ROOT SYSTEMS AND GARTAN MATRICES

R. V. MOODY AND T. YOKONUMA

1. Introduction. This paper is concerned with two things. The first is a (primarily) geometric axiomatic description for the systems of real roots of Lie algebras arising from (generalized) Cartan matrices. The description is base free and is a natural extension of the well-known axiomatic description of finite root systems. The primary component of our description is an open convex cone which, following Looijenga [3], we call the Tits cone. In fact it was Looijenga's paper that led to this axiomatic formulation. Unlike his construction, the dimension of the Tits cone is not tightly connected to the dimension of the Cartan matrix which it eventually yields. This leads us to the second part of the paper which concerns the construction of Cartan matrices of low row rank. We can show that if we have an $l \times l$ Cartan matrix of row rank n, then we can model an axiomatic description of it with a cone of dimension $n+1$. We show how to construct $l \times l$ Cartan matrices for all $l \geqq 3$ (including $l=\infty$) with row rank 3 , thus providing us with root systems of arbitrary rank (rank: $=l$) modelled in 4-dimensional cones.

A generalized Cartan matrix of $\operatorname{rank} l(1 \leqq l \leqq \infty)$ is by definition an $l \times l$ matrix $A=\left(A_{i j}\right)$ of integers satisfying:

$$
\begin{aligned}
& \mathrm{A}_{i j}=2 \text { for all } i \\
& A_{i j} \leqq 0 \text { if } i \neq j \\
& A_{i j}=0 \Leftrightarrow A_{j i}=0 .
\end{aligned}
$$

Notice that the "rank" l is not the same as the row rank in general.
Given a finite $(l<\infty)$ Cartan matrix A we may define two l-dimensional real vector spaces V_{0} and H_{0} with bases $\alpha_{1}, \ldots, \alpha_{l} ; \alpha_{1}{ }^{\vee}, \ldots, \alpha_{l}{ }^{\vee}$ respectively and a bilinear pairing

$$
\langle\cdot, \cdot\rangle: V_{0} \times H_{0} \rightarrow \mathbf{R}
$$

through

$$
\left\langle\alpha_{i}, \alpha_{j}^{\vee}\right\rangle=A_{j i}
$$

In general this is degenerate, but it is an easy exercise to see that an

[^0]extension of $\langle\cdot, \cdot\rangle$ to extensions V and H of V_{0} and H_{0} with dimensions $2 l$-row rank (A) is possible so that $\langle\cdot, \cdot\rangle: V \times H \rightarrow \mathbf{R}$ is nondegenerate.

Let $r_{i}: V \rightarrow V(1 \leqq i \leqq l)$ be the linear mapping

$$
r_{i}: v \mapsto v-\left\langle v, \alpha_{i}{ }^{\vee}\right\rangle \alpha_{i} .
$$

Then r_{1}, \ldots, r_{l} are involutions and generate a group, W, called the Weyl group of $A . W$ is a Coxeter group with r_{1}, \ldots, r_{l} as Coxeter generators and the relations $\left(r_{i} r_{j}\right)^{m_{i j}}=1(i \neq j)$ where the $m_{i j}$ are given by the values of the products $A_{i j} A_{j i}$ according to:

$A_{i j} A_{j i}$	0	1	2	3	$\geqq 4$
$m_{i j}$	2	3	4	6	∞

See [7].
The r_{i} act by transpose action on H where they are given by

$$
r_{i}: h \mapsto h-\left\langle\alpha_{i}, h\right\rangle \alpha_{i}{ }^{\vee} .
$$

In this way W acts on H. We have $\langle w \alpha, x\rangle=\left\langle\alpha, w^{-1} x\right\rangle$ for all $w \in W$, $\alpha \in V, x \in H$.

The set

$$
\Delta=\bigcup_{i=1}^{l} \bigcup_{w \in W} w \alpha_{i} \subset V
$$

is called the set of real roots of V relative to the base $\alpha_{1}, \ldots, \alpha_{l}$. The terminology arises from the theory of Lie algebras where these elements index certain important one-dimensional subspaces. Obviously Δ depends on the choice of the basis $\alpha_{1}, \ldots, \alpha_{l}$, and one of our objects is to provide an axiomatic description of Δ without reference to this particular basis. We might note that there is obviously a set Δ^{\vee} of "coroots" obtained by W acting on $\alpha_{1}{ }^{\vee}, \ldots, \alpha_{l}{ }^{\vee}$.

Each $\alpha \in \Delta$ has an involution r_{α} associated with it; namely if $\alpha=w \alpha_{i}$, $r_{\alpha}=w r_{i} w^{-1}$. This is independent of the representation of α in the form $w \alpha_{i}$. So is $\alpha^{\vee}:=w \alpha_{i}^{\vee}$, and

$$
r_{\alpha}: \phi \mapsto \phi-\left\langle\phi, \alpha^{\vee}\right\rangle \alpha, r_{\alpha}: x \mapsto x-\langle\alpha, x\rangle \alpha^{\vee}
$$

describes the action of r_{α} on V and H respectively.
Let

$$
C=\left\{x \in H \mid\left\langle\alpha_{i}, x\right\rangle>0, i=1, \ldots, l\right\}
$$

Then C is an open convex cone. Following [3] we let

$$
\wedge=\operatorname{int}\left(\bigcup_{w \in W} w \bar{C}\right)
$$

the interior of the union of the $W-$ translates of the closure of $C . \wedge$ is an open convex cone [3], stable by W, called the Tits cone.

Among the properties of Δ and \wedge we single out those listed under I, II, III in Section 2. These are proved in [3]. The purpose of Sections 2 and 3 is to prove that they suffice to characterize a Cartan matrix A and Δ as the translates of a base under the action of a Coxeter group W, precisely as we have described it above.

The relation of the dimension of V to the rank of A is rather flexible and does not emerge from the axiomatization as in the construction above. Indeed the dimension of V can be reduced to row rank $(A)+1$. A problem that arose in our work was that we were unable to prove that $\operatorname{rank} A$ is finite even though we assume that the dimension of V is finite. The question thus arose: Do there exist infinite $(l=\infty)$ Cartan matrices of finite rank? In attempting to answer this question we produced the construction in Section 6 which produces non-symmetric Cartan matrices of row rank 3 and arbitrarily large l. After the paper was submitted for publication George Maxwell showed us a beautiful construction of infinite symmetric matrices of row rank 3. This is described in Section 9. We are very grateful to Professor Maxwell for this contribution.
2. The set-up. Let V, H be two finite dimensional real vector spaces and suppose that $\langle\cdot, \cdot\rangle: V \times H \rightarrow \mathbf{R}$ is a non-degenerate pairing.

Let $0 \neq \alpha \in V$. A symmetry in α is an endomorphism r of V having a point-wise fixed hyperplane L and satisfying $r \alpha=-\alpha$. For such a symmetry there is a unique $\alpha^{\vee} \in H$ such that $\left\langle L, \alpha^{\vee}\right\rangle=0,\left\langle\alpha, \alpha^{\vee}\right\rangle=2$. In terms of this, the action of r on V is

$$
\phi \mapsto \phi-\left\langle\phi, \alpha^{\vee}\right\rangle \alpha .
$$

Clearly $r^{2}=\operatorname{id}_{V}$.
Let Δ be a non-empty subset of $V-\{0\}$. We assume that:
(I) For each $\alpha \in \Delta$ there is a symmetry r_{α} in α such that $r_{\alpha} \Delta \subset \Delta$.
(II) For all $\alpha, \beta \in \Delta,\left\langle\alpha, \beta^{\vee}\right\rangle \in \mathbf{Z}$.

