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Abstract

For any real number β with β > 1, letM( β) (N( β) respectively) denote the class of analytic functions f
in the unit disk D := {z ∈ C : |z| < 1} of the form f (z) = z +

∑∞
n=2 anzn and satisfying Re P f < β (Re Q f < β

respectively) inD, where P f = z f ′(z)/ f (z) and Q f = 1 + z f ′′(z)/ f ′(z). Also, for β > 1, letMΣ(β) (NΣ(β)
respectively) denote the class of analytic functions g of the form g(z) = z(1 +

∑∞
n=1 bnz−n) and satisfying

Re Pg < β (Re Qg < β respectively) for z ∈ ∆ = {z ∈ C : 1 < |z| <∞}. In this paper, we shall determine the
coefficient bounds, inverse coefficient bounds, the growth and distortion theorem and the upper bounds
for the Fekete–Szegő functional Λλ( f ) = a3 − λa2

2 for functions f in the classesM( β) andN( β). Further,
we shall solve the maximal area problem for functions of the type z/ f (z) when f ∈ M( β), which is
Yamashita’s conjecture for the classM( β). We shall obtain the radius of convexity for the class N( β).
We shall also determine the coefficient bounds for functions g in the classesMΣ( β) and NΣ( β) and the
inverse coefficient bounds for functions g in the classMΣ( β). All the results are sharp.

2010 Mathematics subject classification: primary 30C45; secondary 33C05.

Keywords and phrases: univalent, starlike, convex and hypergeometric functions, coefficient bounds,
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1. Introduction
Let H denote the class of analytic functions in the unit disk D := {z ∈ C : |z| < 1}.
Here we think of H as a topological vector space endowed with the topology of
uniform convergence over compact subsets of D. LetA denote the family of functions
f in H normalized by f (0) = 0 = f ′(0) − 1. If f ∈ A, then f (z) has the following
representation:

f (z) = z +

∞∑
n=2

anzn. (1.1)
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A function f is said to be univalent in a domain Ω ⊆ C if it is one-to-one in Ω. Let S
denote the class of univalent functions inA. A function f ∈ S is said to belong to the
class S∗(α), called starlike functions of order α, if

Re
(z f ′(z)

f (z)

)
> α, z ∈ D

and is said to belong to the class C(α), called convex functions of order α, if

Re
(
1 +

z f ′′(z)
f ′(z)

)
> α, z ∈ D.

The classes S∗ := S∗(0) and C := C(0) are the familiar classes of starlike and convex
functions, respectively. It is well known that f ∈ C(α) if and only if z f ′ ∈ S∗(α).

Let f and g be analytic functions in the unit disk D. The function f is said to be
subordinate to g, written as f ≺ g or f (z) ≺ g(z), if there exists an analytic function
ω : D→ D with ω(0) = 0 such that f (z) = g(ω(z)). If g is univalent, then f ≺ g if and
only if f (0) = g(0) and f (D) ⊆ g(D). For a detailed study of differential subordination,
we refer to the monograph of Miller and Mocanu [22].

For fixed β > 1, let the classesM( β) and N( β) be defined by

M( β) :=
{

f ∈ A : Re
(z f ′(z)

f (z)

)
< β for z ∈ D

}
and

N( β) :=
{

f ∈ A : Re
(
1 +

z f ′′(z)
f ′(z)

)
< β for z ∈ D

}
,

respectively. Then it is easy to see that f ∈ N( β) if and only if z f ′ ∈ M( β). In 1941,
Ozaki [29] introduced the class N( 3

2 ) and proved that functions in the class N( 3
2 ) are

univalent in the unit disk D. Moreover, functions in the class N( 3
2 ) were proved to be

starlike in the unit disk D (see [9, 33]). Thus, the classN( β) is included in the class S∗

for 1 < β ≤ 3
2 . Also, we note that functions in the class N( β) need not be univalent in

the unit diskD if β > 3
2 . For 1 < β ≤ 4

3 , the classesM(β) andN(β) were introduced by
Uralegaddi et al. [38]. Later, the full classes were investigated by Owa and Nishiwaki
[23, 27] and also by Owa and Srivastava [28]. Recently, Obradović et al. [24] studied
the class N( β) for 1 < β ≤ 3

2 .
Two more classes of our interest areMΣ( β) andNΣ( β), which are associated with

the classesM( β) and N( β), respectively. For the sake of our computational purpose,
here we use a slightly different notation for these classes. For β > 1, letMΣ( β) denote
the class of analytic functions g(z) in ∆ := {z ∈ C : 1 < |z| <∞} of the form

g(z) = z
(
1 +

∞∑
n=1

bnz−n
)

for z ∈ ∆, (1.2)

which satisfy Re(zg′(z)/g(z)) < β in ∆. Similarly, for β > 1, letNΣ( β) denote the class
of analytic functions g(z) in ∆ of the form (1.2) and satisfying Re(1 + zg′′(z)/g′(z)) < β
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in ∆. It is easy to see that if g ∈ NΣ( β), then zg′ ∈ MΣ( β) but the converse may not
be true.

In 1933, Fekete and Szegő [4] proved a remarkable result that if f ∈ S, then

|a3 − λa2
2| ≤ 1 + 2 exp(−2λ/(1 − λ)) for λ ∈ [0, 1).

