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CONFLUENT AND RELATED MAPPINGS DEFINED BY 
MEANS OF QUASI-COMPONENTS 

JOACHIM GRISPOLAKIS 

1. Introduction. In 1964, J . J . Charatonik in [1] introduced a new class of 
mappings, the so-called confluent mappings, which comprises the classes of 
open, monotone and quasi-interior mappings (see [20]). In 1966, A. Lelek 
started working on confluent mappings with applications to continua theory 
(see [7]). He introduced two other classes of mappings, the so-called weakly 
confluent and pseudo confluent mappings, he proved the invariance of rational 
continua under open, monotone and quasi-interior mappings and he asked 
about their invariance under confluent mappings. In 1976, E. IX Tymchatyn 
gave an example of a confluent mapping, which does not preserve the rationality 
of a curve (see [18]). 

In this paper, we introduce some new classes of mappings defined by means 
of quasi-components, which comprise the classes of open, monotone and quasi-
interior mappings but which are contained in the classes of confluent, weakly 
confluent and pseudo confluent mappings. We also give some characterizations 
of these mappings and some examples. Theorems 3.8 and 3.9 generalize some 
earlier results in [10], and Theorems 3.17 and 3.18 are analogous to Theorem 2 
in [16]. Composition, product and union properties are proved also. Theorem 
6.1 proves a union theorem for finite decompositions of the image space, while 
Example 6.4 resolves in the negative a question asked by A. Lelek about union 
theorems for /^-confluent and 77-confluent mappings for infinite decompositions 
of the image space. Theorem 8.1 generalizes earlier results about invariance of 
rational continua by proving that rational continua are preserved by jFf-pseudo 
confluent mappings. We also prove some invariance theorems of hereditarily 
(7-connected and hereditarily weakly d-connected spaces, and Theorem 10.6 
generalizes Theorem 4.6 of [11]. 

Finally, the author expresses his deep appreciation and his gratitude to 
Professor A. Lelek, who contributed to these investigations his kind advice 
and valuable improvements. 

2. Definitions. By a mapping we always mean a continuous surjective 
function and by a perfect mapping we mean a mapping which is closed and has 
compact preimages of points. Let X be a topological space, A be a subset of X 
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and x be a point of A. The quasi-component of x in A, denoted by Q(A, x) is the 
intersection of all closed-open subsets of A containing x. 

Let / : X —» F be a perfect mapping of a topological space X onto a topologi­
cal space Y. The mapping / is said to be H-confluent, H-weakly confluent, or 
H-pseudo confluent provided, for each non-empty subset Z of Y, the following 
conditions are satisfied, respectively: 

(H-c) For each point z £ Z and each point x £ f~l(z), we have 

KQ(f-HZ),x)) = Q(Z,z). 

(H-w.c.) For each point z £ Z, there exists a point x £ f~l(z) such that 

/«2( / -m*)) = Q(2,Z). 

(H-p.c.) For each point s £ Z, we have 

U f{Q(r\Z),x)) = Q(Z,z). 
xtf-Hz) 

Clearly, (H-c.) implies (H-w.c), which implies (H-p.c.). The mapping / i s said 
to be h-confluent, h-weakly confluent, or h-pseudo confluent provided, for each 
connected non-empty subset K of F, the following conditions are satisfied, 
respectively: 

(h-c.) For each quasi-component Q of f~l(K), we have/(Ç) = K. 
(h-w.c.) There exists a quasi-component Q of j~l(K) such that f(Q) = K. 
(h-p.c.) For each pair of points y, y' G K there exists a quasi-component Q 

oit^K) such that y, y' £ f(Q). 

Clearly, (h-c.) implies (h-w.c), which implies (h-p.c). 
We also mention four more classes of mappings that have been introduced 

by various authors since 1964: 
The perfect mapping/ is said to be confluent, weakly confluent, pscudo con­

fluent provided, for each connected, closed non-empty subset K of Y, the 
following conditions are satisfied, respectively: 

(c) For each quasi-component Q of / - 1 ( i£ ) , we have/(Ç) = K. 
(w.c) There exists a quasi-component Q of / - 1 ( i£) such that f(Q) = K. 
(p.c) For each pair of points y, y' G K, there exists a quasi-component Q of 

f~HK) such that y, y' G /((?). 

The mapping / is said to be strongly confluent provided for each connected 
non-empty subset K of Y, and for each component C of / _ 1 ( i^ ) , we have/(C) 
= K. 

Clearly, (c.) implies (w.c), which implies (p.c), and strongly confluent 
mappings satisfy condition (h-c). 

3. Preliminaries. The classes of open, monotone and quasi-interior map­
pings have been already established (see [19] and [20]). We say that a mapping 
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/ o f a topological space X onto a topological space F i s quasi-interior provided, 

/ is perfect and for each point y G F, each component C of / - 1 (y) and each open 

neighborhood U of C, we have y £ I n t / ( £ / ) • 

PROPOSITION 3.1. L e / / : X —> Ffre a quasi-interior mapping from a hereditarily 
normal space onto a topological space Y. Then f is H-confluent. 

Proof. Let Z be a subset of F and z £ Z. T o show t h a t for each x £ / - 1 ( 2 )> 
f(Q(f~1(Z)J x)) = Q(Z, z). On the contrary, suppose t h a t there is some x0 £ 
f-Hz) such t h a t / C Q C f - m *„)) ^ Q(Z, z). Let y, G Q(Z,z)\f(Q(f-l(Z),xQ)). 
Then /"H^o) H Ço = 0, where Qo = Q(f~l(Z), #o). Therefore, for each x Ç 
/ "K^o) , there exists a closed-open subset Ax o f / _ 1 ( Z ) such t ha t Qo C Ax (Z 
f-l{Z)\{x). Then / ^ ( Z A ^ is open in f~l{Z) and x £ f~l(Z)\Ax. Then 
{/~1(Z)\yl,r}af/-i(?/o) is an open cover of the compact s e t / - 1 ( j o ) , so there exist 
points Xi, . . . , xn Ç /(^o) such t ha t 

r\yo) c u (r\z)\Axi). 
i=i 

P u t ^ = C\7LiAxi. Then Qo C 4̂ a n d / - 1 ^ ) C Z ^ A ^ . 
Since A is closed-open in / _ 1 ( Z ) , there exists an open set U C X such tha t 

^ C U, and 

(l) /-HZ) n (C7\c/) = 0 = z / n (/-U^V) 

(see [5, page 145]). So we have U r\f~l(y,) = 0. Then y0 £ Z\f(U). But 
<2o C 4̂ C £/ and the non-empty set /(Ço) is contained in Z H f(U). Since Z 
is connected between z and 3/0, / ( f / ) is not closed-open in Z, so there exists a 
point 60 £ JW) H F \ / ( C / ) ^ z - B y (1) a n d the fact t ha t 7(U)\f(U) C 
/ ( J 7 \ C 7 ) , w e g e t 

zn(JïU)\f(U))czr^f(V\u) = /(/-uz)n (£7\£/)) = 0, 
so t ha t fro € f(U). Let a0 £ f /such t h a t / ( a 0 ) = b0. Then a0 G 4 by (1). Let C 
be the component of aQ in / _ 1 (^o ) . T h e set yl being closed-open in / _ 1 ( Z ) , we 
conclude tha t C d A, and C C_ U. S i n c e / i s quasi-interior, fr0 6 I n t / ( f / ) con­
t ra ry to the fact t ha t b0 £ Y\f(U). This completes the proof of 3.1. 