Let $W \subset G L(V)$ be the group generated by the symmetries r_{α}. For each $\alpha \in \Delta$ let

$$
H_{\alpha}:=\{x \in H \mid\langle\alpha, x\rangle=0\} .
$$

W acts by transpose action on H and thereby r_{α} is seen to induce the symmetry in α^{\vee} with fixed hyperplane H_{α}.

Use the hyperplanes $H_{\alpha}, \alpha \in \Delta$, to introduce the standard equivalence relation \sim on $H: x \sim y$ if and only if for each $\alpha \in \Delta$ either x, y lie on H_{α} or on the same side of $H_{\alpha}[\mathbf{1}]$. The equivalence classes are called facettes, those facettes with non-empty interiors are chambers, and those facettes which support a hyperplane H_{α} are called faces. Since $r_{\alpha} H_{\beta}=H_{r_{\alpha} \beta}$ for all $\alpha, \beta \in \Delta$, the facettes are permuted by W.

Next we assume:
(III) There exists a W-invariant non-empty open convex cone \wedge which is a union of facettes such that
(a) if $x, y \in \wedge$ then there is a cover by finitely many facettes of the line segment $[x, y]$ in H.
(b) for all $\alpha \in \Delta$ the point-wise stabilizer of H_{α} in W is finite.

Later we will see that, with the other assumptions, III (a), (b) are equivalent to
$(\mathrm{III})^{\prime} W$ acts properly discontinuously on \wedge.
\wedge is called a Tits cone.
Let $\alpha \in \Delta$. Then for $x \in \wedge$ the line segment joining x and $r_{\alpha} x$ lies in \wedge and meets H_{α}. Hence H_{α} meets \wedge.

For $\alpha \in \Delta, r_{\alpha}$ is the only involution in W with H_{α} as its 1-eigenspace. Indeed if s is such an involution $s r_{\alpha}$ fixes H_{α} pointwise, has finite order and hence is semi-simple (III(b)), and has determinant 1 , whence $s r_{\alpha}=$ id. Thus for $\alpha, \beta \in \Delta, H_{\alpha}=H_{\beta} \Rightarrow \beta \in \mathbf{R} \alpha$. As usual $\mathbf{R} \alpha \cap \Delta \subset$ $\left\{ \pm \frac{1}{2} \alpha, \pm \alpha, \pm 2 \alpha\right\}[\mathbf{1}$, VI § 1].
Let

$$
\Delta_{\mathrm{red}}:=\{\alpha \in \Delta \mid \alpha / 2 \notin \Delta\} .
$$

$\Delta_{\text {red }}$ satisfies I, II, III with the same cone \wedge.
Theorem 1. Suppose that Δ satisfies $I, I I, I I I$.
(1) W is simply transitive on the chambers of \wedge.
(2) Let C be a chamber in \wedge and let

$$
\Delta_{\text {red }}+:=\left\{\alpha \in \Delta_{\text {red }} \mid \alpha \text { is positive on } C\right\} .
$$

Let

$$
\Pi:=\left\{\alpha \in \Delta_{\mathrm{rec}}+\mid H_{\alpha} \text { is a wall of } C\right\}
$$

(see below for definition). Π is countable. For $\alpha, \beta \in \Pi$ let $A_{\alpha \beta}=\left\langle\beta, \alpha^{\vee}\right\rangle$. Then $A:=\left(A_{\alpha \beta}\right)$ is a Cartan matrix. Let Δ^{\prime} be the root system defined by A on a base $\Pi^{\prime}:=\left\{\alpha^{\prime} \mid \alpha \in \Pi\right\}$ with Weyl group W^{\prime} generated by the reflections $r_{\alpha^{\prime}}$. Then W is generated by the symmetries $r_{\alpha}, \alpha \in \Pi$ and $W^{\prime} \cong W$ through $r_{\alpha^{\prime}} \mapsto r_{\alpha}$. Furthermore there is a unique (W^{\prime}, W) - equivariant bijective mapping $\Delta^{\prime} \rightarrow \Delta_{\text {red }}$ such that $\alpha^{\prime} \mapsto \alpha$ for all $\alpha^{\prime} \in \Pi^{\prime}$.
3. Proof of theorem 1. It is a straightforward consequence of III(a) that
(a) The decomposition of a closed interval $I \subset \wedge$ by facettes appears as a finite set of points separated by open intervals.
(b) For each $x \in \wedge$ there is a ball B about x in \wedge such that for all $\alpha \in \Delta$,

$$
H_{\alpha} \cap B \neq \emptyset \Rightarrow x \in H_{\alpha} .
$$

To see this, let $I_{1}, \ldots, I_{n}(n=\operatorname{dim} V)$ be closed line segments in \wedge in independent directions with $x \in \stackrel{\circ}{I}_{j}$ for each I. By (a) there is an open interval J_{j} about x in I_{j} such that any H_{α} meeting J_{j} meets it in x. Let B be an open ball about x in the interior of the convex hull of the \bar{J}_{j}.
(c) For each $x \in \wedge$ there are only finitely many H_{α} through x. For any $x, y \in \wedge$ there are only finitely many hyperplanes H_{α} separating x and y.

For the first statement let S be a solid simplex such that $x \in \stackrel{S}{\subset}$ $S \subset \wedge$.

Any H_{α} passing through x is supported by its set of cuts with the vertices and edges of S of which there are only finitely many.
(d) Δ is countable.

To see this cover \wedge by open balls of the type in (b) and take a countable subcover.

There are at least two chambers in \wedge. Let C be one. For each $\alpha \in \Delta$, α as a function on C takes values of constant sign. Partition $\Delta, \Delta_{\text {red }}$ according to sign to get $\Delta^{+}(C), \Delta_{\text {red }}{ }^{+}(C),-\Delta^{+}(C)$, and $-\Delta_{\text {red }}{ }^{+}(C)$. A face F is called a face of C if $F \cap \bar{C}$ supports F. A face of C supports a unique H_{α} which is called a wall of C. It should be noted that the facettes lying in the closure of a chamber C of \wedge are not in general in \wedge. However,
(e) The faces of a chamber in \wedge are in \wedge.

Let $F \subset H_{\alpha}$ be a face of the chamber $C \subset \wedge$. It suffices to see that $F \cap \wedge \neq \emptyset$. Let $x_{0} \in C$ and let x_{1} be a point of $F \cap \bar{C}$. Then

$$
\left[x_{0}, x_{1}\right) \subset C \text { and }\left[r_{\alpha} x_{0}, x_{1}\right) \subset r_{\alpha} C
$$

which is a chamber in \wedge on the opposite side of H_{α}. Points close to x_{1} on these two intervals have joins in \wedge which meet H_{α} in F. We note that F is a face of $r_{\alpha} C$.
(f) Let C be a chamber of \wedge and let $F_{\alpha} \subset H_{\alpha}$ be a face of C, $\alpha \in \Delta_{\mathrm{red}}+(C)$. Then

$$
F_{\alpha}=\left\{x \in H \mid\langle\beta, x\rangle>0 \text { if } \beta \in \Delta_{\text {red }}+(C)-\{\alpha\} \text { and }\langle\alpha, x\rangle=0\right\} .
$$

The only other chamber with F_{α} as a face is $r_{\alpha} C$.
(g) Let C be a chamber of \wedge and let $x \in C, y \in \wedge-\bar{C}$. If B is any ball about y in $\wedge-\bar{C}$ then the cone of rays $\cup_{b \in B} R(x, b)$, where $R(x, b)$ is the ray through x towards b, cuts at least one face of C in an open subset of that face.

