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THE GEOMETRY OF GF(q3) 

F. A. SHERK 

1. Introduction. Inversive geometry involves as basic entities points and 
circles [2, p. 83; 4, p. 252]. The best known examples of inversive planes 
(the Miquelian planes) are constructed from a field K which is a quadratic 
extension of some other field F. Thus the complex numbers yield the Real 
Inversive Plane, while the Galois field GF(q )(q = pe, p prime) yields the 
Miquelian inversive plane M(q) [2, chapter 9; 4, p. 257]. The purpose of 
this paper is to describe an analogous geometry of M(q) which derives 
from GF(q3), the cubic extension of GF(q). 

The resulting space, J ^ is three-dimensional, involving a class {y7} 
of surfaces which include planes, some quadric surfaces, and some cubic 
surfaces. We explore these surfaces, giving particular attention to the 
number of points they contain, and their intersections with lines and 
planes of the space stf. 

It should be noted that this geometry is radically different from three 
dimensional real inversive geometry, in which spheres are preserved by the 
automorphism group of the space. The geometry developed here is much 
more closely related to the "circle geometry" of Bruck [1]. The 
automorphism groups are almost the same (Bruck's is slightly larger), and 
some results on the nature of these groups are common to both papers. 
But the invariants studied in [1] are the "circles" (which are not 
necessarily circles in the classical sense, i.e., plane conies), whereas the 
invariants in this paper are surfaces, including planes, quadric cones, 
hyperboloids, and some cubic surfaces. Some of these surfaces appear in 
[1] as "covers" of the circle geometry, but otherwise they are not 
considered. In this paper the emphasis is entirely on the surfaces. There is 
also a considerable difference in the methods used in [1] as compared to 
the present paper. In [1] the proofs are largely group-theoretical in nature, 
with little use of combinatorial arguments. Since the scope includes 
infinite spaces, this is not surprising. On the other hand this paper is 
restricted to finite spaces, and makes much use of counting arguments. 

An examination of the quadric cones involved leads, in Section 6, to the 
discovery of a set of q2 + q + 1 conies in the plane PG(2, q) with 
the property that any two are mutually tangent. The same set of conies, in 
a somewhat wider context, was discovered by Jungnickel and Vedder by 
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the use of difference sets [7]. A few of the properties of these conies, which 
we call cells, are noted. 

In Section 7 we study the cubic surfaces from the set {Sf}. Our main 
object here is to locate any planes of se which fail to meet any given cubic 
&*. We find some cubics which are met by every plane in se. For others, we 
find an exterior plane, which we conjecture to be unique. 

We propose to show in a future paper that the surfaces {^} are useful in 
the study of finite translation planes of order q3. In particular, semifield 
planes of order q can be conveniently classified in the context of cubic 
surfaces from the set {<¥*}. 

Throughout the paper, some more or less standard notation will be used 
without comment. We shall denote the cardinality of a finite set S by \S\, 
and occasionally also use the same symbol, "| |", to denote a 
determinant. The symbol (A, B, C, . . . ) will denote the group generated 
by A, B, C, . . . and the remainder of a set S when a subset T has been 
removed will be denoted either by S — T or by S\T. 

2. The spaces se and se. Let F denote the field GF(q) (q = pe,p prime). 
Let AT be a cubic extension of F, so that K = GF(q ). We shall denote the 
elements of K by capital Latin letters; A, B, X, Y, etc., and the elements of 
F by lower case Greek; a, /3, X, /A, etc. The zero and unit elements will be 
denoted by 0 and 1 respectively. 

Any mapping X —> Xp is an automorphism of K\ in particular, if n = e, 
then X —•> Xq is of period 3 and fixes every element of F. Also, 
AT* = K — {0}, the multiplicative group of K, is cyclic; K* = (W), where 
W is a primitive element oî K. F* = F — {0} is generated by 
e = wX+q+q\ 

There are three functions in K with range in F that are of importance in 
this context: 

(i) N(X) = X1 +q+q\ N(X) is usually called the norm of X. It is easy to 
show that for any X G F, X ¥= 0, there are exactly q2 + q + 1 elements 
Z in K* such that N(Z) = X. 2 

(ii) T(X) = X + Xq + Xq\. T(X)is usually called the trace of X. 
(iii) B(X) = Xx+q + Xq+ql + Xq2 + X. We shall call B(X) the bitrace 

of X. 
The field K is usually denoted either as {0} U (W) or as a vector 

space ^ o f dimension 3 over F. In the latter description, let (1, R, S) be 
a basis for i^. Then any element X of K has a unique representation 
X = 0X + 62R + 03S, where 0]9 02, 03 e F. Multiplication is polynomial 
multiplication, and the products R2, S2, RS all have unique expression 
in the basis {1, R, S}. 

In a natural fashion [4, pp. 27, 28], ^defines a three-dimensional affine 
spaced = AG(3, q), where the points of j / a r e the elements of 7^(i.e., the 
elements of K) and the lines and planes are respectively translates of 
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the one- and two-dimensional subspaces of ^. Thus K is interpreted 
geometrically as the points of se. 

In the above interpretation the norm, trace, and bitrace functions 
induce familiar surfaces: 

THEOREM 2.1. T(X) = a, B(X) = /?, N(X) = y define respectively a 
plane, a quadric surface, and a cubic surface in stf. 

Proof. With fixed basis {1, R, S} of % 

X = 6X + 02R + 63S, Xq = 0, + 0 2 /^ + 03S
q, and 

xql = ox + e2R
q2 + 03s*2. 

Now 

r(X) - x + ^ + x^2 - 30, + rcR)02 + T(S)63. 
Thus T(X) = a is a linear equation over i7, defining a plane in s/. 
Similarly, 

5(JT) = * 1 + ^ + Xq+ql + X^2 + 1 

= W] + B{R)0\ + £(S)#3 + 2T(R)0]62 

+ 2T(S)6X03 + rCRS"* + RqS)6203\ 

so i?(X) = /? is a quadratic equation in 0j, 02, #3 o v e r F, defining a quadric 
surface. A similar calculation shows that N(X) = y is a cubic equation in 
0,, 02, #3 o v e r ^ which therefore defines a cubic surface in se. 

Our further study of the geometry of K will involve point to point 
mappings in se. Some of these will be collineations of se, but others 
(analogous to inversions in an inversive plane) will not even be bijections 
unless the space se is enlarged. Anticipating this difficulty, we augment stf 
by adding a single ideal point, which we denote by oo. Just as in the 
development of Inversive Geometry, the particular properties of oo will be 
specified by the mappings that make it necessary. We denote {oo} U srf 
b y j / . 

