injective since 

Wiai = w2oi2 => wralw~l = ra2 (where w = w2~
1Wi) 

=> w'r'ai w'~l = ra2> => w;/ a / = -±.w2 a2 

(where w/ <-> w/j, w' = w 2
/ _ 1 W). 

If wi'ai = —w2a2, then w2«2 = *^i«i = — u>2«2, which is absurd. Thus 
Wi'ai = W2OL2. 

(p) Q, = C. 

Let /3 £ Ared and let /3' be its preimage in A'. Since A' is an abstract root 
system based on IT, &' is a finite sum Yl na> ot where the a' £ II' and the 
na> £ Z and have a constant sign [6]. Thus j3 = ^ na> a, a = ir(af). If 
0 £ Ared

+ then all the wa' è 0 as is seen by computing (13, x) for some 
x £ C. Now if x £ Q, then (a, x) > 0 for all a £ II, so (0, x) > 0 too. 
Thus Q, C C. The reverse inclusion is obvious. 

This concludes the proof of the theorem. 

(III) ' . Tracts properly discontinuously on A-
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Let U, V be compact subsets of A. We have to show that jw Ç ^ | 
wU C\ V 5* 0} is finite. Only finitely many facettes in A meet U and V 
and the relation wU C\ V T* 0 indicates the existence of a pair of facettes 
in A : F with F C\ U ^ 0, F' with F' Pi V ^ 0 such that wF = F'. The 
same pair can only occur for finitely many w £ W because of the remark 
after (o). 

It is rather easy to see that III ' implies III (a), (b). 

4. The dimension of V. We have already pointed out that card(n) 
need not be equal to dim V. In this section we show: 

THEOREM 2. Let A be an I X I Car tan matrix of row rank n < I. Then 
there exist V, H, ( • , • ) : V X H —^ K, and A satisfying the axioms of 
Section 2 and determining A with dim V = dim H = n + 1. 

In particular since we can construct Cartan matrices of row rank 3 
and arbitrarily large / (see Sections 6, 8, 9) we can find models of these 
rank / root systems with 4-dimensional cones. 

Proof. Let A be an I X I Cartan matrix of row rank n, n < l. Let 
( • , • ) : V X 3 —> R be constructed from A as in Section 1. Thus 

dim V = dim H = I + (/ — n) and 

c = {x e B\ (a,x) > o,« e n} 
determines a Tits cone A = int ( Uwtw w(C)). Let V0 be the span of II 
in V and 

V0
± = {he H\ (Vo,h) = 0}. 

Then we have a non-degenerate pairing 

( . , • ) : F o X i ? / ï V - - + R . 

We claim that A, F0, H/Vo1- and the image Ao of A in S/V^ satisfy 
the axioms. Indeed this is all trivial with the possible exception of III (b). 
For that, let us note that W induces a group W on H/VQ1-. Let w Ç W 
pointwise fix the reflecting hyperplane Ha° in H/Vo1- for some a Ç A. 
Let x 6 Ha° H Ao and let x be a preimage of x in A. Then 

wx = x => wx =x mod Fo-1, 

where w is some preimage of w in W. Thus for all fi G A, (/3, wx) = 
(0, x) so that £ and m lie in the same facette of A. By (n) wx = x and 
w Ç stab(x) which is finite. This proves 111(b). Clearly 

dim ff/Vo-1 = 21- n - {{21 - n) - I) = I 

Let Û C S be the span of the coroots av , a Ç A and let U be its image 
in HI V§L under the quotient map — : H —> H/ Vo1-. Now let x0 Ç A o — U 
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be chosen so that distinct elements of A take distinct values on x0. Let 
H =Rx0+ U and let V = V0/H\ where H± = {v G VQ\ (v, H) = 0}. 
We have a non-degenerate pairing ( • , • ) : F X ^ - > R . Since 

raXo = x0 — (a, x0) av G H 

and C7 is VF-invariant, we see that H is PF-invariant. 
By the choice of x0, A is mapped injectively into V. Set A = A o C\ H. 