Remark 3.2. I t is easy to see t ha t open mappings on topological spaces are 
quasi-interior. Also, monotone mappings on compact metric spaces are quasi-
interior (see [19]). 

T h e following diagram gives the relation between all the above-mentioned 
classes of mappings. By dashed arrows we denote those implications which are 
t rue under certain restrictions. In this diagram by (M-c ) , ( h - c ) , ( c ) , etc. we 
denote the classes of perfect mappings which satisfy these conditions respec­
tively. The implication (1) is t rue, provided t ha t X and F a r e compact metric 
spaces, and the implication (3) is t rue provided t ha t X is hereditari ly normal . 
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Also, implications (2) and (5) are true provided that the mappings are perfect. 
It has been also proved that the implication (3) is invertible provided that X is 
a compact metric space and F is a continuum (see [13]), that (5) is invertible 
provided that F is a hereditarily locally connected continuum (see [3]), and 
that (6), (7), (11), (12), (16) and (17) are invertible provided that F is a 
locally connected complete metric space and X is a hereditarily normal space 
(see [11, Propositions 3.1, 3.3 and 3.4]). 

(open) (monotone) 

( 2 ) N \ / / ( I ) 

(quasi-interior) - : 

(4) \ (strongly confluent) 

(3) 
r> (H.c 

(8) 

11 
U 
11 (5) 

(6) \v (7) 
= > ( h £ ) >(c.) 

(9) 

(H-w.c 

(13) 

(11) V 

(10) 

^(l l -W.C. 
(12) 

(H-pTc.) 

(14) 

ty (16) 4J- (17) 

_^(w.c.) 

(15) 

»(P-c =>(h-p.c.) 

DIAGRAM 1. 

The following examples show that the implications of Diagram 1 are not 
invertible unless otherwise indicated in Remark 3.2. 

Example 3.3. There exists a confluent mapping / : X —» F of an arc-like 
continuum X onto an arc-like continuum F, which is not /^-confluent. 

Proof. Let 

X = {(*,!) : M è 1} u | ( s i n ^ - Y f y ) : l < y g 2 | u { ( l , y ) : b l Û 1} 

U ) I x, sin : 1 < x S 2Ï , 
x — ly 

and let R be an equivalence relation in X, given by 

R= {((*,1), ( 1 ,0 ) : \t\ ^ 1 } U { ( ( 1 , / ) , ( U ) ) : | * | ^ 1} 
U{(p,p):p e X). 

Then the natural projection / of X onto F = X/R is a confluent mapping 
which is not /^-confluent (see [11, Example 3.7]). 

Example 3.4. There exists a strongly confluent mapping, hence also /z-con-
fluent, from a continuum onto a continuum, which is not iJ-pseudo confluent. 
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Proof. L e t Z = {(0,y): \y\ ^ 1} U {(x, sin TT/X) : 0 < x ^ 1}, and let R be an 
equivalence relation in X, given by i? = {((0, y), (0, —y)): \y\ ^ 1} U {(p,p): 
p £ X}. Then the natural projection f ol X onto F = X/i? is strongly con­
fluent but not iJ-pseudo confluent. To show t h a t / is not //-pseudo confluent, 
let 

A = {(x, sin7r/2): 0 < x ^ 1} H {(x, y): 1/2 ^ y ^ 1} and 

B = {(x, sin7r/2): 0 < x ^ 1} P\ {(x, y): - 1/2 ^ y ^ 0}. 

Put Z = / ( i U V) U {/(0, l ) , / ( 0 , 1/2), /(O, 0)}. Then Z is a subset of Y 
and Q(Z,f(0, 1)) = {/(0, l ) , / ( 0 , 1/2), / (0 , 0)}. Cons ide r / " 1 ^ ) . Then it is 
easy to check that Q(f~l(Z), (0,1)) = {(0, 1), (0, 1/2)} = Q{f~l{Z)} (0, 1/2)), 
Q ( / - m (0, 0)) = {(0, 0), (0, - 1 / 2 ) } = Q(f-i(Z), (0, - 1 / 2 ) ) and finally, 
Q{f~l{Z), (0, —1)) = {(0, —1)}. Consequently, there is no quasi-component 
of f~l(Z) whose image contains both points/(0, 0) and / (0 , 1). T h u s / is not 
//-pseudo confluent. 

Example 3.5. There exists an iï-weakly confluent mapping, hence also h-
weakly confluent and weakly confluent, of a continuum X onto [0, 1], which is 
not confluent. 

Proof. Let X = {(x, 0) : 0 ^ x ^ 1} KJ {(x, y): x = y and 0 ^ x ^ 1/2}, 
and le t / ( (x , y)) = x, for (x, y) G X. 

Example 3.6. There exists an i^-pseudo confluent mapping from an arc-like 
continuum X onto a continuum Y, which is not weakly confluent. 

Proof. L e t X = {(0, y): 0 g y S 2}, and let T = A0 \J Ax \J A2 be a triod, 
where A t is an arc with end-points ai} b(i = 0, 1, 2) such that b is the only 
common point of any two of the arcs Ao, A\ and A2. L e t / be a mapping such 
tha t / (0) = a0 a n d / m a p s the intervals {(0, y): 0 ^ y ^ 1/3}, {(0, y): 1/3 ^ 
3; ^ 2/3} and {(0,y): 2/3 ^ y ^ 1} homeomorphically onto the arcs A0 \J A\, 
A\ VJ A 2 and ^42 U A0, respectively. Then / i s i7-pseudo confluent since condi­
tion (iii) of Proposition 3.13 is satisfied but is not weakly confluent (see [11, 
Example 3.6]). 

Remarks 3.7. (i) It is trivial to check that the implication (4) in Diagram 1 
is true but is not invertible. 

(ii) Example 3.3 is an example of a weakly confluent mapping, hence also 
pseudo confluent, which is not /^-pseudo confluent (see [11, Example 3.7]). 
Finally, Example 3.6 is a pseudo confluent but not weakly confluent mapping. 

(iii) The example of the open mapping in [3] serves as an example of an 
/^-confluent mapping, which is not strongly confluent. 

The following twro theorems are generalizations of Theorems 1.2 and 2.2 
of [10]. 

THEOREM 3.8. Let X and Y be metric spaces and f: X —> Y a mapping from 
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X onto Y. Then f is open if and only if 

Km yn = y implies that Ls f~ (yn) = f~ (y). 

Remark. The proof of Theorem 3.8, being an exact copy of the proof of 
Theorem 1.2 (ibidem), is omitted. 