3. The permutation groups of s4. Translations are familiar collineations 
of se. Identifying points of stf with elements of K, as we now consistently 
do, we describe any translation as X —» A + X, where A is some fixed 
element of K. We shall denote this translation by rA. Thus for each of the 
q possible values for A, we have a translation rA; T0 is, of course, 
the identity, 1. 

Another important collineation, which has no counterpart in real 
geometry, is T: X —» WX, where W is the generator of K* introduced in 
Section 2. Since V is X -> WlX (0 ë / < q3 - 1), T has period q3 - 1, 
and P7 Jrq+X is the central dilatation X -> eX. 

The automorphism 2:X —> Xq is also a collineation of se. lnstf, rA, T, 
and 2 all fix oo. 
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We now define a mapping A in s/ which we call the inversion in 0. Under 
A, X —» X~l where X ^= 0, and A interchanges 0 and oo. Thus A is a 
bijection and A2 = 1. No confusion should arise if we describe A simply as 
X —» X~\ even allowing X to be 0. A similar convention is used in the 
statement of the following theorem (cf. [1, pp. 153, 154] ): 

THEOREM 3.1. (i) T, {rR}(R e K) and A generate the group G: 

AC 
BD 

\X^(A + BX)~\C + DX)\A,B, C, D Œ K, 

(ii) G = PGL(2, q3) 
(iii) T, {TR}(R ^ AT), A, and 2 generate the larger group G: 

* 0 

X -> (A + £ ^ ) \C + Z ) ^ ) U , B,C,D G #, 

0, / = 0, 1, 2 J, 

which contains G as a subgroup of index 3. 

Proof. Let B = 0 and choose ^ ^ 0, D ^ 0 such that A~]D = Wj. 
Then under the product TJrA-\c: 

F 'A~lC 
X-^A~lDX-2—i»A~lC + A~lDX = A~\C + DI) . 

If B ^ 0, then B = Wl for some /. Let v4, Z) be any elements of AT. Then 
under the product T1TA&TB-\D: 

r 
X-^ BX 

BX 

(A + £ X ) — ». 

= (A +BX) \C + DX% 

where C = 1 + AB~lD. We note that 

v4C 
£Z> 

= AD - BC = -B * 0. 

By com ̂ enti on, 

-5 4̂ —> —/I —» 0 —» oo • o o and 

oo —> oo —» oo —» 0 • / ? \D; 

thus oo has a unique image and pre-image. This proves (i). 
To prove (ii) we note that any element of G is given by the matrix 
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with the understanding that XM(X G F, X ¥= 0) gives the same element 
as M does. Also, we find by easy calculation that if g, gx G G are given by 
M, Mx respectively, then ggx is given by MMV This establishes an 
isomorphism between G and PGL(2, q3). 

(iii) It is easy to show that AS, T2, and TR2 all have the form 

X->(A 4- £X<0_1(C + £**) , 

which is also the form of 2A, 2T, and 2rn. Therefore 2 normalizes G. A 
complete set of coset representatives of G in G is {1, 2, 2 }, so that G has 
index 3 in G. 

Using the nomenclature for Môbius transformations, we call G the 
group of homographies in s/9 and G — G the set of antihomographies 
[2, pp. 145-147]. If g = / / with e > 1, it would be possible, by adjoining 
the collineation induced by the automorphism X —» A^, to get an even 
larger group of transformations on s/, but this generalization does not 
seem to enhance our study. Indeed, even the antihomographies are less 
important to us than the homographies; for this reason we concentrate on 
G rather than G in subsequent sections. 

As a useful observation, we have 

COROLLARY 3.1. Any collineation in G fixes oo and has the form X —» 
C + DX. 

4. The surfaces £f(0, K, L, <£). As an important generalization of the 
surfaces in stf arising from the norm, trace, and bitrace functions, we 
introduce the surface 

y = Sf(09 K9 L , <t>)9 

where 0, <j> Œ F and K, L G K (0, <£, K, L not all 0). (No confusion should 
arise by using the same symbol K both for the field K and for an element 
of K.) Sf is the set of points in srf corresponding to solutions of the 
equation 

(4.1) 0Xx+q+ql + (KXx+q + KqXq+ql + Kq2Xql+x) 

+ (LX + LqXq + Lq2Xql) + $ = 0. 

Note that if X G F, X ¥= 0, then 

S?(\09 XK, XL, X<f>) = S?(69 K9 L9 <f>). 

Similar calculations to those in the proof of Theorem 2.1 yield the proof 
of 

THEOREM AA.IfO ^ 0 then Sf'is a cubic surface in s/.If0 = Q,k¥*Q9 

then y7 is a quadric surface. If 0 = K = 0, L ^ 0, then £f is a plane. 
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The importance of the surfaces {Sf} is that they are invariants under G, 
and thus are basic to the geometry: 

THEOREM 4.2. The group G of homographies and antihomographies 
preserves the class of surfaces {¥}. 

Proof. We need only to show that the generators of G:2, T, rR (R <E F), 
and A, take S? = 5^(0, K, L, <£) onto some surface 

9" = ST(P\ K, L\ <t>f). 

This is a matter of straightforward calculation, which is included here for 
future reference since similar calculations are often needed later: 

(i) Under ?>\X->Xq, 

$Xl+«+«2 + (KXl+q + KqXq+q2 + Kq2Xq2+x) 

+ (LX + LqXq + Lq2Xql) + cj> = 0 

-> 0(Xq2)]+q+q2 + [K(Xq2)]+q + . . . ] 

+ [L(Xq2) + . . . ] + <f> = 0, 

i.e., 

0^1+*+*2 + ( ^x 1 + ^ + . . . ) + (LqX + . . . ) + <f> = 0. 

Thus 

(4.2) J^(0, #, L, <J>) -> ^ (0 , #«, L^, <f>). 

(ii) Under T':X-* W% 

0X]+q+q2 + (KX]+q + . . . ) + (LX + . . . ) + $ = 0 

-> 0(Pr~ /X)1 +^+^2 + [ ^ ( t f ' X ) 1 ^ + . . . ] 

4- [L(PF~0o + . . . ] + cj> = 0, 

i.e., 

0Xi+4+</2
 + (KWiq2Xx+q + . . . ) + ( L H ^ + ^ X + . . . ) 

+ <$>wl{X+qJrq2) = o. 

Thus 

(4.3) 5̂ (0, A:, L, <W -> ^(0, A : ^ 2 , L J * ^ * A <^'(1 +*+*2) ). 

(iii) Under TR:X ^ R + X, 

^ l +</+</2 + ( ^x 1 +^ + . . . ) + (LX + . . . ) + <f> = 0 

-> 0(X ~ R)XJrqJrql + [K(X - R)l+q 4- . . . ] 

https://doi.org/10.4153/CJM-1986-035-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-035-2


678 F. A. SHERK 

-h [L(X - jR) + . . . ] + <f> = 0, 

i.e., 

QX\ +q + q2
 + [ (K _ QRq2

)X\ + * + . . . ] 

4- [ (L 4- 6Rq+q2 - KRq - Kq2Rq2)X 4 . . . ] 

+ <J> - 8Rl+q+q2 4 CKR,+* 4 . . . ) - (LR 4 . . . ). 