Then A is a T^-invariant open convex cone and is the union of facettes 
(of H). In fact, regarding the facettes of H, given any x, y £ H and 
preimages x j f H, x ~ y if and only if x ^ ;y- HI (a) and (b) are then 
clear. 

We have dim V = dim H = 1 + dim U. Since dim Û = /, and 
dim 27 P\ Fo1- = / — n, we find dim U = n. This completes the proof of 
Theorem 2. 

5. Comments. There is a well-known set of axioms for finite root 
systems (see [1], [8]). These are simply (I) and (II) together with the 
assumptions that A is finite and A spans V. Obviously (III) is satisfied 
with A = H. 

In the following, notation is as in Theorem 1. 

THEOREM 3 ([3]). A is finite if and only if A = H. 

Proof. If A = H then 0 Ç A and W = stab^(O) is finite, so A is finite. 
If A is finite then by Theorem 1, A is the image of a finite root system 

A'. If C is a chamber of A , then the opposite involution w0 G W maps C 
into — C C A , s o 0 £ A and A = H. 

In [4] I. G. Macdonald gave an axiomatic description of affine root 
systems. These occur as affine linear functionals acting on certain affine 
spaces. The explanation of this in our model is that A is an open half-
space and Macdonald's affine space is an affine hyperplane in A (parallel 
to the defining hyperplane of A ). 

More precisely, we have the following result. (In order to keep matters 
simple, we have restricted ourselves to indecomposable root systems.) 

THEOREM 4. Suppose that A is an open half-space and the chambers of A 
have only finitely many faces and define an indecomposable Car tan matrix. 
Then A and A are Euclidean. Conversely if A and A are Euclidean with 
null root v then A = {x £ H\ (v, x) > 0}, which is an open half-space. 

Proof. The converse is proved in [3]. 
Suppose that A is an open-half space, say {x £ H\ (v,x) > 0} for 

some v G V. Since ra A = A for all a, and ra has only ± 1 as eigenvalues, 
we see that rav = v and in particular {v, av ) = 0. By Theorem 3, A is 
not finite. Suppose that A is not Euclidean. By a result of Kac [2, 5, 
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Lemma 7] there is an "imaginary root" <£ = 2açnWaû!V, m<x G N such 
that (a, <t>) < 0 for all a 6 II. Then -<j> Ç C C A and 0 < (v, - 0 ) = 0, 
a contradiction. Thus A is Euclidean. 

As an exercise for the reader we leave: 

THEOREM 5. (Notation as in Theorem 1). Let a, 0 G A be linearly 
independent. Then (Ra + R/3) C\ A is a root system of rank 2. 

COROLLARY. If a, fi Ç A /Aen 

< c * , / 3 v ) > 0 ^ < / ? , a v > > 0 . 

Proof. Rank 2 root systems are symmetrizable [6]. Thus there is a 
symmetric bilinear form a for which the sign of (a, 0V) is the same as 
the sign of a (a, f$). 

6. Cartan matrices of row rank 3. 

Definition. Let A0 be a Cartan matrix. A Cartan matrix A is called an 
extension of 4̂ 0 if 4̂ is of the form 

A = iA°\ *) \ * I */ 
LEMMA 1. Let A0 be an n X n regular {i.e. det A0 9e 0) Cartan matrix. 

Let A = y ° , \ be an I X I Cartan matrix which is an extension of Ao. 

Then row rank (A) = n if and only if YA<rlX = A\. 

Proof. If row rank (A) = n, there exists an n X (I — n) matrix Xf 

such that 

(})*•-&) 
i.e.,i4oX' = X, F Z ' = 4 L Then 

X ' = A<rlX, Ai= YX' = YAo-'X. 

The converse follows from 

where Z£n is the n X n unit matrix. 
Let Ao be the 3 X 3 regular Cartan matrix 

/ 2 - 2 0\ 
Ao = I -2(k + 1) 2 0 J, where fe Ç N. 

\ 0 0 2 / 

de t^o = - 8 * , Ao * = 
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THEOREM 6. There exist Car tan matrices A which have the following 
properties: 

(i) A is an extension of A0, 
(ii) row rank (A) = row rank (A0) = 3, 

(iii) A is a (k + 3) X (k + 3) matrix. 

