
V L B I O B S E R V A T I O N S OF T H E 0 9 5 7 + 5 6 1 G R A V I T A T I O N A L L E N S S Y S T E M 

M.V. Gorenstein (CfA), R.J. Bonometti (MIT), N.L. Cohen (Cornell), 
E.E. Falco, I.I. Shapiro, N. Bartel (CfA), A.E.E. Rogers (Haystack), 
J.M. Marcaide (IAA), T.A. Clark (GSFC) 

A B S T R A C T . A series of VLBI observations of the gravitational lens system 0957+561 at Λ13 cm 
has yielded the positions of the A and Β images, the relative magnification of their largest dis-
cernible radio structures, and the time variability of their smallest discernible radio structures. 
These observations have also allowed upper limits to be placed on the flux density of an expected 
third image. The positions and relative magnification of the A and Β images provide new informa-
tion with which to constrain models of the lens that forms the images. The detection of variations 
in the flux densities of the cores of A and Β suggests that observations at shorter wavelengths may 
reveal superluminal motion, which may in turn provide a means to measure the relative time delay. 

1. I N T R O D U C T I O N 

The 0957+561 gravitational lens system (Walsh, Carswell, and Weymann 1979) is the first known 
and best studied example of the gravitational lens effect. VLBI observations can contribute to 
our understanding of this, and other, lens systems through the determination of the observable 
properties of the images. For two images of a common source, VLBI observations can determine 
their (i) relative positions to sub-milliarcsecond accuracy from the difference of their interferome-
ter phase delays; (ii) relative magnification from their partially-resolved time-independent bright-
ness distributions; and (iii) relative time delay, ATBA, from correlations in the evolution of their 
partially-resolved time-variable brightness distributions. These results can check the basic lensing 
hypothesis, add new information with which to constrain lens models, and, perhaps, provide a new 
means with which to estimate the Hubble constant. 

In 1981, at Λ13 cm (Cohen 1985), and in 1983, at Λ13 cm, A6 cm, and A3.6 cm (Bonometti 
1985), we observed with VLBI the A and Β gravitational images of the quasar Q0957+561. Here, 
we discuss only the λ 13 cm data taken at these two epochs. We employed the Mark-III VLBI 
data acquisition system (Rogers et al. 1983), recording a 56-MHz band (Mode-A), at participating 
stations located at Effelsberg, FGR (100-m diameter antenna); Onsala, Sweden (25-m); Madrid, 
Spain (64-m); Green Bank, W V (43-m); Owens Valley, CA (40-m); and Goldstone, CA (64-m). The 
minimum fringe spacing, obtained on the Effelsberg-Goldstone baseline, was 3.5 milliarcseconds 
(mas). 

In §11 we describe models for the brightness distributions of the A and Β images obtained 
from our VLBI data, and the properties of the images that follow from these models. In §111 we 
discuss the detection of the radio core of the main lensing galaxy G l in the 0957+561 system 
and the limits on the flux density of a third image of Q0957+561. The following paper in the 
volume (Falco, Gorenstein, and Shapiro 1987a) presents a model of the mass distribution of the 
lens constrained, in part, by the data presented here. 
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2. OBSERVABLE PROPERTIES OF THE A A N D Β IMAGES 

In §2.1, we present models of the brightness distributions of A and Β and demonstrate that they 

are images of a common source and have opposite parity, as predicted from models for the lens' 

mass distribution. In §2.2, we give our result for the relative position of the images. In §2.3, we 

discuss evidence for the time variability of the cores' flux density. 

2.1 VLBI Structure of the Images — Confirmation of the Lensing Hypothesis 

We present in Figure 1 a model ("Model F ) for the brightness distribution of each image obtained 
from the 1981 data (Cohen 1985; Cohen et al. 1987). We modeled each image with four elliptical 
Gaussian components: two compact components (Core and Jet l) and two extended components 
(Jet 2 and Jet 3). The model parameters were constrained by correlated flux densities, closure 
phases, and difference phases (for definitions of difference phases, see §2.2). The χ 2 contribution 
per degree of freedom (DOF) for the (combined) models is 2.2. For these preliminary results, the 
errors in the magnification parameters and in the A—Β difference position presented in Table 1, 
and in the data presented in Figure 2, are all a factor of two larger than the statistical errors. 
Final values for these errors will be presented in Cohen et al. (1987). 

