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0. Introduction and notation. Recent work [2, 6] on subalgebras of matrix algebras
leads naturally to the following situation. Let A be a C*-subalgebra of the C*-algebra B
and M be a weakly closed *-subalgebra of the von Neumann algebra N. Consider the
following Conditions.

Condition 1. For every fo^O in B there exists aeA such that O^abeA.
Condition 2. For every b&B there exists a^=0 in A such that ab&A.
If we replace A by M and B by N in Conditions 1 and 2 we get von Neumann

algebra versions which we shall call Condition V and Condition 2'. Clearly Condition 1
implies Condition 2, and both conditions suggest that A is some kind of weak ideal of B.
This paper explores the extent to which this is true. The paper grew out of the author's
attempts [1, 3] to generalize the Stone-Weierstrass theorem to C*-algebras.

It follows immediately from [2] that if B is finite-dimensional, then Condition 1 is
satisfied only when B = A. In this case every C*-algebra is a von Neumann algebra, so it is
not surprising that in the infinite dimensional case this becomes a von Neumann algebra
result. Specifically, Proposition 2.1 states that Condition 1' holds only when M = N. The
conclusions to be drawn from Condition 1 when B is not finite-dimensional are not known
in general. When B is abelian and separable, we can conclude (Theorem 1.2) that A
contains an ideal I of B which is essential in the sense that {b e B : bl = 0} = {0}. It is clear
that if A contains such an ideal (and B is abelian), then Condition 1 holds, so this is the
limit of what can be expected. However, when B is not abelian, Condition 1 may hold
even though A contains no non-trivial ideals and B^A. Specifically (Theorem 2.2), if A
is an essential hereditary [4, p. 14] C*-subalgebra of B with open covering projection p of
finite condimension in B** [4, pp. 77-78], then Condition 1 holds.

Assuming Condition 2, it follows from [2] that if B is the algebra B(Hn) of all
bounded operators on the n-dimensional Hilbert space Hn, then there is a projection
peA with rank (p)>n/2 and pBp<^A. Conversely, if p is as above and p B ( H J p c A c
B(Hn) = B, then Condition 2 holds. This can be generalized to infinite dimensional Hilbert
space, with Condition 2 (Theorem 3.3), and to N = B(H), with Condition 2' (Theorem
3.1). The condition that rank (p)>n/2 becomes codimension (p)<°°. If B is separable and
abelian, then (Theorem 1.1) Condition 2 holds if and only if A contains a non-zero ideal
of B. It is not clear what the appropriate conjecture should be in the general case.

1. The separable, abelian case; Conditions 1 and 2. In this section we shall assume
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that B is separable and abelian; thus B is isomorphic to C0(X), the continuous complex-
valued functions vanishing at infinity on the locally compact metric space X. Since A is a
C*-subalgebra of B, A defines an equivalence relation ~ on X by x ~ y if a(x) = a(y) for
all as A. Further, beB actually is in A if x ~ y implies b(x) = b(y) for x, yeX.

THEOREM 1.1. Using the notation developed above, Condition 2 is satisfied if and only
if A contains a non-zero ideal of B.

Proof. If A contains a non-zero ideal / of B, then for any beB we need only choose
a=£0 in Jc:A to ensure that abelb^A.

Now suppose that Condition 2 holds. Since the closed ideals I of B all have the form
Iu = {beB: b vanishes outside of an open set [/<= X}, by the Stone-Weierstrass theorem
it suffices to find a non-void open subset U of X such that A Pi Iu separates the points of
U (and 0). We consider two cases. To distinguish them let Y contain the union of all of
the equivalence classes under ~ which contain more than one point, and let Y also
contain the point z o e X such that a(zo) = 0 for all aeA, if there is a unique point with
this property.

Case 1. Y is not dense in X. By Urysohn's lemma we may choose ceB with c^O
and c(y) = 0 for all y e Y. Thus ceA since x~z means either x = z or x, ze Y, and so
c(x) = c(z) = 0. Let U = {x e X: c(x) j10}. Note that for every distinct pair x, z e U we can
find some d e A with 0 f (cd)(x) ^ (cd)(z) / 0, so cA separates the points of U, and
Iu «= A as required.