THEOREM 3.9. Let X and Y be metric spaces and f: X —» Y a perfect mapping 
from X onto Y. Then f is a quasi-interior if and only if limn_^œ yn = y implies 
that Ls^oo f~l (yn) meets each component of f~l(y). 

Proof. L e t / be quasi-interior at y0 and C be a component of f~l(yo). Then if 
U is an open neighborhood of C in X, I n t / ( U) is open neighborhood of yQ in D, 
sof(U) contains some points ynl, yn2, . . . such that l i m ^ , yni = y0. Therefore, 
U\Jtl(ym) 9*0, (i= 1,2, .. .). Hence, Lsn_>œ f (yn) H C * 0, since C is 
compact. 

Conversely, let the condition be satisfied and let U be an open neighborhood 
of a component C of/_1(;yo). If yo d Int /(£/)> then there exist points yn £ 
Y\f(U) (n = 1, 2, . . .) such that l i m ^ yn = y0. Hence, tl(yn) C X\U 
(n = 1, 2, . . .) and since X\£7 is closed in X we have that Lsn_^œ f~l(yn) ^ 
U = 0, contradicting the fact that Lsn̂ CT / -1(:>0 has to meet C Q U. Therefore, 
yelntf(U). 

Let A be any one of the classes of i7-confluent, H-weakly confluent, H-
pseudo confluent, /^-confluent, /^-weakly confluent and /^-pseudo confluent map­
pings. Then the following is true: 

PROPOSITION 3.10. Iff: X —> Y is a mapping belonging to the class A and B 
is any subset of Y, then the restriction of f on f~l(B) onto B belongs to the class A. 

The following three propositions can be obtained by using 1.3, 2.1, 2.2 and 
2.3 in [11]. 

PROPOSITION 3.11. Let f: X —> Y be a perfect mapping from a hereditarily 
normal space X onto a topological space Y. Then the following are equivalent: 

(i) f is H-confluent; 
(ii) for each open set Z C Y, each point y Ç Z and each x £ f~l(y), we have 

f(Q(f-i(Z),x)) = Q(Z,y); 
(iii) for each closed set C C X and each y 6 Y\f(C), we have Q(Y\f(C), y) 

Qf(Q(X\C,x)), (xef~i(y)). 

PROPOSITION 3.12. Let f:X—> Y be a perfect mapping from a hereditarily 
normal space X onto a topological space Y. Then the following are equivalent: 

(i) / is H-weakly confluent; 
(ii) for each open set Z C Y and each point y £ Z, there exists a point x £ 

tl(y) such thcdf(Q(f->(Z), x)) = Q(Z, y); 
(iii) for each closed set C C X and each y Ç Y\f(C), there exists a point 

x € tl(y) such that Q(Y\f(C), y) Qf(Q(X\C,x)). 
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Consider the following condition: L e t / : X —> F be a mapping from a topo­
logical space X onto a topological space Y. We say t h a t / satisfies condition (S), 
provided t ha t for any pair of points y, z G Y and any closed subset C of X, 
which s e p a r a t e s / - 1 (;y) a n d / - 1 ( s ) in X, we have t h a t / ( C ) separates Y between 
y and z. 

PROPOSITION 3.13. Let f: X —» F ^ a perfect mapping from a hereditarily 
normal space X onto a topological space Y. Then the following are equivalent: 

(i) fis H-pseudo confluent; 
(ii) for each open set Z C Y and each point y G Z, we have 

Q(Z,y)= U f(Q(r\Z),x)); 

(iii) f satisfies condition (S); 
(iv) for each closed set C C X and each y G Y\f(C), we have 

Q(Y\f(C),y)Q U f(Q(X\C,x)). 
xef~Hy) 

PROPOSITION 3.14. Let f: X —> Y be a perfect mapping from a hereditarily 

normal space X onto a topological space Y. Then the following are equivalent: 
(i) fis h-confluent; 

(ii) for each connected subset B of Y such that B = L C\ K where L is open and 
K is closed in Y, and for each quasi-component Q of f~l(B), we have f(Q) = B. 

Proof. (We wish to thank the referee for the simplification of the proof of 
Proposition 3.14). (i) implies (ii): Obvious. 

(ii) implies (i): Let B C Y be a connected set such tha t for some y G B 
and some x G f~l{B), f~l(B) is not connected between x and f~l(y). Then 
/ - * ( £ ) = M \J*N such t ha t x G MJ~l(y) C N and M C\ N = 0 = M P\ N. 
But then there exists an open subset G of X such tha t M C G, G C\ N = 0; 
hence (G\G) r\f~l(B) = 0 or f(G\G) C\ B = 0 (see [4, page 130]). Let V = 
Y\f(G\G). This is an open subset of Y such t ha t B C V. Since B is connected 
there exists a component Co of V such t ha t B C Co. Since C0 is closed in V, 
there exists a closed subset K of Y such tha t Co = V Pi i£. So C() meets the 
requirements of (ii). We also have (G\G) H / " 1 (C„) = 0 , so / - 1 ( C « , ) C 
X\(G\G). Let Ç be the quasi-component of / _ 1 ( C 0 ) containing x. Then 
Q C C U ( Z \ G ) and since x G . 1 / C C it follows tha t QCG,soQr\ f~l(y) = 
0, contradict ing the fact t ha t y G C0 = / ( (? ) . 

PROPOSITION 3.15. L<?/ / : X —> Y be a perfect mapping from a hereditarily 
normal space X onto a topological space Y. Then the following are equivalent: 

(i) fis h-weakly confluent; 
(ii) for each connected subset B of Y such that B = L P\ K, where L is open 

and K is closed in Y, ihere exists a quasi-component Q of f~l{B) such that f(Q) 
= B. 
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PROPOSITION 3.16. Let f: X —> Y be a perfect mapping from a hereditarily 

normal space X onto a topological space Y. Then the following are equivalent: 

(i) fis h-pseudo confluent; 
(ii) for each connected subset B of Y such that B = LC\ K, where L is open 

and K is closed in Y, and for any pair of points y, z £ B, there exists a quasi-
component Q off~1(B) such that y, z £ /((?)• 

The proofs of Propositions 3.15 and 3.16 are similar to the proof of 3.14 and 
as such they are omitted. 

D. Read (see [16, Theorem 2],) proved tha t Y is an hereditarily indecom­
posable cont inuum if and only if each continuous mapping of any cont inuum 
onto F i s confluent. The following propositions are analogous to Read 's theorem. 

PROPOSITION 3.17. Let Y be a 7 \ space. Then the following are equivalent: 
(i) Y is hereditarily disconnected, i.e., each component of Y is degenerate; 

(ii) for each topological space X and each perfect mapping f from X onto Y, 
fis strongly confluent; 

(iii) for each topological space X and each perfect mapping f from X onto Y, 
fis h-confluent. 