The approximate correspondence in relative position, flux density, size, shape, and orientation 
of the respective components in A and Β suggests that they are images of the same source. We 
test these correspondences quantitatively as follows: First, we note that the angular extent of each 
image (~ 60 mas) is small compared to the arcsecond extent of the lens, suggesting that over the 
image's brightness distribution, the deflection caused by the lens changes linearly with position. 
Geometric optics implies then that the brightness distribution of an image should be related to 
the source's distribution by a three-parameter transformation that corresponds to a magnification 
and an astigmatism. Further, the brightness distribution of one image can be related to that of 
the other image by a four-parameter transformation, described by the four elements of a 2 x 2 
"magnification matrix" [see Gorenstein et al. (1984) for details]. This magnification matrix can 
be estimated from corresponding components of images observed at one epoch, provided the time 
evolution of those components on the time scale of the relative time delay can be neglected. 

For the 1981 data, we also used a second model ("Model IF) that had parameters for the 
structures of the images and for the magnification matrix. The magnification parameters were 
used to relate only the flux densities, shapes, and orientations of Jet 2 and Jet 3 in the A and Β 
images, and their positions relative to the centers of the respective Core components. As Jet 2 
and Jet 3 are at least a few hundred light-years in extent, we concluded that we could neglect any 
evolution in their structure. 

For Model II, the parameters describing the flux densities, shapes, and relative positions of 
the Core and Jet 1 components were estimated independently for both images, since, because of 
possible evolution, these parameters may not be related accurately by the magnification matrix. As 
these components are only some tens of light years in extent, or less, their brightness distribution 
could evolve significantly over a time delay of order 1 yr. 

Inspection of Figure 1 suggests that the Β image, aside from parts affected by evolution, can 
be obtained from the A image by a magnification of about 1.2 applied along the jet axis. Model I 
shows that the ratio of flux densities of Jet 2 and Jet 3 is Β/Α ~ 0.6. This result suggests a 
demagnification along an axis perpendicular to the jet axis of about 0.6/1.2 = 0.5. Estimates of 
the magnification parameters conform to these results, as shown in Table 1. The total relative 
magnification, Β/A, is 0.64 ± 0.05. The χ 2 per DOF for Model II is 2.2; χ 2 for Model II is 7 
larger than for Model I for an increase of 8 degrees of freedom, which shows that the models 
are statistically indistinguishable. The estimated values for these parameters are independent of 
possible systematic errors in the overall calibration, as the magnification depends only on the ratios 

of flux densities. However, we have not yet checked the sensitivity of the magnification parameters 
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to systematic calibration errors that may be produced at each station. 
Models for the lens in the 0957+561 system predict that the A and Β images have opposite 

parity (Young et al. 1981). Model I, presented in Figure 1, confirms this prediction, albeit only at 
the lowest, least significant, contour level: for example, Jet 2 appears to the left of Jet 3 in A, but 
to the right of Jet 3 in B. To test the significance, we analyzed a third model in which the relative 
parity of the images was constrained to be positive; χ 2 for this third model was larger than for 
Model I, but by an amount too small to rule out the alternative hypothesis with high confidence. 

The apparent existence of the same number of components in each image, their satisfaction 
of the magnification relationship, including parity reversal, all are consistent with, and therefore 
serve to confirm, the lens hypothesis. 

2.2 Difference Position 

Because of their close ~ 6" separation, both images were observed simultaneously by all antennas 
during the observations. For each 13 min 'scan', we obtained, for each interferometer, a phase delay 
for each of the images; we employed the difference of these phases in our astrometric analysis. The 
difference of these phases eliminates common contributions to both that arise from the atmosphere, 
instrumentation, and clock behaviors; the difference phase equals the sum of the difference phases 
due to the images' different sky locations and brightness structures. 

We employed these difference phases, together with the visibility amplitudes and closure 
phases for each source, to obtain a difference position for the Core components in A and Β (Cohen 
et al. 1987), presented in Table 1. 