Thus 

(4.4) S?(09 Ky L, <f>) - ^ ( 0 , K - 6Rq2, L 4 0Rq+q2 - KRq - Kq2Rq\ 

<$> - 0Rx+qJrq2 4 T(KRx+q) - T(LR)). 

(iv) Under A:X^ X~\ 

ex\ +q+q
2
 + ^KX\ + H . . . ) + ( L I + . . . ) + (f) = 0 

—> tf^-1-^-^2 4- (KX~l~q 4- . . . ) 4 (LX" 1 4- . . . ) 

4 <> = 0, 

i.e., 

0 4 (KXql 4- . . . ) 4 (LXq+ql 4- . . . ) 4 < ^ 1 + ^ / 2 = 0. 

Thus 

A 2 

(4.5) ^ (0 , AT, L, <J>) -> ^(<fc L*7 , i ^ , 0). 

Among the four types of transformations, the effect of A is the most 
interesting. For whereas 2, T, and TR preserve subclasses of cubics, 
quadrics and planes, the inversion A does not necessarily do so. For 
example, A carries the cubic S?(l, K, L, 0) (K ¥= 0) onto ^ ( 0 , Lq\ Kq, 1), 
which is either a plane or a quadric, depending on whether or not 
L = 0. _ 

Since G is a permutation group on the surfaces {^}, it is pertinent to 
determine the number and nature of orbits involved. We shall say that two 
surfaces are equivalent if they belong to the same orbit under the action of 
G. Noting that 5(1, 0, 0, 0) is the single point {0} and that G is transitive 
on the q 4 1 points of s/, we see that one orbit consists of these points 
(including oo); we may call this the trivial orbit. There are at least two 
other orbits, since there must be at least one containing planes, which have 
q 4 1 points (including oo), and another containing ^ ( 1 , 0, 0, 1), which 
has q 4 q 4 1 points. We shall find that there are in fact four orbits 
(Theorem 5.5). As a first step towards this goal, we prove 

LEMMA 4.1. Any surface 6^(0, K, L, <p) which contains more than a single 
point is equivalent to a quadric surface or to a plane. 
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Proof. Let y be a surface containing more than a single point, and let s/ 
be a point of Sf. Under T — A, &>-*&" where &" 3 0, and therefore 

&" = Sf(0, K, L, 0) for some 0, K, L. 

Since £f' contains more than one point, K and L are not both = 0. 
Under A, 

Sf' -> ^ ( 0 , l / , Kq, 6) 

(cf. (4.5) ), which is either a quadric surface or a plane (Theorem 4.1). 

LEMMA 4.2. Every plane instf is a surface 6^(0, 0, L, <t>)for some L, <t>. Any 
two planes are equivalent. 

Proof. A plane II through 0 is determined by 0 and two other points A 
and B ¥^ XA. U then is the set of points {aA + {IB} (a, fi e F). Consider 
the equations 

(4.6) AZ 4- AqZq + Aq2Zq2 = 0 

(4.7) BZ + BqZq + J9*V2 = 0. 

By Theorem 4.1, the above are equations of planes through 0, which 
therefore contain a common line (also through 0). Thus there is an element 
L ¥* 0 of K which is a solution to equations (4.6) and (4.7); the 
equation 

LX + LqXq + LqlZql = 0, 

being satisfied by all elements of the set {aA -f PB}, is the equation of II. 
Therefore II is the surface ^ (0 , 0, L, 0). 

If IT is a plane not through 0, it is parallel to some plane II through 0 
and hence there is a translation TR taking II onto II'. If II is ^ ( 0 , 0, L, 0), 
then from (4.4), IT is ̂ ( 0 , 0, L, <J>), where <f> = - r ( L # ) . 

From (4.3) we see that 

r , 
^ ( 0 , 0, 1, 0 ) - » ^ ( 0 , 0, W \ 0); 

therefore (T) is transitive on planes through 0. (By a slightly more 
detailed argument it can also be shown that (T) is sharply transitive on 
the q3 — 1 planes not through 0.) Thus, by virtue of <T) and appropriate 
translations, any two planes are equivalent. 

COROLLARY 4.2. Given L G K, (L ¥= 0), and § e F, there are exactly q2 

elements X e K such that 

LX 4- LqXq 4- Lq2Xql •+ <j> = 0. 

Proof. The # elements are the # points of J ^ on the plane 
^ ( 0 , 0, L, <j>). 
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While Lemma 4.2 assures us that all planes lie in one orbit, there are 
other surfaces in that orbit. For example the orbit also contains 
^ ( 0 , 1, 0, 0), the inverse of ^ ( 0 , 0, 1, 0). We shall see in Theorem 5.2 
that S?(0, 1, 0, 0) is a non-degenerate quadric, and therefore is not a 
plane. 

Since 5^(0, 1, 0, 0) is a quadric (Theorem 2.1), we can strengthen Lemma 
4.1 to 

LEMMA 4.1'. Every orbit that consists of surfaces having more than one 
point contains a quadric surface. 

Thus we need only to analyse the quadrics £f(Q, K, L, <£) (K ^ 0) in 
order to determine the orbits of {Sf} under G. 

5. Analysis of the quadrics. In this section we think of surfaces ^ ( 0 , K, 
L, <j>) as being in the affine s p a c e d rather than ins/. We seek canonical 
forms for the quadrics; as a first step, we prove: 

THEOREM 5 A. Any quadric SI = £f(Q, K, L, <}>) (K ¥= 0) is equivalent to one 
of the following: 

(a) For q odd: J20 = S?(0, 1, 0, 0),<S, = ^ ( 0 , 1, 0, 1), or£v = S?(0, 1, 0, v\ 
where v is a given non-square in F. 

(b) For q even: J20 = ^ ( 0 , 1, 0, 0), lx = ^ ( 0 , 1, 1, 0), or Ja = 
S?(0, 1, 1, a), where a is a given element of F with the property that the 
equation x + x + a = 0 is irreducible over F. 

Proof. Since <T) is transitive on all points ^ 0 of J ^ there is an integer / 
such that 

r 
1 -> K~q. 