Proof, (i) implies (ii) and (ii) implies (iii): Obvious. 
(iii) implies (i): Suppose tha t F i s not hereditarily disconnected. Then there 

exists a non-degenerate connected subset Lof F. Let q £ L.YwtX = YU {p}, 
(p (I: F ) endowed with the sum topology. Define a mapping / : X —» F by 

f(x) = x, if x G F and/(£>) = q. Then / is a perfect mapping a n d / _ 1 ( L ) has 
{p} as its quasi-component which is not mapped onto L, which contradicts (iii). 

PROPOSITION 3.18. Let Y be a Ti-space. Then the following are equivalent: 
(i) F is totally disconnected, i.e., each quasi-component of Y is degenerate; 

(ii) for each topological space X and each perfect mapping f from X onto Y, 
f is H-confluent. 

Proof, (i) implies (ii): Obvious. 
(ii) implies (i): Suppose F is not totally disconnected. Then Y has a non-

degenerate quasi-component Q. Let q G Q. Pu t X = F U {p} (p (7 F ) , en­
dowed with the sum topology. Define a mapping / : X —» F by f(x) = x, 
if x G Y and f(p) = q. T h e n / is a perfect mapping and [p\ is a quasi-component 
of X not mapped onto Q, which contradicts (ii). 

4. C o m p o s i t i o n propert ies . We say tha t a class A of mappings has the 
composition property, provided tha t for any two mappings / : X —> F and 
g: Y' —> Z belonging to A, their composition gf; X —» Z belongs to A. We also 
say tha t a class A of mappings has the composition factor property, provided 
tha t for any two mapp ings / : X —» F and g: Y —> Z such tha t gf:X —> Z belongs 
to A, g belongs to A. 
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PROPOSITION 4.1. The classes of H-confluent, H-weakly confluent and H-pseudo 
confluent mappings have the composition property. 

Proof. We only prove it for the class of H-confluent mappings. The proofs 
for the other two classes being similar are omitted. 

Le t / : X —» Y and g: Y —> Z be two H -confluent mappings and let A be a 
a subset of Z, z G A and x G f~lg~l(z)- Then since/ is Jï-confluent and f(x) G 
g"1 (s) C g~1(A)1 we have that 

(i) /(Qtf-1*-1^),*)) = Gte-1 G*),/(*))• 
But g being iï-confluent we have 

(2) g(Q(g-l(A)J(x))) = Q(A,z). 

From (1) and (2) we take gf(Q(tlg~l{A), %)) = Q(A,z). Finally, gf is perfect 
and onto, since/ and g are perfect and onto. Hence, gf is if-confluent. 

PROPOSITION 4.2. The classes of H-confluent, H-weakly confluent and H-pseudo 
confluent mappings have the composition factor property. 

Proof. We prove it for the class of H -confluent mappings, the proofs for the 
other two classes being similar. 

Let / : X —* Y and g: Y —•» Z be two mappings such that gf is i7-confluent. 
It is easily seen that g is perfect. Let A be a subset of Z, z G A and y G g~l(z). 
Then if x G /-1(30> since g/is ff-confluent, we obtain that 

(1) « / ( Q t f - ' g - 1 ^ ) , * ) ) = <204,s). 

Since/(<2(/_1g_1C<4), *)) C C G r 1 ^ ) . }0 for any mapping/, (1) gives us 

(2) Q(A,z) = gJ{Q{t'g-HA), x)) C g « 2 ( r l W ) , y)). 

On the other hand g{Q(g~l(A), y)) C. Q(A, z) for any continuous mapping g, 
which in accordance with (2) completes the proof. 

PROPOSITION 4.3. The classes of h-confluent, h-weakly confluent and h-pseudo 
confluent mappings have the composition factor property. 

Proof. Le t / : X —> Y and g: Y —-> Z be two mappings such that gf: X —» Z 
is /^-confluent. It is easily seen that g is perfect. Let K be a connected subset of 
Z and Ç a quasi-component of g~l(K). Then g(Q) Q K. On the other hand, 
since gf is ^-confluent we have that for each x G f~l(Q), 

gfiQV-'r'W.x)) = K 
and since f{Q(tlg-x(K), x)) Ç Q , we get 

^ = g/«2(/- 1g" 1(^) ,x)) c g « 2 ) . 

Thus, g ( 0 = X. 
The proofs for the other two classes being similar are omitted. 
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Remark 4.4. I t is an open problem whether or not the classes of fe-confluent, 
A-weakly confluent and A-pseudo confluent mappings possess the composition 
property. I t is true though tha t the composition of two mappings is any one of 
the above classes is in the same class, provided tha t the space Y is locally 
connected (see [11, 3.1, 3.3 and 3.4]). 

PROPOSITION 4.5. Lei f: X —> Y be an H-confluent and g: Y —» Z an h-confluent 

mapping. Then gfis an h-confluent mapping. 

Proof. Clearly gf is perfect. Let K (Z Zbe connected and Q = Q(/-1g-1 (K), x) 
a quasi-component of f~lg~l(K) a t x. Since / is 77-confluent we have tha t 
f(Q) =f(Q(t1g~1(K), *)) = Qir'iK), / ( * ) ) and since g is /^-confluent, we 
obtain gf(Q) = g(Q(g-'(K),f(x))) = K. 

Similarly, we can prove the following two propositions: 

PROPOSITION 4.6. If f: X —•> Y is an H-weakly confluent and g: Y —> Z an 

h-weakly confluent mapping, then gf: X —> Z is an h-weakly confluent mapping. 

PROPOSITION 4.7. / / / : X —> Y is an H-pseudo confluent and g: Y —> Z an 

h-pseudo confluent mapping, then gf: X —> Z is an h-pseudo confluent mapping. 

The following result is also known (see [14, 5.4 and 5.16]): 

PROPOSITION 4.8. The classes of confluent, weakly confluent and pseudo con­
fluent mappings have the composition property as well as the composition factor 
property. 

5. Produc t propert ies . We say tha t a class A of mappings has the product 
property, provided tha t for any two mappings/*: Xt —-> Yx (i = 1,2) belonging 
to A, their p r o d u c t / i X fi from Xi X X2 onto Y1 X Y2 belongs to A. We also 
say tha t a class A of mappings has the product factor property, provided tha t 
for any two mappings /* : Xt —» F?: (i = 1, 2) such t h a t / i X fi belongs to A, 
then / i and / 2 belong to A. 

In what follows in this paragraph we consider all spaces to be continua, i.e., 
connected metric compacta. 

T . Mackowiak has constructed an example of a confluent mapping, the 
product of which with the identi ty on the unit interval / is not pseudo confluent 
(see [14, Example 5.37]). The following example also serves the same purpose 
and is due to Professor A. Lelek. 

Example 5.1. Let 

X = {ze C : \z\ = 1} u J s G C : * = r exp i(~sin ----- + ~ j : 1 < r g 2Ï 

Kj\z£C:z = r e x p ^ s i n ^ - Y + ^ - j : 1 < r è 2Î, 

a subset of the plane. Then X is a cont inuum, and let R be an equivalence 
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relation in X given by 

R = {(zuz2): \M = \z2\ = l , z i 2 = z^\ \J {(z,z):z 6 X}. 

P u t F = X/R, and l e t / be the natura l projection of X onto F. Then it is easy 
to see t h a t / is a confluent mapping. 

