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Abstract

Forms which are reduced in the sense of Minkowski satisfy the "fundamental inequality"
a u a22 ... aBB«sAn D; the best possible value of An is known for « ^ 5 . A more precise result for
the minimum value of D in terms of the diagonal coefficients has been stated by Oppenheim
for ternary forms. The corresponding precise result for quaternary forms is established here by
considering a convex polytope ®(<x), defined as the intersection of the cone of reduced forms
with the hyperplanes au = a{ (/ = 1, ..., ri).

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 10 E 25; secondary 10 E 20.

1. Introduction

Minkowski established the existence of a number An with the property that, if
/ ( x ) = S"aijXiX) is positive definite and reduced (in the sense of Minkowski),
with determinant D = det(aiy), then

(1.1) aila^...ann^XnD.

Lekkerkerker (1969, Section 10) and Van der Waerden (1956) give detailed
accounts of reduction theory and the best estimates for An in this "fundamental
inequality".

Mahler has made several contributions to the theory of Minkowski reduction.
In particular, he obtained in (1938) an estimate for An for all n, applicable to
general convex bodies; and in (1940) and (1946) he gave proofs of the best possible
results for n = 3 and n = 4. Best possible results are now known for n < 5; these
are

(1.2) A2 = f, A3 = 2, A4 = 4, A5 = 8
46
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(so that in fact for all n < 5, Aw = y£); for n = 5, see Van der Waerden (1969) and
Nelson (1974).

Oppenheim (1946, p. 257) made the laconic comment, in a different but obvious
notation, for the case n = 3: "It does not appear to have been observed that this
inequality may be replaced by the sharper inequality

(1.3) abc+\ab{c-b)+%ac(b-a)^2h.."

This observation suggests a different way of approaching the inequality (1.1),
namely the determination of the least value of D for positive reduced forms/with
given values of the diagonal coefficients a^a^, ...,ann (necessarily satisfying

The main purpose of this article is to carry through this determination for n = 4.
We, prove

THEOREM. Suppose that /(x) = 2?a^XiXj is positive definite and reduced, with
determinant D; and set

(1.4) ou = a, a^ = b, 033 = 0, au = d, ...

where necessarily

(1.5) 0<a^b^c^d4:...

Then

(i) ifn = 2,

(1.6) 4D^3ab+a(b-a);

(ii) ifn = 3,

(1.7) 4D>2abc+ab(c-b)+ac(b-a);

(iii) ifn = 4,

4Z> > abcd+acd{b -a)+abd(c -b)+abc{d- c)+Ja2^ - c)2.
These inequalities are all best possible for all a,b,c,d and they imply (1.1), (1.2)

forn^A.

2. Minkowski reduction, the cones uf, ~#+ and the polytopes 2),

The condition for / t o be reduced is that, for all i = 1, ...,n and for all intgeral
X = (Xj, X2, ...,.*„),

(2.1) if g.c.d. (xiy xi+1, ...,xn) = 1, then/(x)>a«.

In the Jn(«+l)-dimensional space £P of non-negative definite forms, the set u^
of reduced forms is a polyhedral cone, since in fact finitely many inequalities (2.1)
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suffice to define it. We denote by Jl+ the subset of J( consisting of "properly
reduced" forms satisfying

(2.2) o w + i^0 (f =1, . . . ,«-1) .

^ ? + is also a polyhedral cone; and every feJK is equivalent to anf+e^+ under
a suitable change of sign of the variables.

For real a,b,c,... satisfying (1.5), we define S(a) = 2l{a,b,c,...) as the inter-
section of J( with the hyperplanes (1.4). Thus @(a) is the set of positive reduced
forms with prescribed diagonal coefficients a,b,c,.... We define @+(a) similarly
in relation to Jt+. Since the reduction conditions (2.1) include the inequalities

(1<i</<»),

it follows that Q)(a) and <^+(a) are bounded and are therefore convex polytopes.
Finally, define

(2.4) A(a)= min £>(/)= min £>(/).