Thus Wl = K~q, Wiql = K] and 

r 
^ ( 0 , K, L, <f>) -> ^ ( 0 , 1, L„ <f>}) 

for some L,, <j>x (cf (4.3) ). Also (from 4.4) ), 

^ ( 0 , U L ^ ^ - i ^ O , 1,L1 - ^ - ^ ^ , ^ ! + 5( / I) - T(LXA)\ 

where A is any point of stf. Now suppose that 

Aq + ^ 2 = A\ + ^ f for some ^ G J ^ 

Then 

^? - Aq = -{A\ - Aq\ 

from which it follows that 
(A} - A) = ~(A} - A)q. 
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Thus either Ax = A or else A , — A = Z ¥= 0 where Z^ = — 1. In the 
latter case, 

and so F is of characteristic 2, i.e., g is even. We deduce that if q is odd, 

then Aq 4- Aq assumes different values for different A\ in particular there 

is one value of A such that 
Aq + Aql = L„ 

and therefore 

^ ( 0 , 1, L,, <f>,) ^4 ^ (0 , 1, 0, 0) for some 0 e F 

On the other hand, if q is even then 

04 4- [if + 04 + / x / = ^ -f ^ for all /x G F, 

and so ^ + Aq assumes only q distinct values. Moreover, 

Aq + Aq
x + \x= Aq + Aql + \ 

implies 

04, + A)ql + (Ax + A)q = A, + À = 04, + ,4) + 04, + ^ / / 2 , 

which implies 04, + A)q = (Ax + A). Hence 

A, + A = 04, + v4) + 04, + ,4) = 0, 

and X, = A. Thus to every L, G A', there exists A ^ K and A e F such 
that 

L, = ^ + Aql + A; 

therefore 

^ ( 0 , 1, L„ <J>,) -4 ^ (0 , 1, A, 0) for some ]8 G f. 

To finish the proof we separate into two cases: 
(a) q odd. Then J is equivalent to 5^(0, 1, 0, p) (/? G F). Now 

a primitive element of F Thus 

^ ( 0 , 1, 0, p) • ^ ( O , €, 0, fie3) 

(cf (4.3) ) 

= ^ ( 0 , 1, 0, 0c2). 

It follows that ^ (0 , 1, 0, e2i) and S(0, 1, 0, ve2i) are equivalent to 
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S(0, 1,0, 1) and S(0, 1, 0, v) respectively. 
(b) q even. Then St is equivalent to S(0, 1, A, /}) (A, /? G F). As in (a), 

e = W^2+^] and 

^ ( 0 , 1, A, 0) • ^ ( O , €, Ac2, £c3) = ^ ( 0 , 1, Ac, j3e2). 

It follows that if A ^ 0, then ^ ( 0 , 1, A, 0) is equivalent t o ^ ( 0 , 1, 1, j8,) for 
some yS, G F. Since g is even, every element of F is a square. Therefore 

^ ( 0 , 1, 0, y S ) - ^ ^ ( 0 , 1, 0, 0) 

(cf (4.4) ), and so ^ ( 0 , 1, 0, yS) is equivalent to ^ ( 0 , 1, 0, 0). Finally, 

^ ( 0 , 1, l , / ? ! ) ^ ^ , 1, l,j8, + p2 + p), 

Pj 4- pj = p + p if and only if pj = p or p + 1. Thus p + p assumes q/2 
distinct values for the q values of p. So given /}1? there exists p <E F 
such that p2 + p + )S, = 0 or a, where a is any element of F which 

9 9 

cannot be expressed in the form p 4- p. Hence yS, = p + p or 
else jS} = p2 + p 4- a, and ^ ( 0 , 1, 1, 0,) is equivalent to ^ ( 0 , 1, 1,0) 
or 5^(0, 1, 1, a). This completes the proof of Theorem 5.1. 

We now investigate^ = ^ ( 0 , 1, 0, /?). Before doing so, it is necessary to 
review the types of quadric surfaces possible i n s / = AG(3, q), and this is 
best done by considering 0> = FG(3, q), the projective extension of srf. To 
obtain @ from stf, we adjoin to each parallel class of lines in stf a unique 
ideal point, stipulating that the ideal points associated with any parallel 
class of planes are collinear (in an ideal line) and that all ideal points and 
lines lie in a single ideal plane, which we denote by TT^. Thus 

» = J * U 77^ and 77^ = PG(2, q). 

Any quadric surfaced in ^ i s one of four types, namely: 
(a) Ruled quadrics. A ruled quadric St consists of a regulus <% of q + 1 

mutually skew lines, and an opposite regulus <%' with the property that 
every line of 0? intersects every line of ^ . St thus contains (q 4- 1) points 
and 2(q + 1 ) lines. Any plane of ^intersects St, either in two lines (one 
from each regulus) or in a non-degenerate conic [4, p. 221]. 

(b) Non-ruled quadrics. In this case, St is an ovoid [4, p. 48], and 
contains q 4- 1 points. Any plane of SP is either a tangent to J or a 
secant. 

(c) Cones. Here St consists of q 4- 1 lines, called generators, concurrent 
in a point A, called the apex of St. Thus 

|J| = q(q + 1) + 1 = q2 + q 4- 1. 
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Any plane of 3P meets 21 m A alone, in one generator, two generators, or in 
a conic. 

(d) Degenerate quadrics. In this case, 21 is either two distinct planes or 
two coincident planes; therefore 

|J | - 2(q2 4 q 4 1) or q2 4 q 4 1 

respectively. 
In s/ = ^ X ^ , 21 = i? — (21 n 77^) has several forms; we are interested 

in the following: 
(a) Ruled hyperboloids. Here, =2 is a ruled quadric, and 21 n 77^ is a 

conic, so thatoâ contains 2(q + 1 ) lines, and 

|J2| = (9 + l)2 - (<? + 1) = q2 + q. 

(b) Non-ruled hyperboloids. In this case, 21 is a non-ruled quadric, 
J n 77^ is a conic, and 

|J2| = q2 4 1 - (9 4 1) = ?2 - q. 

(c) (i) Cones. 21 is a cone whose apex 4̂ is not on 77^. 

\£\ = q2 + q + \ - (q+ \) = q2. 

(ii) Cylinders. Again, J is a cone, but now A e TT^. Thus J consists of 
q -\- 1, g, or q — 1 parallel lines, depending on whether 77^ meets £ in A 
alone, in one, or in two generators respectively. Following common 
nomenclature, we call 21 an elliptic, parabolic, or hyperbolic cylinder 
respectively. Also, |«2| = q 4 q, q2, or q — q respectively. 

(d) One or two planes. In this case, \J2\ = q , 2q , or 2q — q. 

THEOREM 5.2. 21 = ^ ( 0 , K, 0, 0) (K * 0) is a cone with apex 0. 

Proof. Under A, 

St - > ^ ( 0 , 0, ^ , 0) = 77, 

a plane through 0. Therefore |J | = H = g2. Moreover, Z e i i f and only 
if XZ G J (X G F), and so =2 consists of g 4- 1 lines through 0. Hence 21 is 
either a cone with apex 0 or a plane through 0. 