Figure 1 — The brightness distributions of 0957H-561A and B. Four elliptical Gaussian 
components account for the data obtained from the 1981 λ 13 cm VLBI observations for 
A and for Β (Model I—see text). The correspondences in the number and in the 
properties of the components of the respective models, and the evidence for a change in 
parity from one image to the other, all support the hypothesis that A and Β are images 
of a single object. 
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Redshifts 

Imagesa G l 6 

1.4136 ± 0.0002 0.36 ± 0.01 

Image and Lens Positions 

A - B c (1950.0) G l - B d (1950.0) 

Δ α -Of 149 866+ Of000 002 ο'.'ΐδΐ ± O'.'OOI 

A6 6'/046 63 ± θ"θΟΟ 02 ΐ'.'θ29 ± O'.'OOI 

Relative Magnification Matrix 0 (B/A) 
Linear Magnification Direction of Magnification Axis 

(Eigenvalues) (Pos. Ang. of Eigenvectors) 

+1.21 ± 0.01 +18?9 ± 0?2 

-0.53 ± 0.04 -70° ± 10° 

Relative Magnification 
(Product of Eigenvalues) 

-0.64 ± 0.05 

a from optical observations, Weymann et al. (1979). 
b Prom optical observations, Young et al. (1981). 
c Prom 1981 A13 cm VLBI observations, Cohen et al. (1987). 
d PVom 1981 A13 cm VLBI observations, Gorenstein et al. (1983). 

Table 1 — The observable properties of the images and of the lens of the 0957+561 

system. We employ these properties to constrain a model for the mass distribution of 

the 0957+561 system (Falco, Gorenstein, and Shapiro 1987a). 

2.3 Time Variability of Images. 

The relative time delay, Δτ^^, for the images results from the differing lengths and gravitational 
potentials associated with the respective ray paths. A measurement of ATBA is crucial because, 
first, a detection of definitive correlated variations between the images would provide a final proof of 
the reality of the gravitational lens effect, and, second, the value for ATBA is inversely proportional 
to the Hubble constant (Falco, Gorenstein, and Shapiro [1985] and references therein). The value 
for ATBAI together with a model for the mass distribution of the lens, can yield a value for HQ 

and for the mass of the lens. 

In 1983 we re-observed the 0957+561 system at Λ13 cm to search for possible time evolution 
of the Core and Jet 1 in each image. Such evolution, if detected, could lead to a measurement of 
ΔΤΒΑ' The models for the Jet 2 and Jet 3 components in the A and Β images obtained from the 
1983 data were consistent with the corresponding models obtained from the 1981 data. However, 
the flux densities of the Core and Jet 1 in both images changed. In Figure 2, we plot the sum 
of the Core+Jet 1 flux densities for A and for Β for both epochs. (We consider only the sum 
of these flux densities because the components were barely resolved with the 3 mas resolution of 
the longest-baseline available, causing the estimates of the individual flux densities to be highly 
correlated for each image for each epoch.) The Core+Jet 1 flux densities in 1983 can be seen to be 
significantly lower than in 1981 for both images. Further, the difference between the (scaled) flux 
densities for A and Β obtained at the same epoch gives evidence for the time evolution of the flux 
density of the Core+Jet 1 for the source on the time scale of the time delay: If there were no time 
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evolution, the Core+Jet 1 flux density for B, when scaled for the magnification as determined by 
the outer jets, would equal, within the measurement errors, the Core+Jet 1 flux density for A. 

A reliable value for ATBA cannot be extracted from these data; however, we can obtain a 
model-dependent value. For example, if we assume the decay to be linear in time, we obtain 
ATBA = 4 ± 1 yr (A varies first); in Figure 2, the open triangles represent the Β data translated by 
this amount, with the corresponding light curve being indicated by the dashed line. The data do 
not distinguish this light curve from other possible light curves. Although our data do demonstrate 
that the flux density of the source varies on a time scale comparable to ATBAI they do not provide 
a definitive demonstration of correlated evolution of the images, nor do they provide a reliable 
estimate for the time delay. 