Case 2. Y is dense in X. We shall construct an element of B by induction. Choose a
dense sequence {xn}"=1 in Y-{z0} and choose a sequence {yn}~=i in Y such that yn~xn

but yn j= xn. (In the finite dimensional case the sequence would be finite.) This is possible
since X is a locally compact metric space, and hence X is second countable. By Urysohn's
lemma choose 6 ,eB such that 0 ^ b i ( x ) S l for all xeX, b1(xi) = 0, b1(y1) = l. Now
suppose {bj}i<n have been chosen so that b, is as above and for all i<n:

(a) 0Sb f (x)^2- i + 1 for all x e X ;

(b) if I (fc>U)-&;(yi))§0, then bi(xi) = 2"i+1 and fti(yj) = 0;

(c) if X (bj(Xi)-bj(yi))<0, then fa;(x;) = O and bi(yi) = 2 1+ l;

(d) bi(Xj) = bi(yj) = 0 for all j<i.

By Urysohn's lemma we may choose bneB to continue the induction. Set b = £ bn.

Since ||bn||g2""+1, the series converges in norm, and so beB. Note that b(xn)= X fyOO
n '

and b(yn)= X bj{yn) by induction hypothesis (d), so that

IKxJ-KyJh
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n - l

since £ (fyOO~bj(y,i)) and (btl(xn)-bn(yn)) have the same sign by induction hypotheses
1

(b) and (c). In particular b ^ ) ^ b(yn).
By Condition 2 we can choose aeA with a^O and abeA. Thus for all i,

ab(xi) = ab(yi), so a(xi)b(xi) = a(yi)b(yi). Since aeA, a(xj) = a(yj), but b(xf)^fe(yi), so
a(Xi) = a(y;) = 0. Since {x,}r=i is dense in Y-{z0}, a(y) = 0 for all ye Y. Since Y is dense
in X, a(x) = 0 for all xeX, contradicting a^O. Thus Case 2 cannot occur, and the
theorem follows from Case 1.

More should be expected from the stronger Condition 1 because it requires that for
any b^O in B, no matter how "small" the support of b may be, there is an aeA with
O^abeA. Thus for every non-void open subset U of X there is a non-zero ceA with
support contained in U. This suggests that if Condition 1 is satisfied, then A must contain
a "large" ideal of B. The following theorem makes this notion precise.

THEOREM 1.2. Using the notation developed above, Condition 1 is satisfied if and only
if A contains an essential ideal of B.

Proof. If I is an essential ideal of B and I c A , then for every bj= 0 in B, Ib£{0}, so
Condition 1 holds.

Now suppose Condition 1 holds. Since the sum of ideals of B is again an ideal of B,
there is an ideal I of B such that I<= A, and, if J is any ideal of B with Jc: A, then Jcf .
Then I = IV for some open set U of X. If \j+ X, let Xo = X - U, Ao = A n 1^, Bo = 1^. If
b e Bo, then by Condition 1 there exists aeA such that 0 i= ab e A. Since b e Bo, clearly
abe B0C\A = Ao. Thus Oj=(ab)2 = [a(ab)]beB0, i.e. the pair Ao, Bo satisfies Condition 2;
hence there is a non-zero ideal J of Bo which is contained in Ao. Since Bo is a closed ideal
of B, J is an ideal of B, J<^AocA and J<£I, contradicting the maximality of /. The
theorem follows.

Theorems 1.1 and 1.2 are not always true if B is non-separable. For example, if
B = C(X), where X is the set of all ordinals less than or equal to the first uncountable
ordinal, and A ={aeB :a(w + 2n) = a(a> + 2n + l) for all limit ordinals w and positive
integers n}, then Theorem 1.1 fails. This example suggests that results in the non-
separable case will require Conditions 1' and 2'.

2. Results for Conditions 1 and 1'. The short proof of the first proposition is due to
Uffe Haagerup.

PROPOSITION 2.1. Condition V holds only when N=M.