This inequality is sharp. For a function f ∈ A of the form (1.1), the classical Fekete–
Szegő functional, defined by

Λλ( f ) = a3 − λa2
2,

plays an important role in function theory. For example, the quantity a3 − a2
2 represents

S f (0)/6, where S f denotes the Schwarzian derivative ( f ′′/ f ′)′ − ( f ′′/ f ′)2/2 of a
locally univalent function f in D. Moreover, Λλ( f ) behaves well with respect to
rotation, namely Λλ(e−iθ f (eiθz)) = e2iθΛλ( f ), θ ∈ R. The problem of maximizing the
absolute value of the functional Λλ( f ) is called the Fekete–Szegő problem. In
1986, Pfluger [31] solved the Fekete–Szegő problem for the class S with complex
parameter λ. In the literature, there are a large number of results available about the
Fekete–Szegő problem (see for instance [1, 2, 12, 13, 19, 30]).

For g ∈ H , we denote the area of the image of |z| < r under w = g(z) by ∆(r, g),
where 0 < r ≤ 1. Thus, for g(z) =

∑∞
n=0 bnzn,

∆(r, g) =

"
|z|<r
|g′(z)|2 dx dy = π

∞∑
n=1

n|bn|
2r2n (z = x + iy).

Computation of this area for an analytic function g is known as the area problem.
We call g a Dirichlet-finite function whenever ∆(1, g) is finite. All polynomials and
more generally all functions f ∈ A for which f ′ is bounded on D are Dirichlet-finite
functions. In 1990, Yamashita [39] conjectured that

max
f∈C

∆

(
r,

z
f (z)

)
= πr2.

The maximum is attained only by the rotation of the function f0(z) = z/(1 − z). In
2013, Yamashita’s conjecture was settled by Obradović et al. [25] in a more general
setting for the functions in S∗(α). For more details, we refer to [26, 34].

The problem of determination of sharp coefficient estimates of inverse functions in
various subclasses of univalent functions is interesting. If F is the inverse of a function
f ∈ S, then F has the following expansion near w = 0:

F(w) = w +

∞∑
n=2

Anwn. (1.3)

In 1923, Löwner [20] using a parametric method proved that for each n ≥ 2, |An| ≤ Kn,
where Kn = (2n)!/(n!(n + 1)!) and the inequality is sharp for the inverse of the Koebe
function K(z) = z/(1 + z)2. An alternative proof of the inverse coefficient problem for
the functions in S has been given by Schaeffer and Spencer [36] and FitzGerald [5].
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Although the inverse coefficient problem for the class S was completely solved in
1923, only a few complete results are known on inverse coefficient estimates for
most of the subclasses of S (see for instance [14, 16–18]). In some cases the inverse
coefficient shows unexpected behavior. For example, it is known that if f ∈ C, then the
coefficients of its inverse function satisfy |An| ≤ 1 for n = 1, 2, . . . , 8 (see [15]), while
|A10| > 1 (see [11]) and the exact bounds |A9| and |An| for n > 10 are still unknown. In
1979, Krzyż et al. [14] found the sharp inverse coefficient estimates of |A2| and |A3| for
the class S∗(α) and in 2007 Kapoor and Mishra [10] developed a new technique and
extended these results (see also [37]).

Suppose that f ∈M( β) (orN( β)) is of the form (1.1). Since f ′(0) = 1 , 0, f (z) has
an inverse F(w) valid in some neighborhood of the origin and has an expansion of the
form (1.3). Similarly, if g ∈ MΣ( β) is of the form (1.2), then it has an inverse G(w) in
some neighborhood of the point at infinity and has the following expansion:

G(w) = w
(
1 +

∞∑
n=1

Bnw−n
)
.

In Section 2, we shall obtain the sharp coefficient bounds for the functions in the
classM(β). As a consequence, we also find the sharp coefficient estimate for functions
in the class N( β). Moreover, we shall obtain the growth and distortion theorem for
functions in the classesM(β) andN(β). Finally, we prove that the radius of convexity
for the classN(β) is 1/(2β − 1). In Section 3, we shall solve the Fekete–Szegő problem
for both the classesM( β) and N( β) with complex parameter λ.

In Section 4, first we prove Lemma 4.1 and as an application of the lemma we
solve a Yamashita’s conjecture for the class M( β), that is, we solve the maximal
area problem for the functions of the type z/ f (z), where f ∈ M( β), and investigate
the inverse coefficient problem for the class M( β). Also, we completely solve the
inverse coefficient problem for the class N( β) for β > 1. Finally, using Lemma 4.1,
we determine the sharp coefficient bounds and the sharp inverse coefficient bounds for
functions in the classMΣ( β) and as a consequence we shall find the sharp coefficient
bounds for functions in the class NΣ( β).

To prove our main results, we need the following lemma.

Lemma 1.1 [21]. Let p(z) = 1 +
∑∞

n=1 cnzn be an analytic function with Re p (z) > 0 in
D and µ be a complex number. Then

|c2 − µc2
1| ≤ 2 max{1, |2µ − 1|}. (1.4)

The result is sharp for the functions given by p(z) = (1 + z2)/(1 − z2) and p(z) =

(1 + z)/(1 − z).

