MINKOWSKI'S FUNDAMENTAL INEQUALITY FOR REDUCED POSITIVE QUADRATIC FORMS

E. S. BARNES
To Kurt Mahler for his seventy-fifth birthday

(Received 11 November 1977)
Communicated by J. H. Coates

Abstract

Forms which are reduced in the sense of Minkowski satisfy the "fundamental inequality" $a_{11} a_{22} \ldots a_{n n} \leqslant \lambda_{n} D$; the best possible value of λ_{n} is known for $n \leqslant 5$. A more precise result for the minimum value of D in terms of the diagonal coefficients has been stated by Oppenheim for ternary forms. The corresponding precise result for quaternary forms is established here by considering a convex polytope $\mathscr{D}(\alpha)$, defined as the intersection of the cone of reduced forms with the hyperplanes $a_{i i}=\alpha_{i}(i=1, \ldots, n)$.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 10 E 25; secondary 10 E 20.

1. Introduction

Minkowski established the existence of a number λ_{n} with the property that, if $f(\mathbf{x})=\sum_{1}^{n} a_{i j} x_{i} x_{j}$ is positive definite and reduced (in the sense of Minkowski), with determinant $D=\operatorname{det}\left(a_{i j}\right)$, then

$$
\begin{equation*}
a_{11} a_{22} \ldots a_{n n} \leqslant \lambda_{n} D \tag{1.1}
\end{equation*}
$$

Lekkerkerker (1969, Section 10) and Van der Waerden (1956) give detailed accounts of reduction theory and the best estimates for λ_{n} in this "fundamental inequality".

Mahler has made several contributions to the theory of Minkowski reduction. In particular, he obtained in (1938) an estimate for λ_{n} for all n, applicable to general convex bodies; and in (1940) and (1946) he gave proofs of the best possible results for $n=3$ and $n=4$. Best possible results are now known for $n \leqslant 5$; these are

$$
\begin{equation*}
\lambda_{2}=\frac{4}{3}, \quad \lambda_{3}=2, \quad \lambda_{4}=4, \quad \lambda_{5}=8 \tag{1.2}
\end{equation*}
$$

(so that in fact for all $n \leqslant 5, \lambda_{n}=\gamma_{n}^{n}$); for $n=5$, see Van der Waerden (1969) and Nelson (1974).

Oppenheim (1946, p. 257) made the laconic comment, in a different but obvious notation, for the case $n=3$: "It does not appear to have been observed that this inequality may be replaced by the sharper inequality

$$
\begin{equation*}
a b c+\frac{1}{2} a b(c-b)+\frac{1}{2} a c(b-a) \leqslant 2 \Delta . " \tag{1.3}
\end{equation*}
$$

This observation suggests a different way of approaching the inequality (1.1), namely the determination of the least value of D for positive reduced forms f with given values of the diagonal coefficients $a_{11}, a_{22}, \ldots, a_{n n}$ (necessarily satisfying $a_{11} \leqslant a_{22} \leqslant \ldots \leqslant a_{n n}$).

The main purpose of this article is to carry through this determination for $n=4$. We prove

Theorem. Suppose that $f(\mathrm{x})=\sum_{1}^{n} a_{i j} x_{i} x_{j}$ is positive definite and reduced, with determinant D; and set

$$
\begin{equation*}
a_{11}=a, \quad a_{22}=b, \quad a_{33}=c, \quad a_{44}=d, \quad \ldots \tag{1.4}
\end{equation*}
$$

where necessarily

$$
\begin{equation*}
0<a \leqslant b \leqslant c \leqslant d \leqslant \ldots \tag{1.5}
\end{equation*}
$$

Then
(i) if $n=2$,

$$
\begin{equation*}
4 D \geqslant 3 a b+a(b-a) \tag{1.6}
\end{equation*}
$$

(ii) if $n=3$,

$$
\begin{equation*}
4 D \geqslant 2 a b c+a b(c-b)+a c(b-a) ; \tag{1.7}
\end{equation*}
$$

(iii) if $n=4$,

$$
4 D \geqslant a b c d+a c d(b-a)+a b d(c-b)+a b c(d-c)+\frac{1}{4} a^{2}(b-c)^{2} .
$$

These inequalities are all best possible for all a, b, c, d and they imply (1.1), (1.2) for $n \leqslant 4$.