Assume 21 is a plane through 0. Since G is transitive on the planes 
through 0 (Lemma 4.2), we may assume without loss of generality that 
21 3 1 and W. Now 

A - 1 

1, W-> 1, W \ 
and so 77 = {X + iiW '} (X, ju G F). Therefore 

J 2 = {(A + fiW~ly]), 

and in particular 
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â 3 {1, W, (I + W~l) ' } . 

Since J is assumed to be a plane through 0, there exist a, /? e F such 
that 

(i + w~xyx = a + pw. 
Re-arranging, we have the equation 

(5.1) fiW2 + (a + fi - \)W + a = 0. 

But W is a primitive root of K\ therefore W has period q — 1, from which 
it follows that 1, W, W , as vectors, are linearly independent. Referring to 
(5.1), this implies that a = /? = 0, a + / ? = l , yielding the inconsistency 
0 = 1 . Therefore i? cannot be a plane through 0. 

We have from Theorem 5.2 that=20 = 6^(0, 1, 0, 0) is a cone with apex 0. 
We now invest igate^ = y(0 , 1, 0, /}) for any value of ]8 e F. 

THEOREM 5.3. (a) 7/" g w odd tfftd P ¥= 0, /Ae« «^ w e/Y/zer 0 rw/ed or a 
non-ruled hyperboloid, depending on whether \£A = q + q or q — q. 

(b) If q is even, then Êp is a cone with apex 0. 

Proof (a) By Lemma 4.2 and Theorem 5.1 there is some j3] ¥= 0 such 
that J^ is equivalent to y (I, 0, 0, 1), which, as noted in Section 2, contains 
q" + q + 1 points. Hence 

\\\ = q2 + q. 

Also, the (# — l)/2 quadrics \i^ (X e F, X ¥= 0) are equivalent to J^ , 
while JX2£ ^ is equivalent to J^ v. Observing that 

J2g n ^ = 0 for /?' ^ 0, 

and letting « = |Jg J, we count the total number of points in stf\ 

q3 = |^0| + ^ - [ \£P]\ + I^J ] 

= ?2 + ^ y - V + « + ")• 

Solving this equation, we have n = q — q. We now have 

I^J = </2 + q and 1^,1 = q2 - q. 

From our analysis of quadrics in J ^ it follows that â^ is either a 
ruled hyperboloid or an elliptic cylinder, while J^ „ is either a non-ruled 
hyperboloid or a hyperbolic cylinder. Suppose that i^(j6 = /^ or Pxv) is a 
cylinder. By means of 

Tl\X-^ WlX for some /, 

we take Ĵ g onto some cylinder «2 «, whose generators are parallel to the line 
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07, where I is the point 1. â'^ has equation 

KXx+q + KqXq+ql + Kq2Xql+x 4- y = 0, 

where 

# = 0^2 and y = y S J ^ ^ + A 

Since the generators of J ^ are parallel to 07, Z G i ^ if and only if 

À + Z e J ^ for all A G F. 

Therefore the equation 

0 = ÀXA + Z ) 1 + ^ + . . . + y 

= T(K)X2 + [ ( # + ^ 2 ) Z + ]X + (jRTZ1*'7 + . . . ) + y 

= {T(^)A + [ (X + ^ 2 ) Z + (Kq + #)Z* + (Kq2 + A^)Z] }X 

is true for all À, and so 

T(K) = (K + Kq2)Z + . . . = 0. 

In other words, T(K) = 0 and Z lies in the plane 

77 = ^ (0 , 0, K + ^ 2 , 0). 

Therefore every generator of i?£ lies in 77. But 77 can contain at most two 
generators of the quadric cylinder i o . It follows that 

q2 - q^ | ^ | = | j ^ | ^ 2q, 

from which we have q ^ 3. Therefore, if q > 3, Jo is not a cylinder. By 
direct computation in the case q = 3 we can show that here tooJ^ is not a 
cylinder. This completes the proof of (a). 

To prove (b) we simply note, as in the proof of Theorem 5.1, that 

up—•%> 

and invoke Theorem 5.2. 

THEOREM 5.4. If q is even, then £p — ^ (0 , 1, 1, ft) is either a ruled or a 
non-ruled hyperboloid, depending on whether |«2J = q + q or q — q. 

Proof. Assume q > 2. Since 

5(1, 0, 0, 1) -4 5(1, 1, 1, 0) - » ^ ( 0 , 1, 1, 1) = J „ 

\£\\ = Q + q- Let J2.Q belong to the other orbit to Stx as determined by 
Theorem 5.1, and let \âe\ = n. Since the quadrics 5(0, 1, 1, ft) break up 
into two orbits, and since 
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^ ( 0 , 1, 1, £) U y(0, 1, 1, fi') = 0 for /? ¥= /?', 

we count points of se to get the equation 

q3 = \ m + 1-2,1] =\{q2 + q + »). 

Solving, we have n = q ~ q. Turning again to our analysis of the 
quadrics of s/, we find that Qx is either a ruled hyperboloid or an ellip
tic cylinder, while StQ is either a non-ruled hyperboloid or a hyperbolic 
cylinder. 

Suppose that £lx or £e is a cylinder. By exactly the same argument used 
in the proof of Theorem 5.3, we conclude that every generator lies in a 
plane 77 and that therefore q ^ 3. But q > 2 and q is even, so neither âx 

nor âe can be a cylinder. This completes the proof of Theorem 5.4 for 
q > 2. The case q = 2 is verified by direct computation. 

As a corollary to Theorems 5.1-5.4, we have 

THEOREM 5.5. In the extended space se = srf U {oo}, G divides the class 
of surfaces y (0 , AT, L, (J>) zTi/o /owr orbits, which are characterized by the 
number N of points in any element of the orbit. The orbits are: 

Ol = {P}, where P is any point of se. N = 1. 
02'.N = q + q + \. 02 contains a ruled hyperboloid of s/. 
03:N = q2. 03 contains the cone J20 = £f(0, 1, 0, 0) and all planes 

of s£ 
04:N = q — q + 1. 04 contains a non-ruled hyperboloid of se. 

6. Cells in 77^. A closer examination of the cones of the set {S^} in s/ 
leads to the discovery of a set of q2 + q + 1 conies in 77^ = 0* — se. Of 
course 77^ = PG(2, q). 

Definition. A ce// of 77^ is the intersection ^ n 77^, where ^ i s a cone 
of {^}. 

To be precise, fé7 is the extension of a cone when stf is protectively 
extended to @. If ^ is any cone of {^}, we let # also denote the cell 
defined by fé7. 

LEMMA 6.1. There is a one to one correspondence between the set {tf} of 
cells in TT^ and the set of cones in {6^} with apex 0. 