Proof. Let p e N b e a non-zero projection. It suffices to show that peM, and for this
we need only show that there is a non-zero projection q in M with q = p. (To see this let
p0 be the supremum of all projections q in Mwith q S=p. Since M is weakly closed, p0 is a
projection in M, and (p-p0) can't majorize a non-zero projection in M, so it must be 0.)
By Condition 1' let a e M with 0 i= ap e M. Then 0 f pa * ap e M, so the range projection q
of pa*ap lies in M and O ^ q S p as required.
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In the last proof not only was it convenient to work with projections in JV, but more
important was the fact that M is weakly closed in JV. This allowed us to reach a stronger
conclusion from Condition 1/ than Condition 1 yielded even in the abelian case. In the
non-abelian case we need to replace the ideals of C0(X) with something more general in
order to see where Condition 1 leads. Hereditary C*-subalgebras are the obvious
candidates. For any hereditary C*-subalgebra C of B there is an open projection peB**
which is called the covering projection for C [4, pp. 77-78]. Comparing this with the
abelian case, the open projection p covering C is analogous to the open set U within
which an ideal I in C0(X) is supported. We can define C to be essential in B if
{b E B : be = cb = 0 for all ceC} = {0}. In the non-abelian case, however, problems arise
because Condition 1 is not right-left symmetric. The next theorem has hypotheses which
are sufficient to imply Condition 1. We know from the abelian case that they are too
strong to be necessary.

THEOREM 2.2. // A is an essential hereditary C*-subalgebra of B with covering
projection p and if p has finite codimension in B**, then Condition 1 holds.

Proof. If B is finite-dimensional, then A is essential if and only if A = B. Thus we can
assume B is infinite-dimensional.

Let b e B and p' = 1 — p. For any a e A we have abeA whenever abp' = 0. Let q be
the range projection of bp' in B**. Since p' has finite rank, so does q. Thus q vp' has finite
rank, and so, by [1, p. 28], l - (qvp ' ) = p0 is open (and p o ^0 since B is infinite-
dimensional). Consider two cases.

Case 1. pob^0. Then since po = p and po is open, there is a net {aa}<=
{ceB:pocpo = c}<^ A such that aa —»p0 weakly in B** [4, p. 78]. Thus aab j= 0 for some
a, and aabp' = 0, since aaq = 0, so aab e A. Hence Condition 1 holds.

Case 2. pob = 0. Then the range projection r of b is a finite rank projection in B**
which also lies in B, so B => rBr = rB**r. However, by definition qSrgpf,. By [5, p. 93]
there is a unitary u in B such that (uru*)Ap'^0. But (ura*)B**(uru*)c:B, and this
means that if c = uru*, then p'cp' = c; hence cA = Ac ={0}. This contradicts the assump-
tion that A is essential. The theorem then follows from Case 1.

It is reasonable to conjecture that (in the separable case) Condition 1 is equivalent to
A containing an essential hereditary C*-subalgebra of B. The previous theorem supplies
evidence in one direction and, of course, Theorem 1.2 suggests that both implications are
valid. To get some more non-abelian evidence for the conjecture let H be an infinite-
dimensional Hilbert space, B(H) the algebra of all bounded operators on H and K(H) the
subalgebra of B(H) consisting of all compact operators on H. Note that if
B(H), then K(H) is an essential, hereditary C*-subalgebra of B.

PROPOSITION 2.3. If K(H)<=B<=B(H), then Condition 1 implies that

Proof. Let peK(H) be a rank-one projection. Since these projections generate
K(H), it suffices to prove that p lies in A. By Condition 1 we may choose as A such that
0 7̂  ape A. Then pa*ap^0 in A, and pa*ap is a scalar multiple of p, so peA.
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Since the abelian case suggests that Condition 2 is the key to Condition 1, let us turn
to that.

3. Results for Conditions 2 and 11. Not surprisingly the results of this section are
only suggestive, not definitive. First we look at Condition 2' and try to find von Neumann
algebras N for which the finite-dimensional result described in §0 can be generalized in a
natural way. Theorem 3.1 is one example.

THEOREM 3.1. If H is a Hilbert space and N = B(H), then Condition 2' holds if and
only if M => pB(H)p for some projection p with rank ( l -p)<c° .

Proof. First assume that Condition 2' holds. We first shall show that the commutant
M' of M contains no projection which is infinite-dimensional in B(H) and whose
complement is infinite-dimensional in B(H). If not, then M' will contain a projection q
such that vv* = q and u*u = ( l - q ) for some partial isometry v in B(H). Note that
(v + v*) = u is a unitary operator. By Condition 2 there is some O ^ o e M with aueM.
Thus av* = a(uq + tJ*q) = (au)q = q(au) = aqu = aq(v + v*) = av. Thus (av)(av)* =
(av)(av*)* = atn>a* = 0, and so av = av* = 0. But this means au = 0, and so a = 0 since u
is unitary. This contradiction means that M' is a finite-dimensional type 1 von Neumann
algebra with center ££, and M is also type 1 [5, p. 300]. Further, exactly one of the
(non-unital) central projections (say p) in S£ is infinite-dimensional. (If there are none but
the identity, we already have M = B(H).)