Choose one point $b^{\prime} \in B$ on each ray above and let this set of $b^{\prime \prime}$ s be denoted by B_{0}. For each $b^{\prime} \in B_{0}$ the interval $\left[x, b^{\prime}\right]$ is covered by finitely
many facettes of which x lies in C whereas $b^{\prime} \notin C$. Let $F_{b^{\prime}}$ be the first facette cutting $\left[x, b^{\prime}\right]$ after C. This cut is a point $c\left(b^{\prime}\right) \in \wedge$ and there is a hyperplane $H_{\alpha\left(b^{\prime}\right)}, \alpha\left(b^{\prime}\right) \in \Delta$, through $c\left(b^{\prime}\right)$. Seeing as Δ is countable whereas B_{0} is uncountable, $\alpha\left(b^{\prime}\right)$ is some fixed $\alpha \in \Delta$ for infinitely many b^{\prime}. Furthermore α may be taken so that H_{α} is supported by the $c\left(b^{\prime}\right)$ lying in it, for otherwise a countable number of affine spaces of dimension less than n are required to cover our cone of rays which has non-empty interior.

Thus affinely independent $c\left(b_{1}\right), \ldots, c\left(b_{n}\right)$ exist on some H_{α}. The open simplex S in H_{α} of' which they are the vertices is an open subset of $H_{\alpha} \cap \wedge$. Now $S \subset \bar{C}$, for if not some hyperplane H_{β} separates x from some $z \in S$. This hyperplane meets at least one segment $\left(x, c\left(b_{i}\right)\right)$ contrary to the choice of $c\left(b_{i}\right)$. This proves (g).
(h) Let C be a chamber in \wedge and let $x \in C$. Let

$$
y \in \wedge-\bigcup_{\alpha \in \Delta} H_{\alpha} .
$$

Then there is a ball B about y in \wedge such that for all $z \in B$ the number $N_{x}(z)$ of hyperplanes separating x and z is dominated by $N_{x}(y)$.

Cover $\left[x, y\right.$] with finitely many balls B_{j} of the type described in (b). For all z close to $y,[x, z] \subset \cap B_{j}$ and $N_{x}(z) \leqq N_{x}(y)$.

Let C be a fixed chamber in \wedge. Let

$$
\Pi=\left\{\alpha \in \Delta_{\text {red }}+(C) \mid H_{\alpha} \text { is a wall of } C\right\} .
$$

By $(\mathrm{g}), \Pi \neq \emptyset$. Let W_{C} be the subgroup of W generated by the $r_{\alpha}, \alpha \in \Pi$.
(i) W_{C} is transitive on the chambers of \wedge.

Let C^{\prime} be a chamber of \wedge. Let $x \in C$ and let

$$
\begin{aligned}
& N_{x}\left(C^{\prime}\right):=\min \left\{N_{x}(y) \mid y \in C^{\prime}\right\} \text { and } \\
& N=N\left(C, C^{\prime}\right):=\min \left\{N_{x}\left(C^{\prime}\right) \mid x \in C\right\} .
\end{aligned}
$$

Use induction on N to show that there is a $w \in W_{C}$ with $w C=C^{\prime}$. There is nothing to do if $N=0$. Assume $N>0$. Fix $x_{0} \in C, y \in C^{\prime}$ for which $N_{x_{0}}(y)=N$. Put a ball B about y in C^{\prime} such that $N_{x_{0}}(z)=N$ for all $z \in B$ (see (h)). By (g) there is a $z \in B$ such that $\left[x_{0}, z\right]$ is on a ray meeting a face F_{α} of C. Let x_{1}, \ldots, x_{k} be the (interior) points of $\left[x_{0}, z\right]$ at which hyperplane cuts occur. By assumption $x_{1} \in F_{\alpha}$. Let $u \in\left(x_{1}, x_{2}\right)$ (or (x_{1}, z) if $k=1$). Then u necessarily lies in $r_{\alpha} C$. Now $[u, z]$, hence [$\left.r_{\alpha} u, r_{\alpha} z\right]$, cuts only $N-1$ hyperplanes, so there is a $w \in W_{C}$ such that $w C=r_{\alpha} C^{\prime}$.
(j) $\Delta_{\text {red }}=W \Pi, W=W_{C}$.

For the first statement take any $\beta \in \Delta_{\text {red }}$ and any $x \in H_{\beta} \cap \wedge$ such
that x lies on no other hyperplane. Then x lies in the face F_{β} of some chamber $C^{\prime}=w C\left(w \in W_{C}\right)$. Note $w^{-1} F_{\beta} \subset w^{-1} H_{\beta}=H_{w^{-1} \beta}$ is a face of C, so $w^{-1} \beta \in \pm \alpha$ for some $\alpha \in \Pi$. For the second statement, note that $w^{-1} r_{\beta} w$ is a symmetry in H_{α} hence is r_{α} (see Section 2). Thus $r_{\beta} \in W_{C}$ for arbitrary $\beta \in \Delta_{\text {red }}$ and $W=W_{C}$.
(k) If $\alpha, \beta \in \Pi, \alpha \neq \beta$ then $\left\langle\alpha, \beta^{\vee}\right\rangle \leqq 0$.

Let $x_{0} \in C$. Then $r_{\beta} x_{0} \in r_{\beta} C$ and $r_{\beta} C$ is defined by the inequalities $\langle\gamma, x\rangle>0$ for all $\gamma \in \Delta_{\text {red }}{ }^{+}(C)-\{\beta\}$ and $\langle\beta, x\rangle<0$. In particular $\left\langle\alpha, r_{\beta} x_{0}\right\rangle>0$ so

$$
\left\langle\alpha, x_{0}-\left\langle\beta, x_{0}\right\rangle \beta^{\vee}\right\rangle=\left\langle\alpha, x_{0}\right\rangle-\left\langle\beta, x_{0}\right\rangle\left\langle\alpha, \beta^{\vee}\right\rangle>0 .
$$

Let x_{0} approach face F_{α} and conclude that

$$
-\left\langle\beta, x_{0}\right\rangle\left\langle\alpha, \beta^{\vee}\right\rangle \geqq 0
$$

With $\left\langle\beta, x_{0}\right\rangle>0$ we have $\left\langle\alpha, \beta^{\vee}\right\rangle \leqq 0$.
(1) For $\alpha, \beta \in \Delta,\left\langle\beta, \alpha^{\vee}\right\rangle=0 \Leftrightarrow\left\langle\alpha, \beta^{\vee}\right\rangle=0$:

$$
\left\langle\beta, \alpha^{\vee}\right\rangle=0 \Rightarrow r_{\alpha} \beta=\beta \Rightarrow r_{\alpha} H_{\beta}=H_{\beta} \Rightarrow r_{\alpha} r_{\beta} r_{\alpha}=r_{\beta}
$$

Computing $r_{\alpha} r_{\beta} \alpha=r_{\beta} r_{\alpha} \alpha$ in two ways gives $\left\langle\alpha, \beta^{\vee}\right\rangle=0$.
After (k), (1), $A:=\left(\left\langle\beta, \alpha^{\vee}\right\rangle\right) \alpha, \beta \in \Pi$ is a Cartan matrix, though not necessarily finitely dimensioned. The quantity card(Π) is usually called the rank of the root system Δ. This obviously leaves something to be desired and in order to avoid confusion we will use the term row rank for the maximum number of independent rows.