Let / = [0, 1] be the uni t interval and h the identi ty on I. Consider the 
mapping / X h: X X I —» Y X / . Both X X I and F X / can be considered 
to be subsets of RJ. T o show t h a t / X h is not pseudo confluent, pu t 

Xx = \z eX: \z\ = 1}, 

X 2 = | z G X: z = r exp i ( J sin - ~ — + - | j : 1 < r ^ 2 j 

and 

I 2 = j ^ I : s = r exp i l -- sin - - - - - + ~ - J : l < r g 2 f . 

Let 4̂ be the helix x = cos (2irt), y = sin (2irt), z = t, t £ [0, 1], subset of 
F X / , and Si, S2 two sinusoid curves on X\ X / and X2 X I respectively, 
such tha t (fX A) (Si) = ( / X A)(52j = 4 . Then the set K = (f X A) (Si) U 
(/ X A)(S2) \J A is a subcont inuum of F X / , such tha t ( / X h)~l(K) has 
two components , namely, the sets C\ = SiVJ Ai and C2 = S2 W ^42, where 
^4i and ^42 are the helices x = cos (irt), y = sin (irt), z = t, t Ç [0, 1] and 
x = —cos (-7T/), 3' = —sin (irt), z = t, te [0, 1], respectively. Let now 
a e (f X h)(Si) and b e (f X h)(S2). Then there is no component of 
( / X h)~l(K) the image of which contains both a and b. T h u s / X h is not 
pseudo confluent. 

A recent result of A. Lelek shows the following (see [13, Theorem 1]): 

T H E O R E M 5.2. If f is an H-confluent mapping from a compaction onto a con­
tinuum, then f is quasi-interior. 

I t is known tha t the classes of open, monotone and quasi-interior mappings 
have the product proper ty (see [12, Theorems 1.9 and 1.10]). T h u s Theorem 
5.2 together with Theorem 1.10 in [12] give the following: 

COROLLARY 5.3. The class of H-confluent mappings of continua has the product 
property. 

Example 5.4. There exists an //-confluent and / / -weakly confluent mapping 
of an arc-like cont inuum onto a planar cont inuum, the product of which with 
the ident i ty on the interval [ — 2, 2] is not /z-pseudo confluent. 

Proof. Let X = {(y, sin w/y): y Ç [ - 1 , 0)} U {(x, 0 ) : - 1 ^ x g 1}, a 
subset of the x>*-plane, and let R be an equivalence relation in X given by R = 
{(x, 0) , (-x, 0 ) ) : - 1 ^ x S 1} U {(p,p)\ p G X}. L e t / be the natura l pro­
jection of X onto F = X/R. T h e n / is /z-confluent and it is easy to check t ha t 
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/ is H-weakly confluent. Let h be the identi ty on I = f — 2, 2]. Consider the 
product / X h: X X I —> Y X I. We will show tha t / X h is not /^-pseudo 
confluent. For this, consider the points a ( l , 0, 0) and 6( — 1, 0, 0) of X X i". 
Then ( / X A) (a) = {fXh)(b). 

Let P i be the plane —x + z = — 1, i.e., the plane passing through the point 
a(l, 0, 0) and normal to the vector N = — i + k, and let P2 be the plane 
— x + z = 1, i.e., the plane passing through the point b( — l, 0, 0) and normal 
to the same vector N. 

Put 

A = [{(y,smir/y):y G [ - 1 , 0 ) } X I] H Pu and 

B = [{(y,sîmr/y):y G [ - 1 , 0 ) } X 7] H P2. 

Then K = f(A U B VJ {a, &} ) is a connected subset of F X 7, the preimage 
of which consists of connected quasi-components Ci = A \J {a} and Q2 = 
^ VJ {6} none of which is mapped onto K. Moreover, if c is a point of /I and d 
is a point of B, then there is no quasi-component of ( / X h)~l(K) such tha t 
( / X h) (c) and ( / X h) (d) belong to the image of it. Thus , / X h is not h-
pseudo confluent. 

An immediate consequence of this example is the following: 

COROLLARY 5.5. The classes of H-weakly confluent, H-pseudo confluent, 
h-confluent, h-weakly confluent and h-pseudo confluent mappings do not have 
the product property. 

Z. Rudy investigated in [17] the product factor property, where the following 
is proved: 

T H E O R E M 5.6. Let a class of mappings A satisfy the following conditions: 
(i) iff e A,thenf\f-l{B) G A for each closed set B C Y, and 

(ii) if gf t 4̂ and f is open, then g G A. 
Then the class A has the product factor property. 

Remark 5.7. I t is easy to observe that the classes of confluent, weakly con­
fluent and pseudo confluent mappings have the product factor property (see 
[14, 5.39 and 5.40]). 

By Propositions 3.10, 4.2 and 4.3 we obtain the following: 

COROLLARY 5.8. The classes of H-confluent, H-weakly confluent, H-pseudo 
confluent, h-confluent, h-weakly confluent and h-pseudo confluent mappings have 
the product factor property. 

6. U n i o n propert ies . 

T H E O R E M 6.1. Let Y be a topological space with the property that the intersection 
of any two connected subsets is connected. Suppose X is a topological space, 
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/ : X —> Y is a closed mapping of X onto Y, and Y = Yi U F2 W . . . U Yn 

is a decomposition of Y into connected subsets with the following properties: 

(i) either Yt C\ Yj ^ 0 or Yu Y3- are separated, for i ^ j i, j = 1, 2, . . . , n; 

(ii) f\f~~l(Yi) is h-confluent for i = 1, . . . , n. 

Then f is h-confluent. 

Proof, Let K be a connected subset of Y. Assume tha t n = 2, so t ha t 
F = Fi U F2 . If Fi H F 2 = 0 = Fi H F2 , then either K C Yl or K C F 2 

and by (ii) we infer t ha t each quasi-component of f~l(K) is mapped onto K. 

So assume tha t Fx H F 2 ^ 0 and t ha t i T \ F i ^ 0 ^ ^ \ F 2 . Let Q be a quasi-
component of f~l(K) and %\ £ (). W e may assume tha t / ( x i ) 6 Fi. Since 
i£ H Yi is a connected subset of Fx , if Ci is the quasi-component of Xi in 
f~l(Kr\ F i ) , by (ii) we have 

(1) / ( & ) = 1 0 7 ! and Q, C Q. 

Let now y £ K C\ Fi P\ F 2 and x2 £ Qi H / " 1 ^ ) . Since X P\ F 2 is con­
nected subset of F2 , if Ç2 is the quasi-component of x2 mf~l(K H F 2 ) , by (ii) 
we have 

(2) f(Q2) =KH F 2 and Q2 C Ç. 

By (1) and (2) we obtain K - (K H Fi) U (2C H F2) = f(Qi) U / ( Q 2 ) C 
/ ( Ç ) . But we always h a v e / ( Q ) C i£. H e n c e , / is /^-confluent. Induct ion now 
completes the proof. 