2. Minkowski reduction, the cones $\mathscr{M}, \mathscr{M}^{+}$and the polytopes $\mathscr{D}, \mathscr{D}^{+}$

The condition for f to be reduced is that, for all $i=1, \ldots, n$ and for all intgeral $\mathrm{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$,
if g.c.d. $\left(x_{i}, x_{i+1}, \ldots, x_{n}\right)=1$, then $f(x) \geqslant a_{i i}$.
In the $\frac{1}{2} n(n+1)$-dimensional space \mathscr{P} of non-negative definite forms, the set \mathscr{A} of reduced forms is a polyhedral cone, since in fact finitely many inequalities (2.1)
suffice to define it. We denote by \mathscr{M}^{+}the subset of \mathscr{M} consisting of "properly reduced" forms satisfying

$$
\begin{equation*}
a_{i, i+1} \geqslant 0 \quad(i=1, \ldots, n-1) \tag{2.2}
\end{equation*}
$$

 a suitable change of sign of the variables.

For real a, b, c, \ldots satisfying (1.5), we define $\mathscr{D}(\alpha)=\mathscr{D}(a, b, c, \ldots)$ as the intersection of \mathscr{M} with the hyperplanes (1.4). Thus $\mathscr{D}(\alpha)$ is the set of positive reduced forms with prescribed diagonal coefficients a, b, c, \ldots. We define $\mathscr{D}^{+}(\alpha)$ similarly in relation to \mathscr{M}^{+}. Since the reduction conditions (2.1) include the inequalities

$$
\left|2 a_{i j}\right| \leqslant a_{i i} \quad(1 \leqslant i<j \leqslant n)
$$

it follows that $\mathscr{D}(\alpha)$ and $\mathscr{D}^{+}(\alpha)$ are bounded and are therefore convex polytopes.
Finally, define

$$
\begin{equation*}
\Delta(\alpha)=\min _{f \in \mathscr{S}(\alpha)} D(f)=\min _{f \in \mathscr{Q}+(\alpha)} D(f) \tag{2.4}
\end{equation*}
$$

Since the region $D(f) \geqslant$ const, for $f \in \mathscr{P}$, is strictly convex, we have immediately
Lemma. $\Delta(\alpha)$ is attained at a vertex of $\mathscr{D}(\alpha)$.
In order to establish the theorem, it now suffices to specify $\mathscr{D}(\alpha)$ for $n \leqslant 4$, determine its vertices and evaluate D at the vertices. This is a feasible programme for $n \leqslant 4$, since a complete description of \mathscr{M} and \mathscr{M}^{+}is then known. However, even with the assistance of a computer, the computation may not be practicable for $n \geqslant 5$. In Section 5 I shall indicate a classification of the vertices of $\mathscr{D}(\alpha)$ which may be of assistance in examining the problem for $n \geqslant 5$.

3. Two- and three-dimensional forms

For $n=2$, the reduction conditions are

$$
a_{11} \leqslant a_{22}, \quad\left|2 a_{12}\right| \leqslant a_{11},
$$

so that $\mathscr{D}(a, b)$ is the line segment $\left\{a_{12}| | 2 a_{12} \mid \leqslant a\right\}$. Hence trivially, since $D=a_{11} a_{22}-\frac{1}{4} a_{12}^{2}$,

$$
\Delta(\alpha)=a b-\frac{1}{4} a^{2}=\frac{3}{4} a b+\frac{1}{4} a(b-a)
$$

giving (1.5).
For $n=3$, it is well known that $f \in \mathscr{M}^{+}$if and only if, in addition to (2.2) and the inequalities $a_{11} \leqslant a_{22} \leqslant a_{33},(2.1)$ is satisfied for $\mathbf{x}=(1,-1,0),(1,0,-1),(1,0,1)$, $(0,1,-1)$ and $(1,-1,1)$. Hence, writing for convenience $f_{i j}=2 a_{i j}(i \neq j)$, a form

$$
f(\mathbf{x})=a x_{1}^{2}+b x_{2}^{2}+c x_{3}^{2}+f_{12} x_{1} x_{2}+f_{13} x_{1} x_{3}+f_{23} x_{2} x_{3}
$$

belongs to $\mathscr{D}^{+}=\mathscr{D}^{+}(a, b, c)$ if and only if

$$
0 \leqslant f_{12} \leqslant a, \quad\left|f_{13}\right| \leqslant a, \quad 0 \leqslant f_{23} \leqslant b, \quad f_{12}-f_{13}+f_{23} \leqslant a+b
$$