Lemma 1.2 [7]. Let h(z) be convex in D with h(0) = a. If p(z) is analytic in D, with
p(0) = a and p(z) + zp′(z) ≺ h(z), then

p(z) ≺
1
z

∫ z

0
h(t) dt.
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Lemma 1.3 [8]. Let f ∈ A be given by f (z) = z +
∑∞

n=2 anzn. Then the inverse function
F(w) of the function f (z) is analytic in |w| < ρ for some ρ > 0. Also, suppose that( z

f (z)

)t
= 1 +

∞∑
n=1

a(−t)
n zn

and ( w
F(w)

)t
= 1 +

∞∑
n=1

A(−t)
n zn,

where t = ±1,±2,±3, . . . . Then

A(t)
n =

t
t + n

a(−(t+n))
n for t + n , 0 and t = ±1,±2,±3, . . .

and A(t)
−t is given by

∞∑
t=−∞

A(t)
−tz
−t−1 =

f ′(z)
f (z)

. (1.5)

2. Coefficient and growth estimates

Theorem 2.1. Let f (z) be of the form (1.1) and f ∈ M( β) for some 1 < β ≤ 2. Then

|an| ≤
2( β − 1)

n − 1
for n ≥ 2.

Equality is attained for the function fn(z) = z(1 − zn−1)(2( β−1))/(n−1) for n ≥ 2.

Proof. Let f ∈ M( β). By definition of the classM( β),

Re
(z f ′(z)

f (z)

)
< β for z ∈ D

and, equivalently,

Re
(β − z f ′(z)

f (z)

β − 1

)
> 0 for z ∈ D. (2.1)

Then there exists an analytic function ω : D→ D such that

β − z f ′(z)
f (z)

β − 1
=

1 + zω(z)
1 − zω(z)

.

By a simple computation, this can be written as

z f ′(z) − f (z) = ω(z)(z2 f ′(z) + (1 − 2β)z f (z)). (2.2)
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Then, applying Clunie’s method to the equation (2.2), which can be found in
[3, 32, 35], we obtain the following inequality:

n∑
k=2

(k − 1)2|ak|
2 ≤

n−1∑
k=1

(k + 1 − 2β)2|ak|
2 (2.3)

for each n ≥ 2 with a1 = 1.
Therefore, (2.3) can be written as

(n − 1)2|an|
2 ≤ 4( β − 1)2 +

n−1∑
k=2

(((k − 1) − 2( β − 1))2 − (k − 1)2)|ak|
2

≤ 4( β − 1)2

and, consequently,

|an| ≤
2( β − 1)

n − 1
for n ≥ 2. �

Theorem 2.2. Let f ∈ N( β) be of the form (1.1) for some 1 < β ≤ 2. Then

|an| ≤
2( β − 1)
n(n − 1)

for n ≥ 2.

Equality is attained for the function fn(z) given by f ′n(z) = (1 − zn−1)(2( β−1))/(n−1), n ≥ 2.

Proof. If f (z) is in N( β), then clearly z f ′(z) = z +
∑∞

n=2 nanzn is inM( β). Therefore,
by Theorem 2.1, it immediately follows that

|an| ≤
2( β − 1)
n(n − 1)

for n ≥ 2. �

Theorem 2.3.

(i) If f ∈ M( β) for some β > 1, then

z
f (z)
≺ (1 − z)−2( β−1). (2.4)

(ii) If f ∈ N( β) for some β > 1, then

f ′(z) ≺ (1 − z)2( β−1) (2.5)

and

f (z)
z
≺

1 − (1 − z)2β−1

(2β − 1)z
. (2.6)

Proof. (i) Let f ∈ M( β) for some β > 1. In view of (2.1), f ∈ M( β) if and only if

1
β − 1

(
β −

z f ′(z)
f (z)

)
≺

1 + z
1 − z

for z ∈ D.
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A simple computation yields the following subordination relation:

z f ′(z)
f (z)

≺ β − ( β − 1)
1 + z
1 − z

=
1 + (1 − 2β)z

1 − z
. (2.7)

Let g(z) = z/ f (z). Then, from the subordination relation (2.7),

zg′(z)
g(z)

= 1 −
z f ′(z)
f (z)

≺ 1 −
1 + (1 − 2β)z

1 − z
=

2( β − 1)z
1 − z

=: φ(z).

Since φ(z) is convex in D and φ(0) = 0, it follows that (see, for example, [22,
Corollary 3.1d.1, page 76])

z
f (z)

= g(z) ≺ exp
(∫ z

0

2( β − 1)
1 − t

dt
)

= (1 − z)−2( β−1).

(ii) Let f ∈ N( β) for some β > 1. Then, by the definition of the class N( β),

Re
(β − 1 − z f ′′(z)

f ′(z)

β − 1

)
> 0 for z ∈ D. (2.8)

Therefore,
1

β − 1

(
β − 1 −

z f ′′(z)
f ′(z)

)
≺

1 + z
1 − z

for z ∈ D,

which is equivalent to

z f ′′(z)
f ′(z)

≺ ( β − 1)
(
1 −

1 + z
1 − z

)
= −

2( β − 1)z
1 − z

=: ψ(z) for z ∈ D. (2.9)

Since ψ(z) is convex in D and ψ(0) = 0, it follows that (see, for example, [22,
Corollary 3.1d.1, page 76])

f ′(z) ≺ exp
[
−

∫ z

0

2( β − 1)
1 − t

dt
]

= (1 − z)2( β−1). (2.10)

Next, suppose that h(z) = f (z)/z and so zh′(z) + h(z) = f ′(z). Therefore, (2.10)
becomes

zh′(z) + h(z) = f ′(z) ≺ (1 − z)2( β−1).