Example 6.2. This example shows tha t the condition (i) in theorem 5.1 is 
essential. 

Let 

X = \(x} 1): - 2 S x S 0} VJ {(0,3/): - U ) i g l | U {(x, s'mir/x): 

0 < % S 1} 
and let i? be an equivalence relation in X given by 

7̂  = { ( ( - 2 + /, 1), (0, - 1 + 0 ) : 0 g * g 2} U { ( £ , £ ) : £ £ X } . 

P u t F = X / i ? and l e t / be the natura l projection of X onto F. Let F = Fi U F 2 

be the following decomposition of F into connected subsets Y\ = {(0, y): — 1 
^ ^ ^ 1} and F 2 = {(x, sin w/x): 0 < x ^ 1}. One can easily see tha t F has 
the proper ty t h a t the intersection of any two connected subsets is connected 
and tha t condition (ii) of theorem 6.1 is satisfied, b u t / is not /^-confluent and 
Fi and F 2 are not separated. 

A. Lelek has proved the following union theorem for confluent mappings 
(see [9, Thoerem 1]): 

T H E O R E M 6.3. Suppose X, F are compact metric spaces, f is a continuous map­
ping of X onto F, and Y = F0 U Y\ VJ F 2 U . . . is a decomposition of Y into 
closed subsets Yt such that the following three conditions are satisfied: 
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( i ) / | / - 1 ( F î ) is a confluent mapping off~l(Yf) onto Yu (i = 0, 1, 2, . . .) ; 

(ii) F , C\ Yj C Y, for i 9* j , i, j = 1, 2, . . . ; and 
(iii) K C\ YQ has only a finite number of components for each sub continuum 

K of Y. 
Then fis confluent. 

In a discussion with the author, Professor A. Lelek asked if there is an 
analogous "infinite union theorem" for /^-confluent and 77-confluent mappings. 
The answer to both questions is in the negative and this can be shown by the 
following example: 

Example 6.4. There exists a m a p p i n g / of a continuum X onto a cont inuum Y 
and a decomposition of Y into subcontinua F0 , Fi, F2, . . . such tha t the fol­
lowing conditions are satisfied: 

( i ) / | / _ 1 ( F i ) is an open mapping, hence also iï-confluent and /^-confluent, 
oif-l(Yt) onto F , f o r i = 0, 1, 2, . . .; 

(ii) Yi C\ Yj C Fo for i 7* j and i, j = 1, 2, . . . ; 
(iii) K C\ F0 is connected for each connected subset K of F, and / is not 

A-confluent. 

Proof. Let C be the Cantor ternary set on the interval {(x, 0 ) : 0 :g x ^ l j 
and D = {(0, 1)) . Consider the set C VU D and let I = [ ( C U D ) X 7]/i?, 
where I is the unit interval [0, 1] and R is an equivalence relation in ( C U D) X 
/ g i v e n by: i? = {(x, 1), ( x / , l ) ) : x , x / Ç C U D ) U ( f e | ) ) : ^ ( C U D ) X / | . 
We can describe X as the cone over the set C VJ D. Then we can take the vertex 
of the cone to be the point a(0 , 0, 1). 

Let F be the cone over the set C and / : X —> F be the mapping such tha t 
/ ( ( 0 , 3/, z)) = (0, 0, 2), for each (0, y, z) G X a n d / ( ( x , 0, 2)) - (x, 0, z), for 
each (x, 0, z) G X. Consider the following decomposition of C = AQVJ Ai^J 
A2\J . . . where AQ = C C\ [2 /3 , 1], Ax = {0}, A2 = C C\ [2/9, 1/3], . . . , 
An= CC\ [2/3w , l/S71-1], for n = 2, 3, . . . , and denote by Yt the cone 
over At in F, for i = 0, 1, 2, . . . Then it is easy to check tha t the decomposition 
F = Fo VU Fi VU F2 U . . . satisfies all the three conditions. T o show t h a t / is 
not /^-confluent, let K be the Knaster-Kuratowski biconnected subset of F 
(see [5, p. 135]). T h e n / - 1 ( i £ ) has one quasi-component Q, a subset of the cone 
over C in X , which is mapped onto K, and countably many degenerate quasi-
components lying on the cone over D in X , none of which is mapped onto K. 
Thus / is not /z-confluent. 

7. L i m i t propert ies . We say tha t a class A of mappings has the general 
limit property (respectively, the weak limit property) if for any sequence 
fn: X —•» F in A, where Y is a compactum (respectively, locally connected 
compac tum) , the uniform limit of the sequence is in A. 

I t has been proved (see [14, 5.48 and 5.50]) tha t the classes of confluent, 
weakly confluent and pseudo confluent mappings have the wreak limit property. 
These results together with remark 3.2 give the following: 
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COROLLARY 7.1. The classes of H-confluent, H-weakly confluent, H-pseudo 
confluent, h-confluent, h-weakly confluent and h-pseudo confluent mappings have 

the weak limit property. 

Remark 7.2. T . Mackowiak proved (see [14, 5.49 and 5.54]) t ha t the classes 
of weakly confluent and pseudo confluent mappings of compacta have the 
limit property. He also constructed the following example (ibidem, 5.62) of 
a sequence of homeomorphisms of a cont inuum onto a cont inuum the uniform 
limit of which is not confluent. We prove t ha t the uniform limit of this sequence 
is not an /^-pseudo confluent mapping. 

Example 7.3. Let C denote the Cantor te rnary set lying in the uni t interval 
I = [0, 1]. There is a sequence {fn\ of homeomorphisms from / onto / such tha t 
fn(C) = C for n = 1 , 2 , . . . and such t ha t it converges uniformly to the map­
ping fo, where 

(O iît G [0 ,2 /3 ] 
/ ° W ( 3 / _ 2, m e [ 2 / 3 , i ] . 

P u t N = (7 X {0}) U (C X I) and gn(x, y) = ( /„(*), y) for each (x, y) Ç 
TV and n = 0, 1, 2, . . . . T h e mappings gn are homeomorphisms for n = 1 , 2 , . . . 
and they converge un iformly to go- Define a mapping ^ of I onto itself as follows : 

( ~t+ 1/4, if 0 S t S 1/4 
.,., = ) 3/ - 3 /4 , if 1/4 S t ^ 1/2 

^ U ) - / + 5/4, if 1/2 g ^ 3 / 4 
{ 2t - 1 , if 3 /4 g t S 1. 

Consider the equivalence relation R in N defined as follows: (x, y)R(xf, y') 
if and only if either (x, y) = (xf, y') or x = x' = 0 and \p(y) = \[/(y/). Let <p be 
the canonical mapping of N onto N/R. P u t M = iV/i? and fen(g) = 
^(gnOp" 1 ^))) f ° r each q £ M and w = 0, 1, 2, . . . T h e sequence {hn} is a 
sequence of homeomorphisms which converges uniformly to a mapping h0. 
We shall prove tha t ho is not /^-pseudo confluent. Note t ha t h{) = l i m ^ ^ hn = 
Vgo<P~l, so h(Tl = <£>go~~ V - 1 - Consider now the following subset of N: 

A = ( (0 ,1 ] X ( 0 } ) U [ ( C \ { 0 ) ) X [0, 1/2]] U { ( 0 , 1 / 8 ) } 

U { ( 0 , y ) : o / 8 S y g 1). 

