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Quartz is an extremely common mineral that can display a wide range of colours and textures and is 

important for industry as it is used to make oscillators for watches, televisions and GPS equipment. Quartz 

growth can also be associated with ore minerals like gold, silver and copper. For each colour of quartz 

there are multiple locations, or sources, around the world where they grow. Sometimes a particular texture 

is characteristic of a specific source location, but most of the time this is not the case. Archaeological 

samples, such as obsidian arrowheads, have been measured using portable x-ray fluorescence 

spectrometry (pXRF) to determine the elemental composition and various trace element ratios have been 

used to determine the source location of the rock source the arrowheads have been made from [1]. 

 

This project aims to continue determining the characteristic trace element fingerprint exhibited by blue 

quartz gemstones from different source locations [2]. This research uses a non-destructive, Bruker Tracer 

5i, portable X-ray fluorescence spectrometer (pXRF) to measure the trace element signature of blue quartz 

samples [3]. As most of the samples used for this research were loaned from various jewellery companies, 

the Kittitas County Museum, the Central Washington University (CWU) geology department collection 

and from private individuals, no sample preparation was performed before pXRF analysis. Each sample 

was first photographed, then measured using calipers and then the best side of the sample (flattest, showing 

least amount of post-mineralization flaws) was analysed using the pXRF for major and trace elements 

using different operating conditions for the instrument (Fig.1). 

 

After measuring hundreds of blue quartz samples with known origins, like the Ellensburg Blues and Blue 

Candy samples from Washington [4], Holley Blues from Oregon, USA, from Mexico, Indonesia and 

Africa, the results show a similar trace element signature with the concentrations of the trace elements 

varying between locations. The results from the pXRF analysis were used to develop diagnostic trace 

element ratios that are associated with each source of blue quartz and we wrote software to apply those 

ratios to determine sources for new samples. With this traditional approach, we had to manually decide 

which trace elemental ratios are of geological significance to determine one source vs another (Fig. 2). 

 

Another approach to analyzing pXRF data is make the computer do the work for you through the process 

of supervised machine learning. We built a RandomForest model in R using the most diagnostic elements 

in the dataset (e.g. Zr, Mn, Zn, and Co). Machine learning algorithms are particularly effective for use on 

data with overlapping composition, as the algorithm can detect and apply finer-scale differences than 

human eyes [5]. Currently the model has over 90% accuracy in identification of the four groups with 

sufficient sample sizes (>10), with most mistakes being the misclassification of Blue Candy specimens as 

Ellensburg Blues (Fig. 3). Both models require further testing and refinement and then the models can be 

used to provide source identification for samples from unknown locations. A future is to invite people to 

get their blue quartz samples analysed to test the software’s ability to determine the samples source 

location and compare the machine learning vs ratio approaches for performing the source determination.   
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Figure 1: Collected x-ray fluorescence spectra for blue quartz samples from known sources. The spectra 

exhibit peaks of similar trace elements but the concentration varies between samples. Zr is the most important 

element followed by Mn, Co, Ni, Cu, Zn ,Ge, Au and Fe (Fe is often increased by post-mineralisation affects). 
 

 
 

 

 

 

 

Green Spectra: Ellensburg Blue, WA, USA 

 

Red Spectra: Blue Lace, Africa 

 

Blue Spectra: Holley Blue, Oregon, USA 

 

Pink Spectra: Blue Candy, WA, USA 

Figure 2: Results from ratio based source 

determination. Showing issues with multiple 

source possibilities for the same sample, with 

further testing and refinement of the code this 

misindexing should be reduced. As more samples 

from known sources are measured this will 

decrease the number of unknown samples that the 

code does not find a source match for like E035a 

Figure 3: Scatterplot of two important elements 

showing separation within the four largest sample 

categories. Oregon Holley Blues are easy to separate 

just using Zirconium (Zr), but Blue Candy and Blue 

Lace are harder to discriminate visually. Machine 

Learning models can take large overlapping datasets 

like this and use them to separate and sort samples 

into defined categories.  
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