Mo x \ 
\Y A1) 

Proof. Let A = I " I be a (k + 3) X (k + 3) Car tan matrix 

which is an extension of A0. Let X = (xi, . . . , xfc), ' F = (yx, . . . , yk), 
where 

X | = ( Xiij X2i, Xzi) 

lyj = ( - y i i , - y 2 i , - y s y ) 

^ = (il,,) (1 ^ M ' ^ *) , 

%ij* y a are non-negative integers and i i is a Cartan matrix. From 
Lemma 1, row rank (̂ 4 ) = 3 if and only if 

(1) YAo-'X = At. 

Therefore, to construct a Cartan matrix which satisfies (i), (ii) and 
(iii), we have to find non-negative integers xij} ytj which satisfy (1) 
where A\ = (A^) must be a Cartan matrix. 

To simplify the problem, we consider the case where xtj, yi5 and Atj 

are all non-zero and we assume so hereafter. 

Let — ^r ly/ be the j th row of YA^r1, i.e., 

' y / = (~{yij + (k + l)y2J}, -iyii + y*,), ky*,). 

We rewrite (1) as follows: 

( l ) f ,
 ly/ • x, = (-2k)AjU (1 £i,j£ k). 

(1)<< becomes 

(2)ii {yii + (ft + l)y2i)xu + (yu + y2i)x2i - kyZixZi = -4ft. 

As yziXzi 7* 0, we have 

(3)«*3< = T — [{yu + (k + l)y2i\xit + (yu + y2i)x2i + 4ft] 

1 _ 4 
= ^ [{yu + (ft + l)y2i}xif + (yu + y2i)x2i] + — , 

where 

y u = yu/yiu $2i = y2i/y*i. 

As A ji < 0 ( j V i) , from ( 1 ) 0 we have 

(2)ii b i ; + (ft + i):y2j}tfi< + (yii + y2j)x2i - kydjxZi > o. 
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Considering kyzj > 0, we have 

(3)^*3* < ^ [{jij + (k + l)y2j}xu + (yu + y2j)x2i}. 

From (S)i and (S)ij} we have 

(4)o-f [Qu ~ Ju) + (k+ l)(y2j - y2i)) 

+ ~ { (yu - yu) + (*,, - yu)} - ~ > o. 
k yzi 

Notice that (4)î;- is equivalent to An < 0 when x3î- is given by (3)*. 
Now let 

^)yu = -~--kfy2i= ( * + l -* ' )* , :ys , = 2 f o r l £ * £ *. 

Then all yj{ are positive integers and the ith row of YA0~
l is in Z3-

Furthermore, from (3)* we have 

# 3 t = { ^ p 1 + (* + i)(* + i - *)}*n 

So, to prove the theorem it suffices to show the existence of positive 
integers xUj x2i (1 S i è k) which satisfy (4)^-. For then YA<rlX defines 
integral A\ with the required signs. Substituting (5) in (4)^, we have 

(4)ijhU-i)U + i - 2k - l)xu 

+ Hj ~ i)(j + i ~ 1)*2< - 2 > 0; 
i.e., if j > i, 

\j + i-i lru^ (j + i-w-i)' 
if j < t, 

. ( 2k A 4 
0" + « - i ) ( * - i ) " 

Let us observe the coefficients of %n and the constant terms: 
Hj>f, 

2k 2k 
-j—,—: ~ — 1 > T—:—: T — 1. j + i — 1 j + i 
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If j >f > i, 

4 4 
Tf + i-l)(j'- i) > (j + i- DO' - i) ' 

If i > j > f, 

4 4 
(j + t - l)( t - j) > (j' + i - l )( t - / ) • 

Thus the validity of the inequalities (4)4J follows from (4)M_i and 
(4)i,j+i with the special cases (4)i2 and (4)*,*-!. 

For i = 1, (4) l2 becomes *2i > (k — l)xn + 2. So take xn = 1, 
*2i = & + 2. For Î = fc, (4) t f t_i becomes (fc — l)xik + 2 < x u . So take 
Xilc = 1, #1* = k -\- 2 . 