Proof. Using the translation 

T_A:X^> - A 4- X, 

we take a cone with apex A onto a cone with apex 0. Since r_A fixes 77^ 
pointwise, the cell defined by the first cone is identical to the cell defined 
by the second. 
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THEOREM 6.1. The set {^} of cells in ir^ has the following properties: 
(a) Any cell is a non-degenerate conic. 
(b) | {<d?} | = q2 + q + 1. 
(c) Any cell contains q + 1 points. 
(d) Every point lies on q + 1 cells. 
(e) ^«^ two distinct points lie on one and only one cell. 
(f) Any two cells are tangent to one another. 

Proof. Since any cell is the intersection of the plane TT^ with a quadric 
surface, it must be a conic. By Theorem 5.2, the cell is a non-degenerate 
conic since it is the intersection of IT^ with a cone which does not 
degenerate into a plane. 

By Lemma 6.1, any cell is determined by a cone ^ (0 , K, 0, 0). Under 

A:X-> X~\ 

^ ( 0 , K, 0, 0) inverts into S?(0, 0, Kq\ 0), which is a plane of ^ through 0. 
Properties (b)-(f) now follow from the well-known properties of lines in 
77^, which of course are the intersections of TT^ with planes of 0> through 0. 
For example, (f) follows from the fact that any two distinct lines in a 
projective plane intersect. Since any two planes through 0 have exactly one 
common line, so also do the two cones which are their inverses; in other 
words, the two cells defined by these cones share a single point of 77^. 

The subgroups of G and G which are collineations in s/ induce 
collineations in rn00. Thus T:X —» WX induces a Singer cycle [4, p. 34, 5, 8] 
which cyclically permutes points, lines or cells, and 2:X —* Xq induces a 
collineation of period 3. The inversion A in stf induces a bijection A in 77^ 
which fixes the point 1 and interchanges the points Z and Z~x. A is not a 
collineation; in fact A interchanges the set of lines with the set of cells. We 
shall call A an inversion of TT^. 

Since TT^ is exhibited as a cyclic plane [5, p. 1080; 8] and its points are 
{W1} (0 ^ i: ^ q2 + q), the q + 1 points {Wl\ Wl\...,W^i) 
are collinear only if {/0, / j , . . . , / } is a perfect difference set (mod q1 + 
q + 1). 

If we apply the inversion A to the line represented by the difference 
set 

D = {/0, / , , . . . , iq), 

we get a cell represented by 

-D = {-/0, - / ! , . . . , -iq). 

This is the approach of Jungnickel and Vedder [7]. Using difference set 
arguments, several interesting properties of the set of cells can be proved 
[7, pp. 144, 145]. In particular: 
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THEOREM 6.2. Any two distinct cells have one and only one common 
tangent. 

THEOREM 6.3. Consider the following incidence structure II: 
(i) the points of II are the cells of 11^', 

(ii) the lines of IT are the lines ofH^', 
(iii) a point % and a line I are incident if and only if I is a tangent to % 
Then II is a finite projective plane isomorphic to n œ . Moreover, A is a 

polarity in II. 

Since the above results are either explicitly proved in [7] or easily 
deduced therefrom, we offer no proofs here. 

7. Cubic surfaces S?(0, Ky L, 0). It remains only to consider the cubic 
surfaces S?(0, K, L, <J>) (0 ¥* 0). Since 

^ (0 , K, L, <f>) = S?(l, 0~]K, 0 _ 1L, 0~]cj>l 

we shall henceforth take 6 = 1 and consider Sf = Sf{\, Ky L, 0). Excluding 
the trivial c a s e ^ = Sf(l, 0, 0, 0) = {0} and its images under G, we have 
from Theorem 5.5 that Sf is one of three types, according to the orbit to 
which it belongs: 

I. Se e 02 • \y\ = a2 + q + 1 

II. Se e 03 • \S?\ = q2 + 1 

III. ^ e 04 • \S?\ = q1 - q + 1. 

It is easy to see that cubics of each type exist, since an example is 
obtained by inverting any quadric which does not contain 0. It is also easy 
to see that Sf does not contain oo, since 

^ = sr(4>, Lq\ Kq, 1) 

does not contain 0. Our particular interest in this study of Se will be the 
intersection of Se with lines and planes of stf. 

Definition. An exterior line (plane) t o ^ i s a line (plane) that contains no 
point of Sf. 

It will be helpful to have simpler forms for the cubic surfaces Sf\ 

LEMMA 7.1. Any cubic Se = Sf(\, K, L9 <>) is equivalent under collineations 
of stf to Sf{\, 0, p, o) for some p, a G F. 

Proof. 

Sf(l, K7 L, <f>) T^ <e{\, 0, L„ <f>,) for some L„ <f>, 

(cf. (4.4) ). Now Lx = XWl for some \ G F, Wl e # , and 

^ ( 1 , 0, L„ <?>,) -» 5(1, 0, A H ^ ' + ^ + A ^ W ' ( l + « + * 2 ) ) 

(cf (4.3) ) 
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= 5(1, 0, p, a) for some p, o Œ F. 

By application of appropriate elements of ( r ) we can get even simpler 
forms for £f. Thus if 

a = eJ = W^+i+iX 

then 

^ ( 1 , 0, 0, a) -» ^ ( 1 , 0, 0, 1), 

and s o ^ ( l , 0, 0, 1) is a canonical form for 5^(1, 0, 0, a) (a ^ 0). To obtain 
the three canonical forms for Sf would require a more thorough analysis, 
involving the use of A. However, since we are interested in the relationship 
of Sf to lines and planes, which are not preserved by A, it is inappropriate 
to restrict attention to canonical forms. 

We first consider Sf(\, 0, 0, a) (a ¥= 0), which we denote by £?. 
Clearly, 

ST = {X\N(X) = - a } . 

Since K has q1 + q + 1 elements of norm — a, Sf0 is a cubic of type I. 

LEMMA 7.2. Let 

7/zew ( F ) w sharply transitive on the points of Sfa. 

Proof Letting U = Wq~\we note that 

N(U) = Uq2+q+l = H^ 3" 1 = 1. 

Under the action of F , 

Xx+q+ql + a = 0 -» £ / - ( 1 + ^ V ) A : i + ^ ^ 2 + a = o. 

Thus F fixes 5£ since iV(f/) = 1. Since 

I <r> | = ^ + 9 + i = |^|, 

and only the identity fixes a point, ( F ) is sharply transitive on 6^a. 
Since 5^ is a cubic surface, some lines of s# may meet 5^ in three points. 

Thus if q ^k 3 a line may lie entirely within <S£. However: 

LEMMA 7.3. <Ŝ  contains no line of seif q > 3. 

Proof. Any plane intersects ^ in a cubic curve. A plane cubic curve 
could consist of 3 distinct lines, but not n > 3, since it would then be 
described in Cartesian coordinates by an equation having n linear factors, 
and thus be of degree greater than 3. 