The rest of the argument follows a well-worn trail. The proof of Bourbaki's Theorem 1, Chapter V, § 3 [1] can be taken without change to give:
(m) W is a Coxeter group with Coxeter generators $r_{\alpha}, \alpha \in \Pi$, and W is simply transitive on the chambers of \wedge.

For H_{α} a wall of C, define

$$
P_{\alpha}=\left\{w \in W \mid w C \text { and } C \text { are on the same side of } H_{\alpha}\right\},
$$

and define A_{α} to be the open half space in H defined by H_{α} and containing C. Then

$$
P_{\alpha}=\left\{w \in W \mid l\left(r_{\alpha} w\right)>l(w)\right\}
$$

[1, Chapter IV, § 1, Proposition 6] and hence for $\alpha \in \Pi$,

$$
l\left(r_{\alpha} w\right)<l(w) \Leftrightarrow r_{\alpha} w \in P_{\alpha} \Leftrightarrow r_{\alpha} w C \subset A_{\alpha} \Leftrightarrow w C \subset r_{\alpha} A_{\alpha}
$$

With this equivalence, one may apply Proposition 5 of Chapter V, §4[1].

Thus for each $X \subset \Pi$ define

$$
C_{X}=\bigcap_{\alpha \in X} H_{\alpha} \cap \bigcap_{\alpha \in \mathrm{I}-\mathrm{X}} \tau A_{\alpha} \subset \bar{C} .
$$

Once that we know that $C_{\phi}=C$ (which we show below (p)), C_{X} can be seen to lie in \bar{C} by considering the line segment joining any point of C_{X} to any point of C.
(n) For $X, X^{\prime} \subset \Pi, w C_{X} \cap C_{X^{\prime}} \neq \emptyset \Rightarrow X=X^{\prime}, C_{X}=C_{X^{\prime}}, w \in W_{X}$: $=\left\langle r_{\alpha} \mid \alpha \in X\right\rangle$.
(o) For all $x \in \wedge$, the stabilizer $\operatorname{stab}_{W}(x)$ of x in W is finite.

Considering a small ball about x we see that there are only finitely many chambers whose closures contain x. These are necessarily permuted by $\operatorname{stab}_{W}(x)$ which is then finite by (m).
In particular notice that (n) and (o) show that the stabilizer of any facette lying in \wedge is finite. This is false for facettes of $\bar{\Lambda}-\wedge$.

To finish off the theorem we need to look at the abstract root system Δ^{\prime} based on $\Pi^{\prime}=\left\{\alpha^{\prime} \mid \alpha \in \Pi\right\}$ in the real space V^{\prime} whose basis is Π^{\prime} (see Section 1). Let $\pi: V^{\prime} \rightarrow V$ be the linear mapping defined by $\pi\left(\alpha^{\prime}\right)=\alpha$, $\alpha \in \Pi$. The Weyl group W^{\prime} of Δ^{\prime} is generated by $\left\{r_{\alpha^{\prime}} \mid \alpha^{\prime} \in \Pi^{\prime}\right\}$ where

$$
r_{\alpha^{\prime}} \beta^{\prime}=\beta^{\prime}-\left\langle\beta, \alpha^{\vee}\right\rangle \alpha^{\prime} .
$$

Now $W^{\prime} \cong W$ through $r_{\alpha^{\prime}} \mapsto r_{\alpha}$. Then π is a (W^{\prime}, W)-equivariant mapping and in particular

$$
\pi\left(\Delta^{\prime}\right)=\pi\left(W^{\prime} \Pi^{\prime}\right)=W \Pi=\Delta_{\mathrm{red}}
$$

Finally $\left.\pi\right|_{\Delta}$ is injective since

$$
\begin{aligned}
& w_{1} \alpha_{1}=w_{2} \alpha_{2} \Rightarrow w_{\alpha_{1}} w^{-1}=r_{\alpha_{2}} \\
& \Rightarrow w^{\prime} r^{\prime}{ }_{\alpha_{1}} w^{\prime-1}=r_{\alpha_{2}}{ }^{\prime} \Rightarrow w_{1}{ }^{\prime} \alpha_{1}{ }^{\prime}= \pm w_{2}=1 w_{1}{ }^{\prime} \alpha_{2}^{\prime} \\
& \quad\left(\text { where } w_{i}{ }^{\prime} \leftrightarrow w_{i}, w^{\prime}=w_{2}^{\prime-1} w_{1}^{\prime}\right) .
\end{aligned}
$$

If $w_{1}{ }^{\prime} \alpha_{1}{ }^{\prime}=-w_{2}^{\prime} \alpha_{2}{ }^{\prime}$, then $w_{2} \alpha_{2}=w_{1} \alpha_{1}=-w_{2} \alpha_{2}$, which is absurd. Thus $w_{1}{ }^{\prime} \alpha_{1}{ }^{\prime}=w_{2}{ }^{\prime} \alpha_{2}{ }^{\prime}$.
(p) $C_{\phi}=C$.

Let $\beta \in \Delta_{\text {red }}$ and let β^{\prime} be its preimage in Δ^{\prime}. Since Δ^{\prime} is an abstract root system based on $\Pi^{\prime}, \beta^{\prime}$ is a finite sum $\sum n_{\alpha^{\prime}} \alpha^{\prime}$ where the $\alpha^{\prime} \in \Pi^{\prime}$ and the $n_{\alpha^{\prime}} \in \mathbf{Z}$ and have a constant sign [6]. Thus $\beta=\sum n_{\alpha^{\prime}} \alpha, \alpha=\pi\left(\alpha^{\prime}\right)$. If $\beta \in \Delta_{\text {red }}{ }^{+}$then all the $n_{\alpha^{\prime}} \geqq 0$ as is seen by computing $\langle\beta, x\rangle$ for some $x \in C$. Now if $x \in C_{\phi}$ then $\langle\alpha, x\rangle>0$ for all $\alpha \in \Pi$, so $\langle\beta, x\rangle>0$ too. Thus $C_{\phi} \subset C$. The reverse inclusion is obvious.

This concludes the proof of the theorem.
(III)'. W acts properly discontinuously on \wedge.

Let U, V be compact subsets of \wedge. We have to show that $\{w \in W \mid$ $w U \cap V \neq \emptyset\}$ is finite. Only finitely many facettes in \wedge meet U and V and the relation $w U \cap V \neq \emptyset$ indicates the existence of a pair of facettes in $\wedge: F$ with $F \cap U \neq \emptyset, F^{\prime}$ with $F^{\prime} \cap V \neq \emptyset$ such that $w F=F^{\prime}$. The same pair can only occur for finitely many $w \in W$ because of the remark after (o).

It is rather easy to see that III' implies III (a), (b).
4. The dimension of V. We have already pointed out that $\operatorname{card}(\Pi)$ need not be equal to $\operatorname{dim} V$. In this section we show:

Theorem 2. Let A be an $l \times l$ Cartan matrix of row rank $n<l$. Then there exist $V, H,\langle\cdot, \cdot\rangle: V \times H \rightarrow \mathbf{R}$, and Δ satisfying the axioms of Section 2 and determining A with $\operatorname{dim} V=\operatorname{dim} H=n+1$.

In particular since we can construct Cartan matrices of row rank 3 and arbitrarily large l (see Sections $6,8,9$) we can find models of these rank l root systems with 4 -dimensional cones.