For i ?* l,k, from (4)4i_i and (4) i i + i , we have 

( 6 ) « ( r r T - 1 ) * » - A > * « > ( f - 1 ) x " + f-
Comparing both sides of (6) t, it is necessary that 

xu- > 2(2i - l)/fe. 

The length of the interval 

[ ( * _ i j X l l + | > ^_ 1 j , i i __L_ | 
is equal to 

k 2(2i - 1) 
i(i - 1) Xli ~i(i - 1) ' 

which increases as Xn increases. And the left side (k/i — 1) xu• + 2/i of 
the interval is positive for xu > 0. So there exist positive integers xu 

and x2i which satisfy (6)*. This concludes the proof of the theorem. 

7. The minimal row rank of Cartan matrices. If A is an / X / 
Cartan matrix of row rank 1 or row rank 2, we will see that, by simul
taneously permuting the rows and the columns (if necessary), A becomes 
an extension of a regular Cartan matrix A a of same row rank as A, and 
that l ^ / ^ 2 o r 2 ^ / ^ 4 respectively. 

We begin with the following result. 

LEMMA 2. If X = (x^), Y = (3^) are non-negative (i.e., xtj è 0, 
Ji3 ^ 0) n X n matrices such that A = YX is a Cartan matrix, then 
A = 2En and there exists a £ &\ such that ytj = 0 if i ^ <r(j), xtj = 0. 

Proof. From A = YX, if j 9^ i, ]T}* ?****/ = 0. On the other hand 
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^kJikOCkj ^ 0. So ^kyikxkj = 0, i.e., A = 2En. In particular X and Y 
are regular matrices. Suppose yUl ^ 0. From ^ky\kxkj = 0 (j ^ 1), 
xîl:? = 0 for all j 5* 1. As X is regular, xzlZ 5̂  0 and there exists only 
one i\ such that yux 9^ 0. We can repeat this argument. 

THEOREM 7. Let A0 be an n X n regular Car tan matrix 9^ 2En. Assume 
that the coefficients of AQ~l are all non-negative. If an I X I Car tan matrix A 
is an extension of A0 such that row rank (A) = row rank (Ao), then 
1 ^ 2n - 1. 

Proof. We prove the following ; if there exists a 2n X 2n Cartan matrix 
A of row rank n which is an extension of an n X n regular Cartan 
matrix AQ, then A0 = 2En. 

Let 

- - (t i) • 
From Lemma 1, YA0~

1X = Ai. Applying Lemma 2 to — YAQ~l, —X, we 
have Ax = 2En. Then AQ~l = 2Y~1X~1, A0 = 2~lXY. As each com
ponent of 2~lXY is non-negative, A0 = 2En. X} Y are of the form 
described in Lemma 2. 

We recall that the condition on A 0 in Theorem 7 always holds if A0 

is of classical type 7e 2En. 
For A0 = 2Enj there exist 2n X 2n Cartan matrices Aff of row rank n 

which are extensions of AQ- Aff is given as follows. 

A - (2En X ) 
' \ Y 2EJ 

where X = (x^), Y = (y if) and a- G ^ n such that x^- = 0 for j 7e v(i), 
Xiad) = —au ytj = 0 for i ^ <j{j) and y ^ , = — 4/a* (a,, 4/a f £ N). 
There exists no (2w + 1) X (2n + 1) Cartan matrix which is of row 
rank n and an extension of Aff. 

Now, if A is an I X / Cartan matrix of row rank 1, A is an extension 
of A0 = (2), and / = 1 or 2. Let us consider the Cartan matrices of row 
rank 2. We remark that a 3 X 3 Cartan matrix all of whose principal 
2 X 2 submatrices are of row rank 1 is regular. So we can restrict our
selves to those I X I Cartan matrices of row rank 2 which are extensions 
of 2 X 2 regular Cartan matrices A0. If det A0 < 0, all the components 
of Ao"1 are negative, so there exists no such extension by Lemma 1. If 
det A0 > 0 and A0 ^ 2E2, then by Lemma 2, / ^ 3. Therefore we have 
2 ^ / ^ 4. 