Again, by applying Lemma 1.2 to the previous relation,

f (z)
z

= h(z) ≺
1
z

∫ z

0
(1 − t)2( β−1) dt =

1 − (1 − z)2β−1

(2β − 1)z
. �

Corollary 2.4. For f ∈ M( β) for some β > 1, the following hold.

(i) r(1 − r)2( β−1) ≤ | f (z)| ≤ r(1 + r)2( β−1), |z| = r < 1.

Equality holds for the function f (z) = z(1 − z)2( β−1) or its rotation.
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(ii)
∣∣∣∣∣z f ′(z)

f (z)
−

1 − (2β − 1)r2

1 − r2

∣∣∣∣∣ ≤ 2βr
1 − r2 , |z| = r < 1.

Equality holds in the above inequality for the function f (z) = z(1 − z)2( β−1) or its
rotation.

Proof. To prove (i), we observe that (1 − z)−2( β−1) , 0 for z ∈ D. Then (2.4) is
equivalent to

f (z)
z
≺ (1 − z)2( β−1) for z ∈ D,

from which the result follows.
To prove (ii), consider the relation (2.7) and note that the function w = (1 + (1 −

2β)z)/(1 − z) maps the disk |z| ≤ r < 1 onto the disk |w − (1 − (2β − 1)r2)/(1 − r2)| ≤
2βr/(1 − r2). �

Corollary 2.5.

(i) If f ∈ N( β) for some β > 1, then, for each z = reiθ in D,

(1 − r)2( β−1) ≤ | f ′(z)| ≤ (1 + r)2( β−1). (2.11)

Equality holds for the function f (z) given by f ′(z) = (1 − z)2( β−1) or its rotation.
(ii) For each f ∈ N( β) ( β > 1),

| arg f ′(z)| ≤ 2( β − 1) sin−1 r, |z| = r < 1.

Equality holds for the function f (z) given by f ′(z) = (1 − z)2( β−1) or its rotation.
(iii) If f ∈ N( β) and β > 1, then, for each z = reiθ in D,

| f (z)| ≤
(1 + r)2β−1 − 1

2β − 1
.

And, if f ∈ N( β) with 1 < β ≤ 3
2 , then

1 − (1 − r)2β−1

2β − 1
≤ | f (z)| ≤

(1 + r)2β−1 − 1
2β − 1

for |z| = r < 1.

Equality holds in the above inequalities for the function f (z) given by f ′(z) =

(1 − z)2( β−1) or its rotation.

Proof. Proofs of (i) and (ii) easily follow from the relation (2.5). And, the proof of
the first part of (iii) follows from the relation (2.6). To prove the second part of (iii),
just observe that if f ∈ N( β) with 1 < β ≤ 3

2 , then f (z) is starlike univalent in D (see
[9, 33]) and so the desired result follows on integration of (2.11). �

Theorem 2.6. Let f ∈ N( β) for some β > 1. Then, for every positive number r ≤
1/(2β − 1), the function f maps the disk |z| < r onto a convex domain. The result is
best possible, that is, the radius of convexity for the class N( β) is 1/(2β − 1).
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Proof. Let f ∈ N( β). Then, by the subordination relation (2.9),∣∣∣∣∣z f ′′(z)
f ′(z)

∣∣∣∣∣ ≤ 2( β − 1)r
1 − r

and, consequently,

Re
(
1 +

z f ′′(z)
f ′(z)

)
≥ 1 −

2( β − 1)r
1 − r

=
1 − (2β − 1)r

1 − r
for |z| = r < 1.

Since 1 − (2β − 1)r > 0 for r < 1/(2β − 1), f (z) must map such a disk |z| < r onto a
convex domain.

For the function f ∈ N(β) given by f ′(z) = (1 − z)2(β−1), a simple computation gives

1 +
z f ′′(z)
f ′(z)

=
1 − (2β − 1)z

1 − z
.

This shows that the bound 1/(2β − 1) is sharp. �

Remark 2.7. If f ∈ M( β) for some β > 1, then, by the relation (2.7),∣∣∣∣∣z f ′(z)
f (z)

∣∣∣∣∣ ≤ 1 + (2β − 1)r
1 − r

and so
Re

(z f ′(z)
f (z)

)
≥
−1 − (2β − 1)r

1 − r
for |z| = r < 1.

But −1 − (2β − 1)r < 0 for any r ∈ (0, 1). Hence, we can say that there exists no
r ∈ (0, 1) such that each f ∈ M( β) maps |z| < r onto a starlike domain. In other words,
the radius of starlikeness of the classM( β) is zero.