Proof. Let A be an $l \times l$ Cartan matrix of row rank $n, n<l$. Let $\langle\cdot, \cdot\rangle: \widetilde{V} \times \tilde{H} \rightarrow \mathbf{R}$ be constructed from A as in Section 1. Thus
$\operatorname{dim} \tilde{V}=\operatorname{dim} \tilde{H}=l+(l-n)$ and

$$
\widetilde{C}=\{x \in \tilde{H} \mid\langle\alpha, x\rangle>0, \alpha \in \Pi\}
$$

determines a Tits cone $\tilde{\Lambda}=\operatorname{int}\left(\cup_{w \in \tilde{W}} w(\overline{\widetilde{C}})\right)$. Let V_{0} be the span of Π in \widetilde{V} and

$$
V_{0}^{\perp}=\left\{h \in \tilde{H} \mid\left\langle V_{0}, h\right\rangle=0\right\} .
$$

Then we have a non-degenerate pairing

$$
\langle\cdot, \cdot\rangle: V_{0} \times \tilde{H} / V_{0}^{\perp} \rightarrow \mathbf{R}
$$

We claim that $\Delta, V_{0}, \tilde{H} / V_{0} \perp$ and the image \wedge_{0} of $\tilde{\wedge}$ in $\tilde{H} / V_{0}^{\perp}$ satisfy the axioms. Indeed this is all trivial with the possible exception of III (b). For that, let us note that \widetilde{W} induces a group W on $\widetilde{H} / V_{0} \perp$. Let $w \in W$ pointwise fix the reflecting hyperplane $H_{\alpha}{ }^{0}$ in $\tilde{H} / V_{0} \perp$ for some $\alpha \in \Delta$. Let $x \in H_{\alpha}{ }^{0} \cap \wedge_{0}$ and let \tilde{x} be a preimage of x in $\tilde{\wedge}$. Then

$$
w x=x \Rightarrow \tilde{w} \tilde{x} \equiv \tilde{x} \bmod V_{0}^{\perp}
$$

where \tilde{w} is some preimage of w in \tilde{W}. Thus for all $\beta \in \Delta,\langle\beta, \tilde{w} \tilde{x}\rangle=$ $\langle\beta, \tilde{x}\rangle$ so that \tilde{x} and $\tilde{w} \tilde{x}$ lie in the same facette of \wedge. By (n) $\tilde{w} \tilde{x}=\tilde{x}$ and $\tilde{w} \in \operatorname{stab}(\tilde{x})$ which is finite. This proves III(b). Clearly

$$
\operatorname{dim} \tilde{H} / V_{0}^{\perp}=2 l-n-((2 l-n)-l)=l
$$

Let $\tilde{U} \subset \tilde{H}$ be the span of the coroots $\alpha^{\vee}, \alpha \in \Delta$ and let U be its image in $\widetilde{H} / V_{0} \perp$ under the quotient map $-: \widetilde{H} \rightarrow \tilde{H} / V_{0} \perp$. Now let $x_{0} \in \wedge_{0}-U$
be chosen so that distinct elements of Δ take distinct values on x_{0}. Let $H=\mathbf{R} x_{0}+U$ and let $V=V_{0} / H^{\perp}$, where $H^{\perp}=\left\{v \in V_{0} \mid\langle v, H\rangle=0\right\}$. We have a non-degenerate pairing $\langle\cdot, \cdot\rangle: V \times H \rightarrow \mathbf{R}$. Since

$$
r_{\alpha} x_{0}=x_{0}-\left\langle\alpha, x_{0}\right\rangle \overline{\alpha^{\vee}} \in H
$$

and U is W-invariant, we see that H is W-invariant.
By the choice of x_{0}, Δ is mapped injectively into V. Set $\wedge=\wedge_{0} \cap H$. Then \wedge is a W-invariant open convex cone and is the union of facettes (of H). In fact, regarding the facettes of H, given any $x, y \in H$ and preimages $\tilde{x}, \tilde{y} \in \tilde{H}, x \sim y$ if and only if $\tilde{x} \sim \tilde{y}$. III (a) and (b) are then clear.

We have $\operatorname{dim} V=\operatorname{dim} H=1+\operatorname{dim} U$. Since $\operatorname{dim} \tilde{U}=l$, and $\operatorname{dim} \tilde{U} \cap V_{0}{ }^{\perp}=l-n$, we find $\operatorname{dim} U=n$. This completes the proof of Theorem 2.
5. Comments. There is a well-known set of axioms for finite root systems (see [1], [8]). These are simply (I) and (II) together with the assumptions that Δ is finite and Δ spans V. Obviously (III) is satisfied with $\wedge=H$.

In the following, notation is as in Theorem 1.
Theorem 3 ([3]). Δ is finite if and only if $\wedge=H$.
Proof. If $\wedge=H$ then $0 \in \wedge$ and $W=\operatorname{stab}_{W}(0)$ is finite, so Δ is finite.
If Δ is finite then by Theorem $1, \Delta$ is the image of a finite root system Δ^{\prime}. If C is a chamber of \wedge, then the opposite involution $w_{0} \in W$ maps C into $-C \subset \wedge$, so $0 \in \wedge$ and $\wedge=H$.

In [4] I. G. Macdonald gave an axiomatic description of affine root systems. These occur as affine linear functionals acting on certain affine spaces. The explanation of this in our model is that \wedge is an open halfspace and Macdonald's affine space is an affine hyperplane in \wedge (parallel to the defining hyperplane of \wedge).

More precisely, we have the following result. (In order to keep matters simple, we have restricted ourselves to indecomposable root systems.)

Theorem 4. Suppose that \wedge is an open half-space and the chambers of \wedge have only finitely many faces and define an indecomposable Cartan matrix. Then Δ and A are Euclidean. Conversely if Δ and A are Euclidean with null root ν then $\wedge=\{x \in H \mid\langle\nu, x\rangle>0\}$, which is an open half-space.

Proof. The converse is proved in [3].
Suppose that \wedge is an open-half space, say $\{x \in H \mid\langle\nu, x\rangle>0\}$ for some $\nu \in V$. Since $r_{\alpha} \wedge=\wedge$ for all α, and r_{α} has only ± 1 as eigenvalues, we see that $r_{\alpha} \nu=\nu$ and in particular $\left\langle\nu, \alpha^{v}\right\rangle=0$. By Theorem 3, Δ is not finite. Suppose that Δ is not Euclidean. By a result of Kac [2, 5,

Lemma 7] there is an "imaginary root" $\phi=\sum_{\alpha \in \mathbb{Z}} m_{\alpha} \alpha^{\vee}, m_{\alpha} \in \mathbf{N}$ such that $\langle\alpha, \phi\rangle<0$ for all $\alpha \in \Pi$. Then $-\phi \in C \subset \wedge$ and $0<\langle\nu,-\phi\rangle=0$, a contradiction. Thus Δ is Euclidean.

As an exercise for the reader we leave:
Theorem 5. (Notation as in Theorem 1). Let $\alpha, \beta \in \Delta$ be linearly independent. Then $(\mathbf{R} \alpha+\mathbf{R} \beta) \cap \Delta$ is a root system of rank 2 .

Corollary. If $\alpha, \beta \in \Delta$ then

$$
\left\langle\alpha, \beta^{\vee}\right\rangle>0 \Leftrightarrow\left\langle\beta, \alpha^{\vee}\right\rangle>0 .
$$

Proof. Rank 2 root systems are symmetrizable [6]. Thus there is a symmetric bilinear form σ for which the sign of $\left\langle\alpha, \beta^{\vee}\right\rangle$ is the same as the sign of $\sigma(\alpha, \beta)$.