We claim that pB(H)p = pMp. This follows from the fact that pM'p is a factor of type
1 (since it is finite-dimensional), and so, if it were not one-dimensional, it would contain a

n

set p , , . . . , p n of orthogonal equivalent minimal projections with p = X ft. As shown
i = l

above each p; must be finite-dimensional in B(H) or have finite codimension in B(H).
This is clearly impossible if rc>l.

This reverse implication is more generally true as will be shown in Proposition 3.2.

PROPOSITION 3.2. For any von Neumann algebra N, if p is a projection in N such that p
is not equivalent to a subprojection of (1-p) and M^pNp, then Condition 2' holds.

Proof. Fix beN. Let pb(l - p) = v \pb(l - p)\ be the polar decomposition of pb(l - p).
Since t )*ug( l -p) , we cannot have vv* = p by hypothesis. Thus 0^(p-ut>*)epNp<= M
and (p-uu*)pb(l-p) = 0. If a = p-vv*, we get

ab = (pap)(pbp + pb(l - p) + (1 - p)bp + (1 - p)b(l - p)) = papbp + papb(l - p) = papbp
e p N p <=• M.

Thus Condition 2 holds.

It is a reasonable conjecture that the converse of Proposition 3.2 holds in general, but
the methods used in the special case of Theorem 3.1 will have to be replaced.

Now let us turn to Condition 2. If C is an hereditary C*-subalgebra of B with open
covering projection p, then it is reasonable to conjecture that: if p is not equivalent to a
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sub-projection of (1 - p ) and C<=- A, then Condition 2 holds. To prove this conjecture one
could try to mimic the proof of Proposition 3.2, but a problem arises in the middle. Just
because (p-vv*)j=0 it does not follow that we can find aeC such that a^O, and
apb(l-p) = 0 and (p-vv*) is not (in general) even in B but only in B**. Similar, but
greater difficulties stand in the way of the converse of the conjecture. However, there is
one non-abelian case where both implications can be proved easily. This result is very
close to Theorem 3.1.

THEOREM 3.3. Let B be any C*-subalgebra of B(H), where H is a separable Hilbert
space, such that K(H) c B. Then Condition 2 holds if and only if there is a projection p of
finite codimension such that pK(H)p c A.

Proof. If p exists as in the theorem and pK(H)p<^A, let beB and pfc(l-p) =
v \pb(l-p)\ be the polar decomposition of pb(l-p) . Since (1-p) has finite rank, so does
vv*. Thus we may choose a non-zero projection aeK(H) with a^p — vv*, and, as in the
proof of Proposition 3.2, ab = papabp e pK(H)p <= A; hence Condition 2 holds.

Now assume Condition 2 holds. Let A.0 = A. CtK(H). We shall reduce the problem to
the case B = K(H) by showing that for any b e K(H) there is some aeA0 with a ̂  0 and
abeA0. Let {ua} be the canonical approximate unit [4, p. 11] in Ao. We need only show
that uac is eventually non-zero for every c^O in A, since Condition 2 gives, for every
beK(H), some aoeA with ao^0 and aobzA; since beK(H), if a = uaao^0, then
abeAo and aeAo. Now suppose O ^ c e A and uac = 0 for all a. Thus Aoc = {0}. Let
uaS*x in B(H). Since Ao is an ideal of A, x is in the commutant A' of A, and (1-JC)C = c.
Since c<£A0, (1-x) must have infinite rank, so we can, since H is separable, find veK(H)
such that the range of vv* is dense in H and the range of v*v is dense in (l-x)H. By
Condition 2 there is some O ^ o e A such that aveA. Since the range of v is dense and
a i= 0, it follows that 0 ̂  av e Ao (since v e K(H)). But vx = 0, and 0 = avx = lim avua = av,
a contradiction.

We have now reduced to the case where B = K(H), A c B and Condition 2 holds.
Mimicing the proof of Theorem 3.1 we can show that any projection in A' must be of
finite rank or finite co-rank. (We must replace the partial isometry t; of that proof with a
compact operator as above.) Also (as in the proof of Theorem 3.1) A' contains a unique
central projection p of infinite rank such that pA'p is one-dimensional. Thus pA"p =
pB(H)p. Since A<^K(H) and A acts irreducibly on pH, pAp = pK(H)p. Since peA",
pAp c A, and the theorem follows.
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