3. Fekete–Szegő problem

Theorem 3.1. Let f (z) be of the form f (z) = z +
∑∞

n=2 anzn and f ∈ M( β) for some
β > 1. Then, for any λ ∈ C,

|a3 − λa2
2| ≤


β − 1 for

∣∣∣∣∣λ − 2β − 3
4(β − 1)

∣∣∣∣∣ ≤ 1
4(β − 1)

,

4(β − 1)2
∣∣∣∣∣λ − 2β − 3

4(β − 1)

∣∣∣∣∣ for
∣∣∣∣∣λ − 2β − 3

4(β − 1)

∣∣∣∣∣ ≥ 1
4(β − 1)

.

For each λ ∈ C, there are functions in M( β) such that equality holds for both of the
cases.

Proof. Let f ∈ M( β). Then the relation (2.1) holds. Hence, there exists an analytic
function p(z) = 1 +

∑∞
n=1 cnzn in the unit disk D with Re p(z) > 0 for z ∈ D such that

1
β − 1

(
β −

z f ′(z)
f (z)

)
= p(z),
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which is equivalent to

z f ′(z) − β f (z) = (1 − β)p(z) f (z). (3.1)

Equating the coefficients of z2 and z3 on both sides of (3.1),

a2 = (1 − β)c1 (3.2)

and

2a3 = (1 − β)(a2c1 + c2). (3.3)

By using (3.2) in (3.3),

a3 =
1 − β

2
c2 +

(β − 1)2

2
c2

1.

Therefore,

|a3 − λa2
2| =

∣∣∣∣∣1 − β2
c2 +

( (β − 1)2

2
− λ(1 − β)2

)
c2

1

∣∣∣∣∣ =
β − 1

2
|c2 − µc2

1|, (3.4)

where
µ = (β − 1)(1 − 2λ).

A simple application of Lemma 1.1 in (3.4) yields

|a3 − λa2
2| ≤ (β − 1) max{1, |2µ − 1|}

= (β − 1) max{1, |4λ(β − 1) − (2β − 3)|}.

Since the inequality (1.4) is sharp, we obtain the following sharp inequality for any
λ ∈ C:

|a3 − λa2
2| ≤ β − 1 for

∣∣∣∣∣λ − 2β − 3
4(β − 1)

∣∣∣∣∣ ≤ 1
4(β − 1)

and the equality is attained for the functions g(z) = z(1 − z2) β−1 or any rotation of g(z).
Also, for the other case,

|a3 − λa2
2| ≤ 4(β − 1)2

∣∣∣∣∣λ − 2β − 3
4(β − 1)

∣∣∣∣∣ for
∣∣∣∣∣λ − 2β − 3

4(β − 1)

∣∣∣∣∣ ≥ 1
4(β − 1)

and the equality is attained for the functions h(z) = z(1 − z)2(β−1) or any rotation of
h(z). �

Theorem 3.2. Let f (z) be of the form f (z) = z +
∑∞

n=2 anzn and f ∈ M( β) for some
β > 1. Then, for any λ ∈ C,

|a3 − λa2
2| ≤


β − 1

3
for

∣∣∣∣∣λ − 2β − 3
3(β − 1)

∣∣∣∣∣ ≤ 1
3(β − 1)

,

(β − 1)2
∣∣∣∣∣λ − 2β − 3

3(β − 1)

∣∣∣∣∣ for
∣∣∣∣∣λ − 2β − 3

3(β − 1)

∣∣∣∣∣ ≥ 1
3(β − 1)

.

For each λ ∈ C, there are functions in N( β) such that equality holds for both of the
cases.
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Proof. Here we follow the same method as used in Theorem 3.1. Let f ∈ N( β). In
view of the relation (2.8), there exists an analytic function p(z) = 1 +

∑∞
n=1 cnzn in the

unit disk D with Re p(z) > 0 for z ∈ D such that

1
β − 1

(
β − 1 −

z f ′′(z)
f ′(z)

)
= p(z). (3.5)

Equating the coefficients of z2 and z3 on both sides of (3.5),

2a2 = (1 − β)c1 (3.6)

and

6a3 = (1 − β) (2a2c1 + c2). (3.7)

By using (3.6) in (3.7),

a3 =
1 − β

6
c2 +

(β − 1)2

6
c2

1.

Therefore,

|a3 − λa2
2| =

∣∣∣∣∣1 − β6
c2 +

( (β − 1)2

6
− λ

(1 − β
2

)2)
c2

1

∣∣∣∣∣ =
β − 1

6
|c2 − µc2

1|, (3.8)

where

µ = (β − 1)
(
1 −

3λ
2

)
.

Applying Lemma 1.1 in (3.8),

|a3 − λa2
2| ≤

β − 1
3

max{1, |2µ − 1|}

=
β − 1

3
max{1, |3λ(β − 1) − (2β − 3)|}.

Since the inequality (1.4) is sharp, we obtain the following sharp inequality for any
λ ∈ C:

|a3 − λa2
2| ≤

β − 1
3

for
∣∣∣∣∣λ − 2β − 3

3(β − 1)

∣∣∣∣∣ ≤ 1
3(β − 1)

and the equality is attained for the functions g(z) given by g′(z) = (1 − z2eiθ)β−1, θ ∈
[0, 2π).