6. Cartan matrices of row rank 3.

Definition. Let A_{0} be a Cartan matrix. A Cartan matrix A is called an extension of A_{0} if A is of the form

$$
A=\left(\begin{array}{c|c}
A_{0} & * \\
\hline * & *
\end{array}\right) .
$$

Lemma 1. Let A_{0} be an $n \times n$ regular (i.e. det $A_{0} \neq 0$) Cartan matrix. Let $A=\left(\begin{array}{c}A_{0} \\ Y \\ Y\end{array} A_{1}\right)$ be an $l \times l$ Cartan matrix which is an extension of A_{0}. Then row rank $(A)=n$ if and only if $Y A_{0}{ }^{-1} X=A_{1}$.

Proof. If row rank $(A)=n$, there exists an $n \times(l-n)$ matrix X^{\prime} such that

$$
\binom{A_{0}}{Y} X^{\prime}=\binom{X}{A_{1}}
$$

i.e., $A_{0} X^{\prime}=X, Y X^{\prime}=A_{1}$. Then

$$
X^{\prime}=A_{0}^{-1} X, A_{1}=Y X^{\prime}=Y A_{0}^{-1} X .
$$

The converse follows from

$$
\binom{E_{n}}{Y A_{0}^{-1}} A_{0}\left(E_{n} A_{0}^{-1} X\right)=A
$$

where E_{n} is the $n \times n$ unit matrix.
Let A_{0} be the 3×3 regular Cartan matrix

$$
\begin{aligned}
& A_{0}=\left(\begin{array}{crc}
2 & -2 & 0 \\
-2(k+1) & 2 & 0 \\
0 & 0 & 2
\end{array}\right) \text {, where } k \in \mathbf{N} . \\
& \operatorname{det} A_{0}=-8 k, A_{0}^{-1}=-\frac{1}{2 k}\left(\begin{array}{ccc}
1 & 1 & 0 \\
k+1 & 1 & 0 \\
0 & 0 & -k
\end{array}\right) .
\end{aligned}
$$

Theorem 6. There exist Cartan matrices A which have the following properties:
(i) A is an extension of A_{0},
(ii) row rank $(A)=$ row rank $\left(A_{0}\right)=3$,
(iii) A is a $(k+3) \times(k+3)$ matrix.

Proof. Let $A=\left(\begin{array}{cc}A_{0} & X \\ Y & A_{1}\end{array}\right)$ be a $(k+3) \times(k+3)$ Cartan matrix which is an extension of A_{0}. Let $X=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right),{ }^{t} Y=\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{k}\right)$, where

$$
\begin{aligned}
{ }^{{ }_{\mathbf{x}}^{i}} & =\left(-x_{1 i},-x_{2 i},-x_{3 i}\right) \\
{ }^{t} \mathbf{y}_{j} & =\left(-y_{1 j},-y_{2 j},-y_{3 j}\right) \\
A_{1} & =\left(A_{i j}\right)(1 \leqq i, j \leqq k),
\end{aligned}
$$

$x_{i j}, y_{i j}$ are non-negative integers and A_{1} is a Cartan matrix. From Lemma 1 , row rank $(A)=3$ if and only if
(1) $Y A_{0}{ }^{-1} X=A_{1}$.

Therefore, to construct a Cartan matrix which satisfies (i), (ii) and (iii), we have to find non-negative integers $x_{i j}, y_{i j}$ which satisfy (1) where $A_{1}=\left(A_{i j}\right)$ must be a Cartan matrix.
To simplify the problem, we consider the case where $x_{i j}, y_{i j}$ and $A_{i j}$ are all non-zero and we assume so hereafter.
Let $-\frac{1}{2 k}{ }^{t} \mathbf{y}_{j}{ }^{\prime}$ be the j th row of $Y A_{0}{ }^{-1}$, i.e.,

$$
{ }^{\prime} \mathbf{y}_{j}{ }^{\prime}=\left(-\left\{y_{1 j}+(k+1) y_{2_{j}}\right\},-\left(y_{1 j}+y_{2_{j}}\right), k y_{3_{j}}\right) .
$$

We rewrite (1) as follows:
(1) ${ }_{i j}{ }^{\prime} \mathbf{y}_{j}{ }^{\prime} \cdot \mathbf{x}_{i}=(-2 k) A_{j i},(1 \leqq i, j \leqq k)$.
(1) ${ }_{i i}$ becomes
(2) ${ }_{i i}\left\{y_{1 i}+(k+1) y_{2 i}\right\} x_{1 i}+\left(y_{1 i}+y_{2 i}\right) x_{2 i}-k y_{3 i} x_{3 i}=-4 k$.

As $y_{3 i} x_{3 i} \neq 0$, we have

$$
\begin{aligned}
&(3)_{i} x_{3 i}=\frac{1}{k y_{3 i}}\left[\left\{y_{1 i}+(k+1) y_{2 i}\right\} x_{1 i}+\left(y_{1 i}+y_{2 i}\right) x_{2 i}+4 k\right] \\
&=\frac{1}{k}\left[\left\{\bar{y}_{1 i}+(k+1) \bar{y}_{2 i}\right\} x_{1 i}+\left(\bar{y}_{1 i}+\bar{y}_{2 i}\right) x_{2 i}\right]+\frac{4}{y_{3 i}},
\end{aligned}
$$

where

$$
\bar{y}_{1 i}=y_{1 i} / y_{3 i}, \bar{y}_{2 i}=y_{2 i} / y_{3 i} .
$$

As $A_{j i}<0(j \neq i)$, from $(1)_{i j}$ we have

$$
(2)_{i j}\left\{y_{1 j}+(k+1) y_{2 j}\right\} x_{1 i}+\left(y_{1 j}+y_{2 j}\right) x_{2 i}-k y_{3 j} x_{3 i}>0 .
$$

Considering $k y_{3 j}>0$, we have

$$
(3)_{i j} x_{3 i}<\frac{1}{k}\left[\left\{\bar{y}_{1 j}+(k+1) \bar{y}_{2 j}\right\} x_{1 i}+\left(\bar{y}_{1 j}+\bar{y}_{2 j}\right) x_{2 i}\right] .
$$

From (3) ${ }_{i}$ and (3) ${ }_{i j}$, we have

$$
\begin{aligned}
(4)_{i j} \frac{x_{1 i}}{k}\left\{\left(\bar{y}_{1 j}-\bar{y}_{1 i}\right)+\right. & \left.(k+1)\left(\bar{y}_{2 j}-\bar{y}_{2 i}\right)\right\} \\
& +\frac{x_{2 i}}{k}\left\{\left(\bar{y}_{1 j}-\bar{y}_{1 i}\right)+\left(\bar{y}_{2 j}-\bar{y}_{2 i}\right)\right\}-\frac{4}{y_{3 i}}>0 .
\end{aligned}
$$

Notice that (4) ${ }_{i j}$ is equivalent to $A_{j i}<0$ when $x_{3 i}$ is given by (3) ${ }_{i}$.
Now let
(5) $\bar{y}_{1 i}=\frac{i(i+1)}{2} k, \bar{y}_{2 i}=(k+1-i) k, y_{3 i}=2$ for $1 \leqq i \leqq k$.