In the three-dimensional space of the coefficients f_{12}, f_{13} and f_{23}, \mathscr{D}^{+}thus has 7 facets and is easily found to have the 9 vertices

$$
\begin{gathered}
\left(f_{12}, f_{13}, f_{23}\right)=(a, a, b),(a, 0, b),(a,-a,-a+b),(0, a, b),(0,-a, b) \\
(a, a, 0),(a,-a, 0),(0, a, 0),(0,-a, 0)
\end{gathered}
$$

Denoting the 9 vertices by v_{1}, \ldots, v_{9} respectively, it is easily checked that v_{6}, v_{7}, v_{8} and v_{9} are not vertices of $\mathscr{D} ; v_{4} \sim v_{5}$ trivially; $v_{1} \sim v_{2}$ under $x_{2} \mapsto x_{2}+x_{3}, x_{3} \mapsto-x_{3}$; $v_{1} \sim v_{3}$ under $x_{1} \mapsto x_{1}-x_{3}$. Hence

$$
\begin{aligned}
\Delta(a, b, c) & =\min \left(D\left(v_{1}\right), D\left(v_{4}\right)\right) \\
& =\min \left(a b c-\frac{1}{4} a b^{2}-\frac{1}{4} a^{2} c, a b c-\frac{1}{4} a^{2} b-\frac{1}{4} a b^{2}\right) \\
& =a b c-\frac{1}{4} a b^{2}-\frac{1}{4} a^{2} c
\end{aligned}
$$

This confirms Oppenheim's result (1.6), and shows that, apart from forms equivalent trivially by change of sign of variables, equality holds for all a, b, c for precisely the three reduced forms

$$
\begin{aligned}
& v_{1}(\mathrm{x})=a x_{1}^{2}+a x_{1} x_{2}+a x_{1} x_{3}+b x_{2}^{2}+b x_{2} x_{3}+c x_{3}^{2} \\
& v_{2}(\mathbf{x})=a x_{1}^{2}+a x_{1} x_{2} \quad+b x_{2}^{2}+b x_{2} x_{3}+c x_{3}^{2} \\
& v_{3}(\mathbf{x})=a x_{1}^{2}+a x_{1} x_{2}-a x_{1} x_{3}+b x_{2}^{2}+(-a+b) x_{2} x_{3}+c x_{3}^{2}
\end{aligned}
$$

4. Quaternary forms

For $n=4$, it is shown in Barnes and Cohn (1976) that \mathscr{M} has 39 facets, which correspond to the 3 inequalities

$$
\begin{equation*}
a_{11} \leqslant a_{22} \leqslant a_{33} \leqslant a_{44} \tag{4.1}
\end{equation*}
$$

and all 36 inequalities of the form (2.1) for which $x_{i}=1, x_{j}=0$ if $j>i$, and the other $x_{j}=0$ or ± 1 (excluding the 4 unit vectors). It appears to be computationally more economical to use \mathscr{M}^{+}and then reject those notices of $\mathscr{D}^{+}(\alpha)$ which are not vertices of $\mathscr{D}(\alpha) . \mathscr{M}^{+}$has, in addition to the 6 arising from the inequalities (4.1) and (2.2), 20 facets corresponding to the inequalities (2.1) for the following 20 vectors x :

$$
\begin{aligned}
& (1,0,1,0),(1,0,0,1),(0,1,0,1),(-1,1,0,0),(-1,0,1,0),(-1,0,0,1) \\
& (0,-1,1,0),(0,-1,0,1),(0,0,-1,1),(0,1,-1,1),(1,-1,0,1) \\
& (-1,1,0,1),(1,0,-1,1),(-1,0,-1,1),(1,-1,1,0),(1,-1,1,1) \\
& (1,1,-1,1),(-1,-1,1,1),(-1,1,-1,1),(1,-1,-1,1)
\end{aligned}
$$