Also, for the other case,

|a3 − λa2
2| ≤ (β − 1)2

∣∣∣∣∣λ − 2β − 3
3(β − 1)

∣∣∣∣∣ for
∣∣∣∣∣λ − 2β − 3

3(β − 1)

∣∣∣∣∣ ≥ 1
3(β − 1)

and the equality is attained for the functions h(z) given by h′(z) = (1 − zeiθ)2(β−1), θ ∈
[0, 2π). �
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4. Inverse coefficient estimates and maximal area problem

Our main tool in this section is an estimate for the Taylor coefficients of the function
(z/ f (z))n for functions f (z) inM( β). Let g(z) and h(z) be given by the power series

g(z) =

∞∑
n=0

anzn and h(z) =

∞∑
n=0

bnzn,

which converge in some disk |z| < R. We say that g(z) is dominated by h(z) (or h(z)
dominates g(z)), written as g(z)� h(z), if |an| ≤ bn for each integer n ≥ 0. For more
details of the technique of dominant power series, we refer to [6, Vol. I, page 81].

Lemma 4.1. Let f (z) be of the form (1.1) and f ∈ M( β) for some β > 1. Also, for a
fixed n ∈ N, let ( f (z)/z)−n have an expansion of the form( f (z)

z

)−n
= 1 +

∞∑
k=1

a(−n)
k zk.

Then, for each k ≥ 1,

|a(−n)
k | ≤

∣∣∣∣∣∣
(
−2n(β − 1)

k

)∣∣∣∣∣∣ .
Equality holds in the above inequality for the function f (z) = z(1 − z)2(β−1) or its
rotation.

Proof. The main idea of the proof of this lemma is the technique of dominant power
series. If f ∈ M( β), then

Re
(β − z f ′(z)

f (z)

β − 1

)
> 0 for z ∈ D.

Therefore,
β − z f ′(z)

f (z)

β − 1
�

1 + z
1 − z

,

where� denotes coefficient domination.
The previous relation yields

1 −
z f ′(z)
f (z)

� (β − 1)
1 + z
1 − z

− (β − 1) =
2(β − 1)z

1 − z

and hence

1
z
−

f ′(z)
f (z)

�
2(β − 1)

1 − z
. (4.1)

On integrating (4.1) from 0 to z,

ln
( z

f (z)

)
� −2(β − 1) ln(1 − z)

https://doi.org/10.1017/S1446788715000336 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788715000336
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and, consequently,
z

f (z)
� (1 − z)−2(β−1). (4.2)

Finally, from (4.2), it follows that for each fixed n ∈ N,( z
f (z)

)n
� (1 − z)−2n(β−1). (4.3)

Since

(1 − z)−2n(β−1) = 1 +

∞∑
k=1

ckzk where ck = (−1)k
(
−2n(β − 1)

k

)
,

by (4.3), the required result follows immediately. �

To state our next theorem, we need some preparation. For a, b and c complex
numbers with c , 0,−1,−2,−3, . . . , the function

F(a, b; c; z) := 2F1(a, b; c; z) = 1 +

∞∑
n=1

(a)n(b)n

(c)n

zn

n!

is called the Gaussian hypergeometric function which is analytic in D. Here (a)0 = 1
for a , 0 and (a)n denotes the Pochhammer symbol (a)n := Γ(a + n)/Γ(a) = a(a + 1)
· · · (a + n − 1) for n ∈ N.

Theorem 4.2. Let f ∈ M( β) for some fixed β > 1. Then, for 0 < r ≤ 1,

max
f∈M( β)

∆

(
r,

z
f (z)

)
= 4πr2(β − 1)2 F(2β − 1, 2β − 1; 2; r2).

The maximum is attained for the function f0(z) = z(1 − z)2(β−1).

Proof. Since f ∈M( β), f (z) , 0 for 0 < |z| < 1, otherwise the function z f ′(z)/ f (z) has
a pole at that point. Suppose that

z
f (z)

= 1 +

∞∑
n=1

bnzn, z ∈ D.

Also, it can be easily verified that f0 ∈ M( β) and z/ f0(z) has the following
representation:

z
f0(z)

= 1 +

∞∑
n=1

cnzn for z ∈ D,

where

cn = (−1)n
(
−2(β − 1)

n

)
for n ≥ 1.

Then, by the relation (4.2),

|bn| ≤ cn for all n ≥ 1.
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Therefore,

∆

(
r,

z
f (z)

)
=

"
|z|<r

∣∣∣∣∣( z
f (z)

)′∣∣∣∣∣2 dx dy (z = x + iy)

= π

∞∑
n=1

n|bn|
2r2n

≤ π

∞∑
n=1

n|cn|
2r2n

= π

∞∑
n=1

n
( (α)n

(1)n

)2
r2n where α = 2(β − 1)

= πr2α2
∞∑

n=0

(α + 1)n(α + 1)n

(2)n(1)n
r2n

= πr2α2F(α + 1, α + 1; 2; r2)
= 4πr2(β − 1)2F(2β − 1, 2β − 1; 2; r2). �

Theorem 4.3. Let f ∈ M( β) for some β > 1 and F(w) be the inverse function of f (z)
having the expansion F(w) = w +

∑∞
n=2 Anwn, which is valid in some neighborhood of

the origin. Then

|An| ≤
1
n

∣∣∣∣∣∣
(
−2n(β − 1)

n − 1

)∣∣∣∣∣∣ for n ≥ 2.