Then all $y_{j i}$ are positive integers and the i th row of $Y A_{0}{ }^{-1}$ is in \mathbf{Z}^{3}. Furthermore, from (3) ${ }_{i}$ we have

$$
\begin{aligned}
x_{3 i}=\left\{\frac{i(i+1)}{2}+(k+1)(k\right. & +1-i)\} x_{1 i} \\
& +\left\{\frac{i(i+1)}{2}+(k+1-i)\right\} x_{2 i}+2 .
\end{aligned}
$$

So, to prove the theorem it suffices to show the existence of positive integers $x_{1 i}, x_{2 i}(1 \leqq i \leqq k)$ which satisfy (4) ${ }_{i j}$. For then $Y A_{0}{ }^{-1} X$ defines integral A_{1} with the required signs. Substituting (5) in (4) ${ }_{i j}$, we have

$$
\begin{aligned}
(4)_{i j} \frac{1}{2}(j-i)(j+i-2 k-1) & x_{1 i} \\
& +\frac{1}{2}(j-i)(j+i-1) x_{2 i}-2>0
\end{aligned}
$$

i.e., if $j>i$,

$$
\begin{aligned}
& x_{2 i}>\frac{1}{(j+i-1)}\{ (2 k \\
&\left.+1-j-i) x_{1 i}+\frac{4}{(j-i)}\right\} \\
&=\left(\frac{2 k}{j+i-1}-1\right) x_{1 i}+\frac{4}{(j+i-1)(j-i)}
\end{aligned}
$$

if $j<i$,

$$
x_{2 i}<\left(\frac{2 k}{j+i-1}-1\right) x_{x_{i}}-\frac{4}{(j+i-1)(i-j)} .
$$

Let us observe the coefficients of $x_{1 i}$ and the constant terms:

$$
\text { If } j>j^{\prime},
$$

$$
\frac{2 k}{i^{\prime}+i-1}-1>\frac{2 k}{j+i-1}-1
$$

$$
\begin{aligned}
& \text { If } j>j^{\prime}>i, \\
& \qquad \frac{4}{\left(j^{\prime}+i-1\right)\left(j^{\prime}-i\right)}>\frac{4}{(j+i-1)(j-i)}
\end{aligned}
$$

If $i>j>j^{\prime}$,

$$
\frac{4}{(j+i-1)(i-j)}>\frac{4}{\left(j^{\prime}+i-1\right)\left(i-j^{\prime}\right)}
$$

Thus the validity of the inequalities $(4)_{i j}$ follows from (4) $)_{i, i-1}$ and $(4)_{i, i+1}$ with the special cases $(4)_{12}$ and $(4)_{k, k-1}$.

For $i=1,(4)_{12}$ becomes $x_{21}>(k-1) x_{11}+2$. So take $x_{11}=1$, $x_{21}=k+2$. For $i=k,(4)_{k, k-1}$ becomes $(k-1) x_{2 k}+2<x_{1 k}$. So take $x_{2 k}=1, x_{1 k}=k+2$.

For $i \neq 1, k$, from (4) $)_{i-1}$ and $(4)_{i i+1}$, we have

$$
(6)_{i}\left(\frac{k}{i-1}-1\right) x_{1 i}-\frac{2}{i-1}>x_{2 i}>\left(\frac{k}{i}-1\right) x_{1 i}+\frac{2}{i} .
$$

Comparing both sides of $(6)_{i}$, it is necessary that

$$
x_{1 i}>2(2 i-1) / k .
$$

The length of the interval

$$
\left[\left(\frac{k}{i}-1\right) x_{1 i}+\frac{2}{i},\left(\frac{k}{i-1}-1\right) x_{1 i}-\frac{2}{i-1}\right]
$$

is equal to

$$
\frac{k}{i(i-1)} x_{1 i}-\frac{2(2 i-1)}{i(i-1)}
$$

which increases as $x_{1 i}$ increases. And the left side $(k / i-1) x_{1 i}+2 / i$ of the interval is positive for $x_{1 i}>0$. So there exist positive integers $x_{1 i}$ and $x_{2 i}$ which satisfy $(6)_{i}$. This concludes the proof of the theorem.
7. The minimal row rank of Cartan matrices. If A is an $l \times l$ Cartan matrix of row rank 1 or row rank 2 , we will see that, by simultaneously permuting the rows and the columns (if necessary), A becomes an extension of a regular Cartan matrix A_{0} of same row rank as A, and that $1 \leqq l \leqq 2$ or $2 \leqq l \leqq 4$ respectively.

We begin with the following result.
Lemma 2. If $X=\left(x_{i j}\right), \quad Y=\left(y_{i j}\right)$ are non-negative (i.e., $x_{i j} \geqq 0$, $y_{i j} \geqq 0$) $n \times n$ matrices such that $A=Y X$ is a Cartan matrix, then $A=2 E_{n}$ and there exists $\sigma \in \mathscr{S}_{n}$ such that $y_{i j}=0$ if $i \neq \sigma(j), x_{i j}=0$. if $j \neq \sigma(i)$.

Proof. From $A=Y X$, if $j \neq i, \sum_{k} y_{i k} x_{k j} \leqq 0$. On the other hand
$\sum_{k} y_{i k} x_{k j} \geqq 0$. So $\sum_{k} y_{i k} x_{k j}=0$, i.e., $A=2 E_{n}$. In particular X and Y are regular matrices. Suppose $y_{1 i_{1}} \neq 0$. From $\sum_{k} y_{1 k} x_{k j}=0 \quad(j \neq 1)$, $x_{i_{1} j}=0$ for all $j \neq 1$. As X is regular, $x_{i_{1} l} \neq 0$ and there exists only one i_{1} such that $y_{1 i_{1}} \neq 0$. We can repeat this argument.

Theorem 7. Let A_{c} be an $n \times n$ regular Cartan matrix $\neq 2 E_{n}$. Assume that the coefficients of $A_{0}{ }^{-1}$ are all non-negative. If an $l \times l$ Cartan matrix A is an extension of A_{0} such that row rank $(A)=$ row rank $\left(A_{0}\right)$, then $l \leqq 2 n-1$.

Proof. We prove the following; if there exists a $2 n \times 2 n$ Cartan matrix A of row rank n which is an extension of an $n \times n$ regular Cartan matrix A_{0}, then $A_{0}=2 E_{n}$.

Let

$$
A=\left(\begin{array}{cc}
A_{0} & X \\
Y & A_{1}
\end{array}\right) .
$$

From Lemma 1, $Y A_{0}{ }^{-1} X=A_{1}$. Applying Lemma 2 to $-Y A_{0}{ }^{-1},-X$, we have $A_{1}=2 E_{n}$. Then $A_{0}^{-1}=2 Y^{-1} X^{-1}, A_{0}=2^{-1} X Y$. As each component of $2^{-1} X Y$ is non-negative, $A_{0}=2 E_{n} . X, Y$ are of the form described in Lemma 2.

We recall that the condition on A_{0} in Theorem 7 always holds if A_{0} is of classical type $\neq 2 E_{n}$.

For $A_{0}=2 E_{n}$, there exist $2 n \times 2 n$ Cartan matrices A_{σ} of row rank n which are extensions of $A_{0} \cdot A_{\sigma}$ is given as follows.

$$
A_{\sigma}=\left(\begin{array}{cc}
2 E_{n} & X \\
Y & 2 E_{n}
\end{array}\right)
$$

where $X=\left(x_{i j}\right), Y=\left(y_{i j}\right)$ and $\sigma \in \mathscr{S}_{n}$ such that $x_{i j}=0$ for $j \neq \sigma(i)$, $x_{i \sigma(i)}=-a_{i}, y_{i j}=0$ for $i \neq \sigma(j)$ and $y_{\sigma(i) i}=-4 / a_{i}\left(a_{i}, 4 / a_{i} \in \mathbf{N}\right)$. There exists no $(2 n+1) \times(2 n+1)$ Cartan matrix which is of row rank n and an extension of A_{σ}.