Motion of multiple components in a radio source can provide another means with which to 
determine ATBA, as pointed out by Vanderriest (1982) and Gorenstein et al. (1984). For example, 
a core-jet separation could be determined for each image at each of two epochs; then, if the deduced 
separation velocities were constant, but non-zero and detectable, we could determine for each image 
the epoch of zero apparent separation. The difference in these epochs yields ATBA- OUT original 
goal in performing a second epoch observation at λ 13 cm was to detect a change in the separation 
of Jet 1 from the Core in each image. Our 1983 data showed that these structures were still barely 
resolved, and no statistically significant change in their separation from 1981 to 1983 was evident. 

The changes in the flux density of the images over two years demonstrates that the brightness 
distribution of the source is evolving on a useful time scale. This evolution gives us hope that similar 
evolution may occur at shorter wavelengths, where we may be able to detect observable changes 
in the images' brightness distributions. We are planning observations at Λ6 cm and, ultimately, at 
Λ3.6 cm, in order to search for evidence for such structural evolution. 

1976 1978 1980 
Years 

1982 1984 

Figure 2 — The flux densities of the Core+Jet 1 components in A and in Β at Λ13 cm 
in 1981 and 1983. The A (B) flux densities are plotted with respect to the left- (right-) 
hand vertical axes; the scale of the latter axis reflects the ratio of the image magnification 
(B/A = 0.64). These data are consistent with ATBA = 4 ± 1 years, if the flux density 
of the Core+Jet 1 is assumed to decay linearly (see text). 
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3. WHITHER THE THIRD IMAGE? 

Theories of lensing predict that every transparent lens should produce an odd number of images, 
except for "singular" relative orientations of source, lens, and observer (Burke 1981). Our search 
for a third image in the 0957+561 system using our 1981 data led to the discovery of a weak 
(0.6 ± 0.1 mJy), compact (< 2 mas) radio source, G', located on the sky at or near the center of 
the foreground galaxy G l (Gorenstein et al. 1983). The size, flux density, and location of G' were 
consistent with it being either a third image of Q0957+561, radiation from Gl , or, perhaps, some 
combination of the two. 

Our 1983 data revealed that the correlated flux density of G' increased from its 1981 value 
by nearly 100% to 1.0 ± 0 . 1 mJy. If G' were an image, then this increase could be due to a 
corresponding brightening of the source, or microlensing by a compact mass in G l traversing the 
ray path. However, the flux density for the nearby Β image decreased by about 5% during this 
period, while our models for the lens predict that the propagation times for Β and the possible 
third image G' should differ by, at most, a few weeks (Falco, Gorenstein, and Shapiro 1987b). 
Further, the apparent angular size of such a demagnified image should be no less than ~ 0.1 mas 
(1 ly for Ho = 100 km s e c - 1 M p c - 1 ) ; so a suitable microlens must have a speed near or greater 
than c in order to traverse this distance in 2 yr. A straightforward interpretation of these results 
implies that G' is not the third image, but rather the radio core of G l . The variations in, and the 
values of, the flux density of G' are within the range expected from observations of the cores of 
other elliptical galaxies (e.g., Sramek 1975). 

We combined the most sensitive data from both the 1981 and 1983 observations and searched 
for evidence for an additional image ( " C ) over a field of width 1. 0 in α and 1. 6 in δ that was 
centered 1" due north of B. Our search yielded no evidence for C, setting a (5cr) limit of 0.2 m Jy, or 
one part in 80 of the flux density of the compact Core in the Β image. A magnification ratio (C/B) 

of less than one part in 80, implies, according to one simple mass model for the G l lens galaxy, 
that ATCB is less than 3 weeks, the separation of C from the center of G l is less than 0. 2, and the 
surface mass density at the center of G l is greater than eight times the critical surface mass density 
(Falco, Gorenstein, and Shapiro 1987b). The critical surface mass density for a given lens system 
is determined only by the redshifts of the lens and the source and by the cosmology (see Falco, 
Gorenstein, and Shapiro 1985). For the 0957+561 system and for H0 = lOO/i km s e c - 1 M p c - 1 

and go = 0, the critical surface mass density is 4.4 χ 1 Ο 1 ο / ι - 1 Μ 0 arcsec - 2 . 
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