Hence $\mathscr{D}^{+}(\alpha)$ is specified minimally by the following system of 23 inequalities, where for convenience we again write $f_{i j}=2 a_{i j}(i \neq j)$:

$$
\begin{gathered}
f_{12} \geqslant 0, f_{23} \geqslant 0, f_{34} \geqslant 0, \\
f_{12} \leqslant a, \quad \pm f_{13} \leqslant a, \quad \pm f_{14} \leqslant a, f_{23} \leqslant b, \quad \pm f_{24} \leqslant b, \quad f_{34} \leqslant c, \\
f_{12}-f_{13}+f_{23} \leqslant a+b, \\
f_{12}-f_{14}+f_{24} \leqslant a+b, \\
f_{12}+f_{14}-f_{24} \leqslant a+b, \\
f_{13}-f_{14}+f_{34} \leqslant a+c, \\
-f_{13}+f_{14}+f_{34} \leqslant a+c, \\
f_{23}-f_{24}+f_{34} \leqslant b+c, \\
f_{12}-f_{13}-f_{14}+f_{23}+f_{24}-f_{34} \leqslant a+b+c, \\
-f_{12}+f_{13}-f_{14}+f_{23}-f_{24}+f_{34} \leqslant a+b+c, \\
-f_{12}+f_{13}+f_{14}+f_{23}+f_{24}-f_{34} \leqslant a+b+c, \\
f_{12}-f_{13}+f_{14}+f_{23}-f_{24}+f_{34} \leqslant a+b+c, \\
f_{12}+f_{13}-f_{14}-f_{23}+f_{24}+f_{34} \leqslant a+b+c .
\end{gathered}
$$

Because of the very simple form of the first 12 inequalities, bounding the 6 variables $f_{i j}$, it is not difficult to determine the vertices of $\mathscr{D}^{+}(\alpha)$ by considering all possible sets of 6 linearly independent equations that yield a solution of the inequalities. In this way it is found that $\mathscr{D}^{+}(\alpha)$ has 81 vertices that are also vertices of $\mathscr{D}(\alpha)$. Denoting each vertex by the corresponding vector ($\left.f_{12}, f_{13}, f_{14}, f_{23}, f_{24}, f_{34}\right)$, these fall into 9 classes of equivalent vertices, as follows:

14 vertices equivalent to $v_{1}=(a, 0, a, b, b, c)$,
4 vertices equivalent to $v_{2}=(0,0, a, 0, b, c)$,
9 vertices equivalent to $v_{3}=(a, a, a, 0, b, c)$,
10 vertices equivalent to $v_{4}=(0, a, a, b, b, c)$,
12 vertices equivalent to $v_{5}=(a, a, a, b, b, c)$,
12 vertices equivalent to $v_{6}=(0, a, a, 0, b, c)$,
6 vertices equivalent to $v_{7}=(a, 0, a, 0, b, c)$,
6 vertices equivalent to $v_{8}=(0,0, a, b, 0, c)$,
8 vertices equivalent to $v_{9}=(0, a, a, b, 0, c)$.

It is now easily verified that, for all a, b, c, d satisfying (1.5),

$$
\begin{aligned}
D\left(v_{1}\right) & =\frac{1}{16}\left[16 a b c d-4 a^{2} c d-4 a b^{2} d-4 a b c^{2}+a^{2}(b-c)^{2}\right] \\
& =\min _{1 \leqslant k \leqslant 4} D\left(v_{k}\right) \\
D\left(v_{5}\right) & =\frac{1}{16}\left[16 a b c d-4 a^{2} c d-4 a b^{2} d-4 a b c^{2}+a^{2} c^{2}\right] \\
& =\min _{5 \leqslant k \leqslant 9} D\left(v_{k}\right)
\end{aligned}
$$

and that $D\left(v_{1}\right)<D\left(v_{5}\right)$. It follows that $\Delta(\alpha)=D\left(v_{1}\right)$, which establishes part (iii) of the theorem. Equality holds for general values of a, b, c, d only for the 14 vertices equivalent to v_{1}, although other listed vertices may have equal determinant or even be identical for particular values of a, b, c, d. Indeed if $a=b=c=d$, all forms $v_{1}, v_{2}, v_{3}, v_{4}$ are equivalent to the absolutely extreme form; then and only then, $4 D=a b c d$.

For completeness we list all 14 vertices of $\mathscr{D}^{+}(\alpha)$ with $D=\Delta(\alpha)$; all reduced forms for which equality holds in (1.8) are trivially equivalent to one of these by change of sign of variables. It suffices to specify the coefficient vectors $\left(f_{12}, f_{13}, f_{14}, f_{23}, f_{24}, f_{34}\right):$

$$
\begin{aligned}
& (a, 0, a, b, b, c),(a, 0,-a, b, 0, c),(a, 0, a, b, a, c),(a, 0,-a, b,-a+b, c) \\
& (a, a, 0, b, b, c),(a, a, a, b, a-b, a-b+c),(a, a,-a, b,-b,-b+c) \\
& (a, a,-a, b,-a,-a+c),(a, a, a, b, 0, c),(a,-a, 0,-a+b, b, c) \\
& (a,-a,-a,-a+b,-b, a-b+c),(a,-a, a,-a+b, a-b,-b+c) \\
& (a, 0,0, b,-b,-b+c),(a,-a,-a,-a+b,-a, c)
\end{aligned}
$$