Now suppose that ^ contains a line /. Then / contains q points of <££. Let 
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A be a fixed point of./ and let X be any other point of /. Because ( F ) is 
transitive on the points of «9£, there is an element of ( F ) taking X into v4. 
However, this element, y say, does not fix /, since if it did it would also fix 
the line through 0 parallel to /; in that case y would be a central dilatation 
X —> XX, which fixes only lines through 0. Since / is assumed to lie on £fa, it 
cannot contain 0, and therefore is not fixed by y. 

It follows that through A there are q lines which lie on Sfa. Since this is 
true for every point A on /, we have q(q — 1) distinct lines lying on «S£, 
each of which contains one point of /. Counting /, we now have q — q + 1 
lines lying on 5£, and also lying on the q + 1 planes through /. Therefore, 
the number of lines of S/^ lying on one of these planes is at least 

1 + (q2 - q)/(q + 1) = q - 1 + 2/(q + 1). 

That is, some plane through / contains at least q lines which lie completely 
in S%. But no plane can contain more than 3 lines of £f, so q ^ 3. 

Let P be any point of 5fa, and let Xbe any point ¥= P of S%. For q > 2 
the lines PX are of two different types: some lines contain exactly 3 points 
of «S£ (counting P), and others contain only two. We say that there are 
k of the first type and d of the second. Since ( F ) is transitive on the points 
of <££, k and d are independent of the choice of P. 

LEMMA 7.4. The number of lines which contain at least one point of £fa 

is 

(7.1) (q2 + q + 1)[ (q2 + q + 2)/2 + A:/3]. 

Proof. Given a point P of <££, the number of ordered pairs (P, X) 
( I e ^ , I 7̂  ? ) is f̂ + g, or in terms of k and J, 2k + J. Thus 

(7.2) 2k + d = q2 + q. 

Summing over all points of £f, the number of lines containing 3 points of 
£% is (g + # + l)/:/3, and the number containing 2 is (q + <? + l)d/2. 
The total number of lines containing at least one point of 5^ is therefore 

(<?2 4- q + l)[A:/3 + rf/2 + q2 + (7 + Y - k - d\. 

Using (7.2) to substitute for d, and simplifying, we get (7.1). 

We wish to show now that every plane of ̂ con ta ins at least one point 
of ^ . We begin by investigating planes through 0. 

If Z is any point of stf(Z * 0), then {\Z}(\ G F) is the line OZ. 
Now 

vV(AZ) = X3N(Z). 

Hence if q = 1 (mod 3), so that F contains all 3 cube roots of unity, OZ 
contains 5 points of norm N(Z). But if q =É l(mod 3), then OZ contains 
one and only one point of norm N(Z). In this case, any line through 0 
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contains exactly one point of £fa\ therefore every plane through 0 contains 
exactly q + 1 points of 5£ if q =É 1 (mod 3). 

Now suppose q = 1 (mod 3). As above, F contains all 3 cube roots of 
unity: w, <o2, and 1. Also, any line OZ contains 3 points with norm N(Z), 
namely Z, u>Z, and co Z. Moreover, 

N(\Z)/N(Z) = X3, 

from which it follows that the lines through 0 are partitioned into three 
mutually exclusive classes: 

(i) lines each containing 3 points of norm 1, 
(ii) lines each containing 3 points of norm co, 

(iii) lines each containing 3 points of norm <o . 
Let n be a plane through 0, and let II contain x, y and z lines of class (i), 
(ii) and (iii) respectively. Then 

(7.3) x+y + z = q+l. 

LEMMA 7.5. x, y, z, are all positive integers. 

Proof. Since q == 1 (mod 3), ( F ) contains 

W^~l)n = «. 

Therefore ( F ) partitions both the lines and the planes through 0 into 
three orbits of length (q + q + l) /3 each. The orbits themselves are 
permuted by T:X —» WX since (T) is transitive on lines (and planes) 
through 0. Consider the plane II through 0, mentioned above, which 
contains x, y, and z lines of class (i), (ii), and (iii) respectively. II lies in 
one of the three orbits. Now T permutes classes (i), (ii) and (iii) as well as 
orbits, while ( P ) is transitive on the planes in any orbit. Therefore, in one 
orbit the planes each contain 3x points of norm 1, in another, 3y, and in 
the third 3z. Let OP be a line through 0 containing (three) points of norm 
1. In virtue of the transitivity of (V) on points of norm 1, OP lies on a 
plane through 0 containing 3x points of norm 1. Moreover, since <T') 
contains a collineation that will take any line of II through 0 containing 
points of norm 1 onto OP, it follows that there are at least x planes 
through OP, each of which contains 3x points of norm 1. By similar 
reasoning with respect to y and z, we conclude that the q + 1 planes 
through OP consist of x from one orbit, y from a second, and z from the 
third. 

If we now count the q + q + \ points of norm 1 by observing their 
incidences with the q + 1 planes through OP, we get the equation 

3 + 3x(x - 1) + 3y(y - 1) + 3z(z - 1) = q2 + q + 1, 

which, simplified, is 

x2 + y2 + z2 - (x + y + z) = (q2 + q - 2)/3. 
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Applying (7.3), we have 

(7.4) x2 4 y2 4 z2 = (q2 + 4 ^ + l ) /3 . 

Equations (7.3) and (7.4) are two simultaneous Diophantine equations, 
symmetric in x, y, and z. Eliminating z, we have 

x1 + y1 + (q + 1 - x - y)2 = (<?2 4 Aq 4 l ) /3 . 

Re-arranged, this is 

(7.5) / - (ç 4 1 - x)y 4- x2 - (q 4 \)x + (q2 + q + l ) /3 = 0. 

As a quadratic in j / , (7.5) has discriminant 

D = (q 4 1 - x)2 - 4x2 4 4(9 4 1)JC - 4(q2 4 9 4 l) /3 

= ~[9JC2 - 6(q 4 1)JC + (^ - l)2]/3 

= -{[3x-(q+ l ) ] 2 - 4 ^ } / 3 . 

Since D à 0 for a solution to (7.5), 

[ 3 x - ( < / + l)]2^4<jr. 

Thus 

- 2 ^ 4 S 3JC - (q + 1) S 2y/q, 

i.e., 

(7.6) (V5 - l)2 ^ 3x ^ (V? + l)2 

(cf [6, p. 311] ). In particular, (7.6) shows that x > 0. Since (7.3) and (7.4) 
are symmetric in x, y, and z, we also have y > 0 and z > 0, proving 
Lemma 7.5. 

THEOREM 7.1. Every plane of s/ contains at least one point of £fa. 