Now, if A is an $l \times l$ Cartan matrix of row rank $1, A$ is an extension of $A_{0}=(2)$, and $l=1$ or 2 . Let us consider the Cartan matrices of row rank 2 . We remark that a 3×3 Cartan matrix all of whose principal 2×2 submatrices are of row rank 1 is regular. So we can restrict ourselves to those $l \times l$ Cartan matrices of row rank 2 which are extensions of 2×2 regular Cartan matrices A_{0}. If det $A_{0}<0$, all the components of $A_{0}{ }^{-1}$ are negative, so there exists no such extension by Lemma 1. If $\operatorname{det} A_{0}>0$ and $A_{0} \neq 2 E_{2}$, then by Lemma $2, l \leqq 3$. Therefore we have $2 \leqq l \leqq 4$.
8. Examples. Here are two examples of Cartan matrices of row rank 3 which were constructed by the method of Section 6.
$\left[\begin{array}{rrr|rrrr}2 & -2 & 0 & -1 & -3 & -5 & -6 \\ -10 & 2 & 0 & -6 & -5 & -3 & -1 \\ 0 & 0 & 2 & -53 & -86 & -106 & -103 \\ \hline-8 & -32 & -2 & 2 & -2 & -14 & -28 \\ -24 & -24 & -2 & -1 & 2 & -2 & -11 \\ -48 & -16 & -2 & -11 & -2 & 2 & -1 \\ -80 & -8 & -2 & -28 & -14 & -2 & 2\end{array}\right] \quad(k=4)$
$\left[\begin{array}{rrr|rrrrr}2 & -2 & 0 & -1 & -2 & -3 & -5 & -7 \\ -12 & 2 & 0 & -7 & -5 & -3 & -2 & -1 \\ 0 & 0 & 2 & -75 & -91 & -101 & -136 & -165 \\ \hline-10 & -50 & -2 & 2 & -1 & -10 & -31 & -58 \\ -30 & -40 & -2 & -1 & 2 & -1 & -13 & -31 \\ -60 & -30 & -2 & -12 & -2 & 2 & -2 & -12 \\ -100 & -20 & -2 & -31 & -13 & -1 & 2 & -1 \\ -150 & -10 & -2 & -58 & -31 & -10 & -1 & 2\end{array}\right](k=5)$
9. Maxwell's examples. Let $A=\left(A_{i j}\right)$ be a symmetric $l \times l$ generalized Cartan matrix with the property that (1) removal of any two rows and corresponding columns leaves a generalized Cartan matrix each of whose connected components is finite or Euclidean, and (2) "two" cannot be replaced by "one" in (1). Maxwell [5] proves that such a matrix is hyperbolic in the sense that the quadratic form defined by A is of signature $(l-1,1)$. Let $V=V_{0}$ be as in Section 1 and let (\cdot, \cdot) : $V \times V \rightarrow \mathbf{R}$ be defined by $\left(\alpha_{i}, \alpha_{j}\right)=A_{i j}$. Let $\omega_{1}, \ldots, \omega_{l}$ be the dual basis to $\alpha_{1}, \ldots, \alpha_{l}$, so that $\left(\omega_{i}, \alpha_{j}\right)=\delta_{i j}$. Maxwell shows [$\mathbf{5}$, Theorem 1.6] that for all $i, j \in\{1, \ldots, l\}$ and for all $w, w^{\prime} \in W,\left(w \omega_{i}, w^{\prime} \omega_{j}\right) \leqq 0$ unless $w \omega_{i}=w^{\prime} \omega_{j}$.

Consider now the special case:

$$
A=\left(\begin{array}{rrrr}
2 & -2 & -2 & -2 \\
-2 & 2 & -2 & -2 \\
-2 & -2 & 2 & -2 \\
-2 & -2 & -2 & 2
\end{array}\right) .
$$

The matrix $\left(\omega_{i}, \omega_{j}\right)$ is given by A^{-1} which in this case is $2^{-4}(A)$. The lattice $L:=4 \sum \mathrm{Z} \omega_{i}$ is W-stable and (\cdot, \cdot) is integral and in fact even valued on L. Now suppose that x_{1}, x_{2}, \ldots are distinct elements of the set $W\left(4 \omega_{1}\right)$. Then

$$
\begin{aligned}
& \left(x_{i}, x_{i}\right)=16\left(\omega_{1}, \omega_{1}\right)=2 \text { for all } i \text { and } \\
& \left(x_{i}, x_{j}\right) \in \mathbf{Z}_{\leqq 0} \text { if } i \neq j .
\end{aligned}
$$

Thus the matrix $B=\left(\left(x_{i}, x_{j}\right)\right)$ is a symmetric Cartan matrix. It is easy to see that the proof of Theorem 1.6 [5] actually gives $\left(x_{i}, x_{j}\right)<0$
for all $i \neq j$. Since x_{1}, x_{2}, \ldots lie in V the row rank of B is at most 4. In fact if we use the sequence

$$
\begin{aligned}
& \left\{4 \omega_{1}, 4 r_{1} \omega_{1}, 4 r_{2} r_{1} \omega_{1}, 4 r_{1} r_{2} r_{1} \omega_{1}, 4 r_{2} r_{1} r_{2} r_{1} \omega_{1}, \ldots\right\}=\left\{4 \omega_{1}, 4\left(\omega_{1}-\alpha_{1}\right),\right. \\
& \left.4\left(\omega_{1}-\alpha_{1}-2 \alpha_{2}\right), 4\left(\omega_{1}-4 \alpha_{1}-2 \alpha_{2}\right), 4\left(\omega_{1}-4 \alpha_{1}-6 \alpha_{2}\right), \ldots\right\}
\end{aligned}
$$

the vectors all lie in $R \omega_{1}+R \alpha_{1}+R \alpha_{2}$ and the row rank is 3 .
Here is the beginning of the corresponding matrix:

$$
\left[\begin{array}{rrrrrrrr}
2 & -14 & -14 & -62 & -62 & . & . & . \\
-14 & 2 & -62 & -14 & -142 & . & . & . \\
-14 & -62 & 2 & -142 & -14 & . & . & . \\
-62 & -14 & -142 & 2 & -254 & . & . & . \\
-62 & -142 & -14 & -254 & 2 & . & . & . \\
. & . & . & . & . & & & \\
. & . & . & . & . & & & \\
. & . & . & . & . & & &
\end{array}\right]
$$

References

1. N. Bourbaki, Groupes et algèbres de Lie (Hermann, Paris, 1968).
2. V. Kac, Nekolorye Svō̆stva Kontragredentnŏ̆ algebry Lie, Moskov, Inst. Èlektron, Mašinostroenija Trudy MIÈM 5 (1969), 48-59.
3. E. Looijenga, Invariant theory for generalized root systems, Inventiones Math. 61 (1980), 1-32.
4. I. G. Macdonald, Affine root systems and Dedekind's η-function, Invent. Math. 15 (1972), 91-143.
5. G. Maxwell, Sphere packings and hyperbolic reflection groups, (to appear).
6. R. V. Moody, Root systems of hyperbolic type, J. Alg. 33 (1979), 144-160.
7. R. V. Moody and K. L. Teo, Tits' systems with crystallographic Weyl groups, J. Algebra 21 (1972), 178-190.
8. J. P. Serre, Algèbres de Lie semi-simples complexes (Benjamin, New York, 1966).

University of Saskatchewan, Saskatoon, Saskatchewan;
Sophia University, Tokyo, Japan

[^0]: Received August 30, 1980 and in revised form March 26, 1981. The work of the first author was supported by an NSERC operating grant for which he is grateful. The second author is grateful to the Department of Mathematics of University of Saskatchewan for the hospitality shown during his stay in 1979-80, while this work was done.