T h e n 4̂ is a connected subset of TV, therefore i£ = <p(A) is a connected subset 
of M. Consider the points y = <p(0, 1/8) and z = <p(0, 1) of X". T h e n there is 
no quasi-component of h0~

l(K) the image of which under h0 contains both 
points y and z (see Diagram 2). Thus , h{) is not /^-pseudo confluent. 

T h e following table summarizes the properties of mappings from Paragraphs 
3 ,4 , 5, 6 and 7. 
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TABLE I. 

composi­
tion 

composi­
tion 

factor product 
product 
factor 

weak 
limit 

general 
limit 

property property property property property property 

if-confluent + 
(4.1) 

+ 
(4.2) 

+ 
(5.3) 

+ 
(5.8) 

+ 
(7.1) 

+ 
(7.3) 

H-weakly 
confluent 

+ 
(4.1) 

+ 
(4.2) 

+ 
(5.5) 

+ 
(5.8) 

+ 
(7.1) (7.3) 

H-pseudo 
confluent 

+ 
(4.1) 

+ 
(4.2) (5.5) 

+ 
(5.8) 

+ 
(7.1) (7.3) 

/^-confluent 
? 

+ 
(4.3) (5.5) 

+ 
(5.8) 

+ 
(7.1) (7.3) 

/z-weakly 
confluent ? 

+ 
(4.3) (5.5) 

+ 
(5.8) 

+ 
(7.1) (7.3) 

/z-pseudo + - + + -
confluent ? (4.3) (5.5) (5.8) (7.1) (7.3) 

confluent + 
(4.8) 

+ 
(4.8) (5.1) 

+ 
(5.7) 

+ 
(7.1) (7.3) 

weakly 
confluent 

+ 
(4.8) 

+ 
(4.8) (5.1) 

+ 
(5.7) 

+ 
(7.2) 

+ 
(7.2) 

pseudo 
confluent 

+ 
(4.8) 

+ 
(4.8) (5.1) 

+ 
(5.7) 

+ 
(7.2) 

+ 
(7.2) 

8. Mappings of rational continua. In [12, problem III] A. Lelek asked 
the question "Do confluent mappings preserve rational continua?". Recently, 
E. D. Tymchatyn (see [18]) constructed a confluent mapping of a rational 
curve onto a non-rational curve. It is not difficult to check that Tymchatyn's 
example is a confluent but not /^-pseudo confluent, hence not /^-confluent or 
/^-weakly confluent, mapping. 

The following theorem generalizes Theorems 3.8 and 3.9 of [12], where 
A. Lelek proves that open mappings as well as monotone mappings preserve 
rational continua. 

THEOREM 8.1. H-pseudo confluent mappings preserve rational continua. 

Proof. L e t / : X —> F be an 77-pseudo confluent mapping of a rational con­
tinuum X onto a continuum Y. In order that Y possesses a base of open sets 
with countable boundaries it is necessary and sufficient to show that any two 
points y and z in Y, with y 7e z, are separated in Y by a countable set (see 
[19, V 4.3]). To show this, let y and z be two distinct points of Y. Consider 
the compact s e t s / - 1 (y) a n d / - 1 (z) in X. Since X is a rational continuum, there 
exists a countable closed subset A of X disjoint from f^iy) and f~l{z) such 
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K 

The dashed lines represent the set M\K. 

hQ-l(K) 

DIAGRAM 2. 

t ha t X\A = MKJ N, f~l(y) C M, f~l(z) C N and M and TV are separated. 
Since / is i / -pseudo confluent, by Proposition 3.13 (iii), we conclude t h a t 
f(A) separates y and z in Y. Finally, since f(A) is a countable and closed 
subset of F, we infer t h a t F i s rational. 

COROLLARY 8.2. The classes of open, monotone, quasi-interior, H-confluent 
and H-weakly confluent mappings preserve rational continua. 

T h e following problem now can be raised: 
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Problem 1. Do /^-confluent (A-weakly confluent or /^-pseudo confluent) 
mappings preserve rational continua? 

We also have the following: 

PROPOSITION 8.3. The h-pseudo confluent image of a rational continuum can be 
written as the union of a countable set and a hereditarily disconnected set. 

Proof. Let / : X —> Y be an /^-pseudo confluent mapping of a rational con­
tinuum X onto a continuum Y. Let X = P KJ Q be a decomposition of X into 
a totally disconnected set P and a countable set Q (see [8, Theorem]). Consider 
the following decomposition for Y, Y = (Y\f(Q)) W/((?)./((?) is countable. 
To show that Y\f(Q) is hereditarily disconnected, let K be a connected subset 
of Y\f(Q). Then/_ 1(i£) C P, which is totally disconnected. Therefore, all the 
quasi-components oî f~x(K) are degenerate. Assume that K is non-degenerate 
and y and z are two distinct points of K. Since / is /^-pseudo confluent, there 
exists a quasi-component Q of f~l(K) such that y, z £ /((?). But, since Q is 
degenerate, we conclude that y and z coincide, a contradiction. Thus, each 
connected subset of Y\f(Q) is degenerate, which means that Y\f(Q) is heredi­
tarily disconnected. 

COROLLARY 8A.Iff:X—+.Y is an h-confluent or h-weakly confluent mapping 
from a rational continuum X onto a continuum Y, then Y = P U Q, where P is 
hereditarily disconnected and Q is countable. 

9. Weakly d-connected and d-connected spaces. We say that a con­
nected space is a-connected (respectively, weakly cr-connected) provided that it 
cannot be decomposed into countably many mutually separated (respectively, 
mutually separated connected) non-empty subsets. Clearly, each ^-connected 
space is weakly cr-connected and each weakly cr-connected is connected (see 
[2] and [6]). We now define a space to be hereditarily a-connected (respectively, 
hereditarily weakly a-connected) provided that it is connected and each con­
nected subset of it is cr-connected (respectively, weakly cr-connected.) 

The following notions have already been introduced: We say that a topologi­
cal space is hereditarily (q = c) provided each subset of it has connected quasi-
components (see [15]). A continuum is said to be finitely Suslinian provided 
that for each number e > 0, every collection of mutually disjoint subcontinua 
of it with diameters greater than e is finite (see [2]). 

The following theorems are known: 

THEOREM 9.1. A continuum is hereditarily (q = c) if and only if it is h.l.c. 

THEOREM 9.2. A continuum is finitely Suslinian t=> it is hereditarily a-con­
nected <=> it is hereditarily weakly a-connected, provided it is h.l.c. 

For their proofs, see [19] and [2], respectively. 

Added in proof: In a recent paper, J. Grispolakis and E. D. Tymchatyn 
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constructed an ^-confluent mapping from an arc-like rational con t inuum onto 

a non-rat ional cont inuum. 