8. Examples. Here are two examples of Cartan matrices of row 
rank 3 which were constructed by the method of Section 6. 
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2 - 2 0 - 1 - 3 - 5 - 6 
- 1 0 2 0 - 6 - 5 - 3 - 1 

0 0 2 - 5 3 - 8 6 - 1 0 6 - 1 0 3 

- 8 - 3 2 - 2 2 - 2 - 1 4 - 2 8 
- 2 4 - 2 4 - 2 - 1 2 - 2 - 1 1 
- 4 8 - 1 6 - 2 - 1 1 - 2 2 - 1 
- 8 0 - 8 - 2 - 2 8 - 1 4 - 2 2 

(* = 4) 

2 - 2 0 - 1 - 2 - 3 - 5 - 7 
- 1 2 2 0 - 7 - 5 - 3 - 2 - 1 

0 0 2 - 7 5 - 9 1 - 1 0 1 - 1 3 6 - 1 6 5 

- 1 0 - 5 0 - 2 2 - 1 - 1 0 - 3 1 - 5 8 
- 3 0 - 4 0 - 2 - 1 2 - 1 - 1 3 - 3 1 
- 6 0 - 3 0 - 2 - 1 2 - 2 2 - 2 - 1 2 

- 1 0 0 - 2 0 - 2 - 3 1 - 1 3 - 1 2 - 1 
- 1 5 0 - 1 0 - 2 - 5 8 - 3 1 - 1 0 - 1 2 

(k = 5 ) 

9. Maxwell's examples. Let A = (Atj) be a symmetric / X I 
generalized Cartan matrix with the property that (1) removal of any 
two rows and corresponding columns leaves a generalized Cartan matrix 
each of whose connected components is finite or Euclidean, and (2) 
"two" cannot be replaced by "one" in (1). Maxwell [5] proves that such 
a matrix is hyperbolic in the sense that the quadratic form defined by A 
is of signature (I — 1, 1). Let V — V0 be as in Section 1 and let (•, - ) : 

V X F—> R be defined by (ai} <Xj) = A{j. Let wi, . . . , «j be the dual 
basis to «i, . . . , ah so that (cou otj) — ôi:}. Maxwell shows [5, Theorem 
1.6] that for alH, j £ {1, . . . , I) and for all w, w' £ W, (woiU W'COJ) g 0 
unless wo)i = w'vj. 

Consider now the special case: 

A = 

The matrix («*, cô ) is given by A~l which in this case is 2~4(^4). The 
lattice L: = 4 ]£ Z co* is W-stable and (•, • ) is integral and in fact even 
valued on L. Now suppose that xu x2, . . . are distinct elements of the 
set W(4«i). Then 

(xu Xi) = 16(coi, coi) = 2 for all i and 

(xu Xj) G Z^o if i ?* j . 

Thus the matrix B = ((xuXj)) is a symmetric Cartan matrix. It is 
easy to see that the proof of Theorem 1.6 [5] actually gives (xu Xj) < 0 
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for all i 9^ j . Since Xi, x2, . . . lie in V the row rank of B is at most 4. In 
fact if we use the sequence 

{4coi, 4riwi, 4r2ri«i, 4rif2-ri«i, 4r2rir2ricui, . . .} = {4«i, 4(«i 

4(wi — «! — 2a2), 4(coi — 4«i — 2a2), 4(«i — 4c*i — 6a2), « 

the vectors all lie in Ĵ coi + R<xi + R&2 and the row rank is 3. 
Here is the beginning of the corresponding matrix: 

2 - 1 4 - 1 4 - 6 2 - 6 2 
- 1 4 2 - 6 2 - 1 4 - 1 4 2 
- 1 4 - 6 2 2 - 1 4 2 - 1 4 
- 6 2 - 1 4 - 1 4 2 2 - 2 5 4 
- 6 2 - 1 4 2 - 1 4 - 2 5 4 2 

« i ) , 
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