It is noteworthy that the whole analysis may be carried through at once for all a, b, c, d satisfying (1.5), with the single exception that, of the 4 vertices of $\mathscr{D}(\alpha)$ trivially equivalent to ($0, a, a, b, b, a+b-c$) and having $f_{23}=+b$, two are in $\mathscr{D}^{+}(\alpha)$ if $c<a+b$, the other two are if $c>a+b$, while all four are in $\mathscr{D}^{+}(\alpha)$ if $c=a+b$.

5. Forms extreme with respect to $\mathscr{D}(\alpha)$

In establishing the lemma of Section 2, we have already observed that a form belonging to $\mathscr{D}(\alpha)$ must be a vertex of $\mathscr{D}(\alpha)$ if it provides a local minimum of the determinant $D(f)$ for $f \in \mathscr{D}(\alpha)$. The converse statement is, however, false. Consider, for example, the quaternary form

$$
\begin{equation*}
v(x)=a x_{1}^{2}+a x_{1} x_{2}-a x_{1} x_{3}-a x_{1} x_{4}+b x_{2}^{2}-b x_{2} x_{4}+c x_{3}^{2}+c x_{3} x_{4}+d x_{4}^{2} \tag{5.1}
\end{equation*}
$$

subject to (1.5); v is a vertex of $\mathscr{D}(\alpha)$, trivially equivalent to v_{3} of Section 4 . It is easy to verify that

$$
\begin{equation*}
f_{\varepsilon}(x)=v(x)+\varepsilon x_{2} x_{3}+\varepsilon x_{2} x_{4} \tag{5.2}
\end{equation*}
$$

is reduced for $0 \leqslant \varepsilon \leqslant b-a$ and hence $\in \mathscr{D}(\alpha)$; and that

$$
\begin{equation*}
D\left(f_{\varepsilon}\right)=D(v)-\frac{1}{4} a(a d-b c) \varepsilon-\frac{1}{4} a d \varepsilon^{2} . \tag{5.3}
\end{equation*}
$$

Hence, if $a<b$ and $a d \geqslant b c, D\left(f_{\varepsilon}\right)<D(v)$ for all sufficiently small $\varepsilon>0$; thus for such values of a, b, c, d the vertex v does not provide a local minimum of $\mathscr{D}(f)$ for $f \in \mathscr{D}(\alpha)$.

It may therefore be useful to extend the classical concept of an extreme form to that of "extremeness with respect to $\mathscr{D}(\alpha)$ ". Clearly a perfect form, in the classical sense, corresponds here to a vertex of $\mathscr{D}(\boldsymbol{\alpha})$, and Voronoi's criterion of eutaxy can be adapted to obtain a necessary and sufficient condition for a vertex of $\mathscr{O}(\alpha)$ to be extreme. These ideas will be taken up in a subsequent article.

References

E. S. Barnes and M. J. Cohn (1976), "On Minkowski reduction of positive quaternary quadratic forms", Mathematika 23, 156-158.
C. G. Lekkerkerker (1969), Geometry of Numbers (Wolters-Noordhoff, Groningen, 1969).
K. Mahler (1938), "On Minkowski's theory of reduction of positive quadratic forms", Quart. J. Math. 9, 259-262.
K. Mahler (1940), "On reduced positive definite ternary quadratic forms", J. London Math. Soc. 15, 193-195.
K. Mahler (1946), "On reduced positive definite quaternary quadratic forms", Nieuw Arch. Wiskunde (2) 22, 207-212.
C. E. Nelson (1974), "The reduction of positive definite quinary quadratic forms", Aequationes Math. 11, 163-168.
A. Oppenheim (1946), "A positive definite quadratic form as the sum of two positive definite quadratic forms (I)", J. London Math. Soc. 21, 252-257.
B. L. Van der Waerden (1956), "Die Reduktionstheorie der positiven quadratischen Formen", Acta Math. 96, 265-309.
B. L. Van der Waerden (1969), "Das Minimum von $D / f_{11} f_{12} \ldots f_{55}$ für reduzierte positive quinäre quadratische Formen', Aequationes Math. 2, 233-247.

The University of Adelaide
Adelaide, 5001
Australia