10. M a p p i n g s of heredi tar i ly d -connec ted spaces . 

PROPOSITION 10.1. Strongly confluent mappings preserve hereditarily a-con-
nected spaces. 

Proof. L e t / be a strongly confluent mapping of the hereditarily cr-connected 
space X onto the topological space F, and suppose t h a t K is a connected subset 
of F such tha t K = U?=i Fiy where Ft and Fj are non-empty mutua l ly 
separated sets for i ^ j and i, j = 1, 2, . . . T h e n / - 1 (7^) a n d / - 1 (7^-) are non­
empty mutual ly separated for i 9e j and i,j= 1 , 2 , . . . Let C be a component 
oi f~l{K). S i n c e / ( C ) = K we infer t ha t C n / - 1 ( F , ) ^ 0 for i = 1, 2, . . . 
Therefore, C = U?=i (f~l(Fi) H C). Bu t this contradicts the fact t ha t C is 
cr-connected set. Thus , K is cr-connected. 

COROLLARY 10.2. Monotone mappings preserve hereditarily cr-connected spaces. 

PROPOSITION 10.3. Monotone mappings preserve hereditarily weakly a-con-
nected spaces. 

Proof. Let / be a monotone mapping of a hereditari ly weakly cr-connected 
space X onto a topological space F. Let K be a connected subset of F such tha t 
K = UT=i Cu where Cu Cj are non-empty mutual ly separated connected sets 
for i 7* j and i, j = 1, 2, . . . S i n c e / is m o n o t o n e / - 1 ( i £ ) and f - 1 (Ci ) are con­
nected fo r i = 1,2, . . . We also h a v e / - 1 (K) = U ? = I / - 1 ( C Ï ) > which contradicts 
the fact t h a t / - 1 ( i £ ) is weakly cr-connected. Thus , Y is hereditari ly weakly 
cr-connected. 

PROPOSITION 10.4. Let f be an H-weakly confluent mapping of a hereditarily 
(q = c) and hereditarily a-connected space onto a topological space Y. Then Y is 
hereditarily (q = c) and hereditarily a-connected. 

Proof. Let K be a connected subset of Y and suppose t h a t K = U?=i Fiy 

where Ft and Fj are non-empty mutual ly separated sets foi i ^ j and i, j = 
1,2, . . . , S i n c e / is i7-weakly confluent there exists a quasi-component Q of 

f~l(K) such t h a t / ( Ç ) = K. Since X is hereditarily (q = c) we infer t ha t Q is 
connected. Therefore, we have t ha t Q r^f~1(Fi) ^ 0 for i = 1, 2, . . . , so tha t 
Q = U?=i ( / _ 1 ( ^ i ) ^ (?) is n ° t cr-connected, contradict ing the fact t ha t X is 
hereditarily cr-connected. Thus , K is cr-connected. I t is trivial also to check t h a t 
Y is hereditarily (q — c), so the proof of the theorem is complete. 

Next , we prove an analogous theorem for more general mappings. First , we 
prove a lemma. 

LEMMA 10.5. Let f be a mapping of a topological space X onto a topological space 
F. If C = U?=i Fi is a connected subset and Ft are mutually separated, then each 
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component of f~l(C) intersects either one or infinitely many of the sets f~l{Fi) 
i = 1,2, . . . 

Proof. On the contrary, suppose tha t a component K of f~l{C) is such tha t 
KC\f-l(Fki) 5* 0 f o r i = 1,2, . . . , » , » > 1 and K P / " 1 ^ ; ) = 0, if J * ki} 

i = 1, . . . , n. Then we have tha t K = U*=i (-K P i / - 1 (FA-,)), and since » > 1 
and X Pi/ -1(-Rtv)> f~l(Fkj) P i£ are non-empty and mutual ly separated for 
^ ^ J; ^ i = L • • • , >̂ we have tha t K is not connected, contradicting the fact 
t ha t K is a component o f / _ 1 ( C ) . This completes the proof of the lemma. 

T H E O R E M 10.6. Let f be an h-pseudo confluent mapping of an h.l.c. and heredi­
tarily a-connected space X onto a topological space Y. Then Y is hereditarily 
a-connected. 

Proof. Let K be a connected subset of Y and suppose tha t K is not a-con­
nected. Then K = U?=i Fit where Fu Fj are mutual ly separated non-empty 
subsets of K for i ^ j ; i,j = 1, 2, . . . Let i and j be two indices such tha t i ^ j 
and let x G Fu y £ ^ j - Since / is /r-pseudo confluent there exists a quasi-
component Q of / - 1 ( i v ) such tha t x, y Ç / ( (?) . But X is h . l . c , therefore, Ç is 
connected. Since x, y e f(Q) we have tha t Q P tl(Ft) j* 0 and Q P / " U ^ ) 
5̂  0 and so, by Lemma 12.5, there are infinitely many indices ni, . . . , nk, . . . 

such tha t C n j - H F J ^ 0, for k = 1, 2, Therefore, Ç = U?=i (Q P 
f~l(Fnk)), where Q P f~l(Fn.) and Q r\f~l(Fnj) are non-empty mutual ly 
separated sets for i ^ j and i, j = 1 , 2 , . . . Thus , Q is not cr-connected contrary 
to the hypothesis. Hence, Y is hereditarily a-connected. 

COROLLARY 10.7. Pseudo confluent mappings preserve finitely Suslinian con~ 
tinna. 

Proof. By Theorem 4.7 in [11], if / is pseudo confluent and X is a hereditarily 
locally connected continuum, then Y = f(X) is a hereditarily locally connected 
continuum. By Theorem 2.2 in [2], X is hereditarily cr-connected and by 
Theorem 3.3 of [11], the mapping / is /^-pseudo confluent. Therefore, by 
Theorem 10.6 we infer tha t F i s hereditarily cr-connected, which in accordance 
with Theorem 2.2 of [2] implies tha t Y is finitely Suslinian continuum. 

Remark 10.8. Corollary 10.7 was obtained by A. Lelek and E. D. T y m c h a t y n 
(see [11, Theorem 4.6]). Therefore, Theorem 10.6 generalizes Theorem 4.6 
of f l l ] . 

PROPOSITION 10.9. The h-weakly confluent image of an h.l.c. separable metric 
space onto a metric space is h.l.c. 

Proof. L e t / be an /^-weakly confluent mapping of an h.l.c. separable metric 
space X onto a metric space Y. Let K be a connected subset of Y. S i n c e / is 
&-wreakly confluent there exists a quasi-component Q of / - 1 ( i £ ) such tha t 
f(Q) — K. Since X is h.l.c. we have tha t X is hereditarily (q = c) (see [15, 

https://doi.org/10.4153/CJM-1978-010-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-010-x


132 JOACHIM GRISPOLAKIS 

Theorem 1.5]), so that Q is connected subset of X, hence Q is locally connected. 
Since the mapping f\j~l(K) onto K is closed, and since Q is a closed subset of 
f~l(K), we infer that the mapping f\Q onto K is closed. Thus, K = f(Q) is 
locally connected. 
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