Since the region Z>(/)> const, f o r / e ^ , is strictly convex, we have immediately

LEMMA. A(a) is attained at a vertex

In order to establish the theorem, it now suffices to specify @(a) for n«S4,
determine its vertices and evaluate D at the vertices. This is a feasible programme
for n<4, since a complete description of Jl and JK+ is then known. However,
even with the assistance of a computer, the computation may not be practicable for
«> 5. In Section 5 I shall indicate a classification of the vertices of i^(ct) which may
be of assistance in examining the problem for n ̂  5.

3. Two- and three-dimensional forms

For n = 2, the reduction conditions are

so that 2{fi,V) is the line segment {a12\ \2an\^a}. Hence trivially, since
ia|2,

A(a) = ab-lat = iab + \a{b - a),
giving (1.5).

For n = 3, it is well known that/e^#+ if and only if, in addition to (2.2) and
the inequalities a u < a^ < 033, (2.1) is satisfied for x = (1, -1,0), (1,0, -1) , (1,0,1),
(0,1, — 1) and (1, — 1,1). Hence, writing for convenience fti = 2ait (i^j), a form

/(x) = ax\+bx\+cxl +/12 xx x2 +/13 xx x3 +f!S3 x2 xz
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belongs to 2>+ = @+(a, b, c) if and only if

In the three-dimensional space of the coefficients /12, fl3 and f^, 3>+ thus has
7 facets and is easily found to have the 9 vertices

V12J1M = (a,a,b), (a,0,6), (a, - a , - a+6 ) , (0,a,ft), (0, -a,b),

(a,a,0), (a, -a ,0) , (0,a,0), (0, -a,0).

Denoting the 9 vertices by vx,...,v9 respectively, it is easily checked that v6, v7, v8

and v9 are not vertices of 2; vt~v5 trivially; vx~vz under x^*-xa+x3, X3H>—X3;

vx~v3 under x^->x1—x3. Hence

A(a, b, c) = min (Dfo), D(vJ)

= min (o*c - \ab* - Ja2 c, oftc -\a*b- lab7)

This confirms Oppenheim's result (1.6), and shows that, apart from forms
equivalent trivially by change of sign of variables, equality holds for all a, b, c for
precisely the three reduced forms

vx(x) = ax\+axx xz+axx x3+bx\+bxz x3+cx\,

t)2(x) = ax\+axx x2 + bx\+bx2 x3+cx%,

v3(x) = ax\+ax1x2-ax1x3+bxl+(-a+b)x2x3+cxl.

4. Quaternary forms

For n = 4, it is shown in Barnes and Cohn (1976) that ^ has 39 facets, which
correspond to the 3 inequalities

(4.1) a^a^a^^a^

and all 36 inequalities of the form (2.1) for which xt = 1, x} = 0 if j> i, and the
other Xj = 0 or +1 (excluding the 4 unit vectors). It appears to be computationally
more economical to use Jt+ and then reject those notices of 2+(a) which are
not vertices of Si(a). UK+ has, in addition to the 6 arising from the inequalities
(4.1) and (2.2), 20 facets corresponding to the inequalities (2.1) for the following
20 vectors x:

(1,0,1,0), (1,0,0,1), (0,1,0,1), (-1,1,0,0), (-1,0,1,0), (-1,0,0,1),

(0,-1,1,0), (0,-1,0,1), (0,0,-1,1), (0,1,-1,1), (1,-1,0,1),

(-1,1,0,1), (1,0,-1,1), ( -1 ,0 , -1 ,1) , (1,-1,1,0), (1,-1,1,1),

(1,1,-1,1), ( -1 , -1 ,1 ,1) , ( -1 ,1 , -1 ,1) , (1 , -1 , -1 ,1 ) .
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Hence @+(a) is specified minimally by the following system of 23 inequalities,
where for convenience we again write fti = 2ai} {i

fn -/is -fu +/23 +fu -fai

-fit +/l3 ~/l4 +/23 ~fu +/34

~fl2 +/» +/l4 +/23 +/24 -fM

Because of the very simple form of the first 12 inequalities, bounding the 6
variables fti, it is not difficult to determine the vertices of @)+(a) by considering
all possible sets of 6 linearly independent equations that yield a solution of the
inequalities. In this way it is found that S>+{ai) has 81 vertices that are also vertices
of ^(a) . Denoting each vertex by the corresponding vector (fi2Jvi>fu>f2&f
these fall into 9 classes of equivalent vertices, as follows:

14 vertices equivalent to vx = (a, 0, a, b, b, c),

4 vertices equivalent to v2 = (0,0, a, 0, b, c),

9 vertices equivalent to v3 = (a, a, a, 0, b, c),

10 vertices equivalent to t>4 = (0, a, a, b, b, c),

12 vertices equivalent to vs = (a,a,a,b,b,c),

12 vertices equivalent to t>6 = (0, a, a, 0, b, c),

6 vertices equivalent to v1 = (a, 0, a, 0, b, c),

6 vertices equivalent to v8 = (0,0, a, b, 0, c),

8 vertices equivalent to v9 = (0, a, a, b, 0, c).
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It is now easily verified that, for all a, b, c, d satisfying (1.5),

= Jg[l6abcd-4dtcd-4ab2d-4abci+ai(b-cf}

= min D(vk);
l f c 4

D(vs) = ^[[l6abcd-4a2cd-4ab2d-4abc2+a2c2]

= min D(vk);

and that D(v^) < D(vs). It follows that A(o) = D(vj), which establishes part (iii) of
the theorem. Equality holds for general values of a, b, c, d only for the 14 vertices
equivalent to vlt although other listed vertices may have equal determinant or
even be identical for particular values of a, b, c, d. Indeed if a = b = c = d, all
forms v1,v2,v3,vi are equivalent to the absolutely extreme form; then and only
then, AD = abed.

For completeness we list all 14 vertices of @+(a) with D = A(a); all reduced
forms for which equality holds in (1.8) are trivially equivalent to one of these by
change of sign of variables. It suffices to specify the coefficient vectors

(a,0,a,b,b,c), (a,0,-a,b,0,c), (a,0,a,b,a,c), (a,0,-a,b,-a+b,c),

(a,a,0,b,b,c), (a,a,a,b,a-b,a-b+c), (a,a, -a,b, -b, -b+c),

(a,a, -a,b, -a, -a+c), (a,a,a,b,0,c), (a, -a,0, -a+b,b,c),

{a, -a, -a, -a+b, -b,a-b+c), {a, -a,a, -a+b,a-b, -b + c),

(a,0,0,6, -b, -b + c),(a, -a, -a, -a+b, -a,c).

It is noteworthy that the whole analysis may be carried through at once for all
a,b,c,d satisfying (1.5), with the single exception that, of the 4 vertices of @(a)
trivially equivalent to (0,a,a,b,b,a+b-c) and having^ = +b, two are in 3+(ai)
if c<a+b, the other two are if c>a+b, while all four are in ̂ +(a) if c = a+b.

5. Forms extreme with respect to ̂ (a)

In establishing the lemma of Section 2, we have already observed that a form
belonging to ^(a) must be a vertex of î (oc) if it provides a local minimum of the
determinant D(f) for/e^(a). The converse statement is, however, false. Consider,
for example, the quaternary form

(5.1) v(x) = ax\+axx x2—axx x3 -ax1xi+bx\—bx2 x4+cx\ + cx3 x4+dx\
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subject to (1.5); v is a vertex of S(ct), trivially equivalent to v3 of Section 4. It is

easy to verify that

(5.2) fe(x) = v(x) + £*2 x3 + ex2 x4

is reduced for O^e^b-a and hence e^(a); and that

(5.3) D(fe) = D(v) - ±a(ad- be) e - ±ade2.

Hence, if a<b and ad^bc, D(fe)<D(v) for all sufficiently small e>0; thus for

such values of a, b, c, d the vertex v does not provide a local minimum of S>(f)

for /eS(a) .

It may therefore be useful to extend the classical concept of an extreme form

to that of "extremeness with respect to 3){tt)". Clearly a perfect form, in the

classical sense, corresponds here to a vertex of @(a), and Voronoi's criterion of

eutaxy can be adapted to obtain a necessary and sufficient condition for a vertex

of S(a) to be extreme. These ideas will be taken up in a subsequent article.
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