Proof. If q 9È 1 (mod 3), then every line through 0 contains a point of <££, 
and therefore every plane through 0 contains q 4 1 points of «S£. If 
^ = 1 (mod 3), it is an immediate corollary of Lemma 7.5 that any plane 
through 0 meets Sfa. Thus, regardless of the value of q, every plane through 
0 contains at least one point of Sf. 

Now suppose that there is a plane m not through 0 and exterior to <S£. 
Under the action of (T') , which fixes <S£, we get a set S of q 4 g 4 1 
distinct planes, including 77, each of which is exterior to Sfa. We count the 
number of lines which lie on at least one plane of S: 

For each z'(2 ^ 1' ^ r ^ q2 4 q 4 1) there are «7- ^ 0 lines of 77, each of 
which is the common intersection of i planes of S. Counting multiplicities, 
the total number of intersections of planes of S\n with 77 is 

n2 4 2n3 4 3n4 4 . . . 4 (r — \)nr ^à q2 + q. 
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We note for future reference that 

«2/2 + 2«3/3 + ... + (r - \)n,Jr 

^ [«2 + 2«3 + 3«4 + . . . + (r - l)«r]/2 

g (42 + ?)/2. 

If a line of 77 is the common intersection of / planes of Sy and if we apply 
<T') to this line, we get q 4 q 4 1 exterior lines; z of these, including the 
original line itself, are on 77. Hence the total number of lines in J ^ each of 
which is the intersection of i planes of S, is 

(q2 + q + 1)V'-

The total number of lines that lie on at least one plane of S is therefore 

(q2 4- (7 + l)[«2/2 + «3/3 4- . . . 4- « r/r + q2 + q 

- (n2 4- «3 4- . . . + nr)} 

= (q2 4 q 4 l)fo2 4- 9 - («2/2 4- 2n3/3 

4 . . . + (r - 1 ) V ) ] 

g (42 4 4 + 1)[^2 + q - (q2 4 ^)/2] 

(by the above note) 

= (q2 4 4 4 1)(<72 4 ^)/2. 

Thus the number of exterior lines to Sf is at least 

(q2 + 4 + l)fo2 + 4)/2. 

But by Lemma 7.4, the number of lines containing at least one point of S? 
is greater than 

(q1 + q + \)(q2 + q)ll. 

Therefore the total number of lines in srf is greater than 

(q2 + q + \)(q2 + q). 

This is a contradiction; there are only (q2 4- q 4- \)q2 lines i n ^ Therefore 
every plane of s/ contains at least one point of Sf. 

We are now ready to consider the more general surface 

S? = y ( l , 0, p, a) (p, a <E F). 

We exclude only the trivial case p = o = 0, in which y = {0}. 

THEOREM 7.2. If po ¥= 0, then the plane 6^(0, 0, p, a) is exterior to £f. 

Proof. Suppose to the contrary that there is a point Z in &> n 
^ ( 0 , 0, p, a). Substituting 
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p(Z 4 - Z U Zql) 4- a = 0 

into the equation of S^: 

(7.7) X 1 ^ ^ 2 + p ( ^ + xq + ^ 2 ) + a = o, 

with X = Z, and simplifying we have 

i.e., Z = 0. But if a ^ 0, then 0 does not lie on ^ ( 0 , 0, p, a). 

As a companion to Theorem 7.2, we have: 

THEOREM 7.3. Every plane ira = ^ ( 0 , 0, 1, a), except ena/p when po ¥= 0, 
contains at least one point of £f. 

Proof. If p = 0 then y = <S£ and the result follows from Theorem 7.1. If 
a = 0, then substitution of 

Z 4 Z^ + Zql + a = 0 

into (7.7), with Z = X and a = 0, yields 

and we know from Theorem 7.1 that ira contains a point of the surface 
^-pa. Any point Z that is in S^_ n 77a must also lie in the surface with 
equation 

XX+q+ql + p(Z + ^ 4- X^) 4- pa - pa = 0, 

which is Sf(l, 0, p, 0). By similar reasoning, if pa ^ 0 and a ¥= p, then 
substitution of 

Z 4 Z*7 + Zql + a = 0 

into (7.7) with Z = X yields 

Z 1 + « + « 2 = pa - a * 0. 

Once again, Theorem 7.1 assures that TT(X contains a point of the surface 
<££_pa, and therefore also contains a point of Sf. 

To generalize Lemma 7.3 we have 

THEOREM 7.4. £f contains no line if q > 3. 

Proof. If p = 0, then by Lemma 7.3, Sf = 5^ contains no line for q > 3. 
If pa ^ 0 and there is a line / lying on £f, then by Theorem 7.2, / cannot 
intersect 77' = y (0 , 0, p, a). Thus / lies in a plane 77a = ^ ( 0 , 0, 1, a) which 
is parallel to 77'. Substituting 

Z + Zq 4- Z ^ 4- a = 0 
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into (7.7) with Z = X, we have 

Z 1 + ^ = pa - a * 0. 

Thus any point Z of / is also a point oîSf_. But this implies q = 3 by 
Lemma 7.3. 

The only case not yet considered is a = 0, p ^ 0. In this case it is easily 
seen that 

^o n ^ = {0}, 

where 770 = ^ ( 0 , 0, 1, 0); therefore any line / lying entirely in Neither 
contains 0 or lies in a plane 7Ta(a ¥= 0) parallel to 770. If the latter holds, 
then a duplicate argument to the above yields q ^ 3. If / contains 0, 
then 

/ = {XZ} (X Œ F, Z * 0), 

where 

(7.8) Z]+q+q2 + p(Z + Zq + Z^) = 0. 

Since by assumption XZ G £f for all A e F, 

(7.9) A3Z1+*+*2 4- pA(Z + Z*7 + Zql) = 0. 

Solving (7.8) and (7.9) simultaneously, we have A3 — A = 0. Thus 

A = 0, 1, or - 1 . But (7.9) is true for all A e F and neither zx+q+ql nor 

Z + Zq + Zq is zero. Therefore 

Theorems 7.1-7.3 contribute to, but do not complete, the solution of the 
following problem: 

Given a cubic surface Sf = £f(\9 0, p, a), find all exterior planes to ^ 
We know from Theorem 7.1 that ^ = ^ ( 1 , 0, 0, a) (a ¥= 0) has no 

exterior planes, and ^ is a cubic of type I. But it is not hard to show that 
for q > 2, ̂  is equivalent to a cubic Sf(\, 0, p, a) with po ¥= 0, which by 
Theorem 7.2 has an exterior plane. Thus we cannot conclude that all 
cubics of type I have no exterior planes. Moreover, we can show by direct 
computation for any given value of q = 2 that there are cubics of each 
type with form £f(\, 0, p, a) where po ^ 0; therefore there are cubics of 
each type with at least one exterior plane. 
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