Equality holds for the function f (z) = z(1 − z)2(β−1).

Proof. It is well known that (see for example [6, Vol. I, page 54])

An =
1

2πin

∫
|z|=r

1
[ f (z)]n dz =

1
n

a(−n)
n−1

for n ≥ 2, where a(−n)
n−1 is defined in Lemma 4.1. Then, by Lemma 4.1, it follows that

for each n ≥ 2,

|An| =
1
n
|a(−n)

n−1 | ≤
1
n

∣∣∣∣∣∣
(
−2n(β − 1)

n − 1

)∣∣∣∣∣∣ . �

Theorem 4.4. Let the function f (z) be inN( β) for some β > 1 and F(w) be the inverse
function of f (z), with the following expansion:

F(w) = w +

∞∑
n=2

Anwn, (4.4)

which is valid in some neighborhood of the origin. Then

|An| ≤ (−1)n+1(2β − 1)n

 1
2β − 1

n

 for n ≥ 2.

Equality holds for the function f0(z) given by f ′0(z) = (1 − z)2(β−1).
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Proof. Let F0(w) be the inverse function of f0(z). Since f0(z) = 1/(2β − 1)
(1 − (1 − z)2β−1),

F0(w) = 1 − (1 − (2β − 1)w)1/(2β−1) = w +

∞∑
n=2

γnzn

is valid in some neighborhood of the origin. It is a simple exercise to see that

γn = (−1)n+1(2β − 1)n

 1
2β − 1

n

 > 0 for n ≥ 2.

Since f ∈ N( β), in view of (2.8), there exists an analytic function p(z) = 1 +∑∞
n=1 cnzn in the unit disk D with Re p(z) > 0 for z ∈ D such that

β − 1 − z f ′′(z)
f ′(z)

β − 1
= p(z).

This implies that

−
z f ′′(z)
f ′(z)

= (β − 1)(p(z) − 1). (4.5)

Now, using the following relations:

f (F(w)) = w, f ′(F(w))F′(w) = 1 and f ′′(F(w))(F′(w))2 + f ′(F(w))F′′(w) = 0,

equation (4.5) can be written as

F(w)F′′(w)
(F′(w))2 = (β − 1)(p(F(w)) − 1).

A simplification yields

F′′(w) = (β − 1)(F′(w))2
∞∑

n=1

cn(F(w))n−1. (4.6)

Again, using the series expansion (4.4) of F(w) and

F′(w) = 1 +

∞∑
n=2

nAnwn−1, F′′(w) =

∞∑
n=2

n(n − 1)Anwn−2

in (4.6) and on simplification of it,
∞∑

n=2

n(n − 1)Anwn−2 = (β − 1)
( ∞∑

n=0

Bnwn
)( ∞∑

n=0

Dnwn
)
, (4.7)

where

B0 = 1, Bn =

n∑
r=0

(n + 1 − r)(r + 1)An+1−rAr+1 for n ≥ 1
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and

D0 = c1,Dn =

n+1∑
r=2

cr{Fr−1(w)}n for n ≥ 1

with A1 = 1. Here {Fr−1(w)}n denotes the coefficient of wn in (F(w))r−1.
We observe that {Fr−1(w)}n = Xr(A1, A2, . . . , An) are polynomials in A1, A2, . . . ,

An with nonnegative coefficients. And, hence, the Dn are polynomials in A1, A2,
. . . , An, c1, c2, . . . , cn+1 with nonnegative coefficients. Also, we note that the Bn are
polynomials in A1, A2, . . . , An+1 with nonnegative coefficients.

By equating the coefficient of wn−2 in (4.7),

n(n − 1)An = (β − 1) Q(A1, A2, . . . , An−1, c1, c2, . . . , cn−1) for n ≥ 2, (4.8)

where

Q(A1, A2, . . . , An−1, c1, c2, . . . , cn−1) =

n−2∑
r=0

Bn−r−2Dr

is a polynomial in A1, A2, . . . , An−1, c1, c2, . . . , cn−1 with nonnegative coefficients.
As A1 = 1 and |cn| ≤ 2 for each n ≥ 2, we see from (4.8) that

n(n − 1)|An| ≤ (β − 1) Q∗(|A2|, |A3|, . . . , |An−1|) (4.9)

holds for each n > 2, where Q∗(|A2|, |A3|, . . . , |An−1|) is obtained from Q(|A1|, |A2|, . . . ,
|An−1|, |c1|, |c2|, . . . , |cn−1|) by replacing A1 with 1 and |c1|, |c2|, . . . , |cn−1| with 2.

From the relation (4.8), it is not difficult to conclude that Theorem 4.4 is true for
n = 2. Our aim is to prove that |An| ≤ γn for n ≥ 2 by using mathematical induction.
Suppose that the theorem is true for k = 2, 3, . . . , n − 1. Then, from (4.9),

n(n − 1)|An| ≤ (β − 1) Q∗(γ2, γ3, . . . , γn−1). (4.10)

Now, for the function f0(z),

1
β − 1

(
β − 1 −

z f ′′0 (z)
f ′0(z)

)
=

1 + z
1 − z

.

By proceeding as above, the value of Q(A1, A2, . . . , An−1, c1, c2, . . . , cn−1) for the
function f0(z) is equal to Q∗(γ2, γ3, . . . , γn−1). Consequently, the relation (4.8) for
the function f0(z) becomes

n(n − 1)γn = (β − 1) Q∗(γ2, γ3, . . . , γn−1). (4.11)

Finally, (4.10) and (4.11) together imply that

|An| ≤ γn.

Thus, by mathematical induction, the theorem is true for all n ≥ 2. �
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Theorem 4.5. Let g ∈ MΣ( β) (β > 1) be of the form g(z) = z(1 +
∑∞

n=1 bnz−n) for z ∈ ∆.
Then, for each n ≥ 1,

|bn| ≤

∣∣∣∣∣∣
(
−2(β − 1)

n

)∣∣∣∣∣∣ (4.12)

and the estimation (4.12) is sharp.

Proof. The mapping f (z) 7→ g(z) := 1/ f (1/z) establishes a one-to-one correspondence
between the functions in the classesM( β) andMΣ( β) because

zg′(z)
g(z)

=
z
(

1
f (1/z)

)′(
1

f (1/z)

) =
1
z

f ′(1/z)
f (1/z)

.

A careful observation shows that the coefficient a(−1)
n (n ≥ 1) in the expansion of

1/ f (1/z) in D\{0} is equal to the corresponding coefficient bn (n ≥ 1) in the expansion

of g(z), where a(−1)
n are given as in Lemma 4.1.

Therefore,
max

g∈MΣ( β)
|bn| = max

f∈M( β)
|a(−1)

n | for n ≥ 1.

Thus, by Lemma 4.1, we find that for each n ≥ 1,

|bn| ≤

∣∣∣∣∣∣
(
−2(β − 1)

n

)∣∣∣∣∣∣ .
The inequality is sharp. One can easily see that the function

g0(z) = z
(
1 −

1
z

)−2(β−1)

belongs to the classMΣ( β) and the equality holds in (4.12) for the function g0(z). �

Theorem 4.6. Let g ∈ NΣ( β) (β > 1) be given by g(z) = z(1 +
∑∞

n=1 bnz−n) for z ∈ ∆.
Then, for n ≥ 2,

|bn| ≤
1

n − 1

∣∣∣∣∣∣
(
−2(β − 1)

n

)∣∣∣∣∣∣ . (4.13)

The estimation in (4.13) is best possible.

Proof. If g ∈ NΣ( β), then clearly zg′(z) = z(1 +
∑∞

n=1(1 − n)bnz−n) is in MΣ( β).
Hence, by Theorem 4.5,

|(1 − n)bn| ≤

∣∣∣∣∣∣
(
−2(β − 1)

n

)∣∣∣∣∣∣ ,
from which (4.13) follows.

It can be easily verified that the function g0(z) given by

g′0(z) =

(
1 −

1
z

)−2(β−1)

belongs to the class NΣ( β). Equality holds in (4.13) for the function g0(z). �
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Remark 4.7. If the function g(z) is in the class NΣ( β), then, for any complex number
c, the function g(z) + c is also in the class NΣ( β). It follows that |b1(g)| has no upper
bound in the class NΣ( β).

Theorem 4.8. Let g ∈ MΣ( β) (β > 1) and G(w) be the inverse of g(z) and suppose that
G(w) has the following expansion:

G(w) = w
(
1 +

∞∑
n=1

Bnw−n
)

in some neighborhood of the point at infinity. Then:

(i) |B1| ≤ 2(β − 1);
(ii) for n ≥ 2,

|Bn| ≤
1

n − 1

∣∣∣∣∣∣
(
−2(n − 1)(β − 1)

n

)∣∣∣∣∣∣ .
Both of the inequalities (i) and (ii) are sharp.

Proof. For any g ∈ MΣ( β), there exists f ∈ M( β) such that g(z) = 1/ f (1/z). Also,
it can be easily verified that G(w) = 1/F(1/w), where F(w) is the inverse of f (z).
Therefore,

Bn = A(−1)
n for n ≥ 1, (4.14)

where the A(−1)
n are defined as in Lemma 1.3.

Our first aim is to estimate B1. Since f ∈ M( β) and f (z) is of the form (1.1),

f ′(z)
f (z)

=
1
z

+ a2 + (2a3 − a2
2)z + · · · . (4.15)

By comparing the coefficients in (1.5) and (4.15), we find that A(−1)
1 = a2 and, therefore,

by Theorem 2.1,
|B1| = |A

(−1)
1 | = |a2| ≤ 2(β − 1).

Our next aim is to estimate A(−1)
n for n ≥ 2. From Lemma 1.3,

A(−1)
n = −

1
n − 1

a(−(n−1))
n for n ≥ 2. (4.16)

Then, from (4.14) and (4.16) and applying Lemma 4.1,

|Bn| =
1

n − 1
|a(−(n−1))

n | ≤
1

n − 1

∣∣∣∣∣∣
(
−2(n − 1)(β − 1)

n

)∣∣∣∣∣∣ for n ≥ 2.

Both of the inequalities (i) and (ii) are sharp and equality holds for the function

g0(z) = z
(
1 −

1
z

)−2(β−1)
. �
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