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A QUESTION OF PAUL ERDOS AND
NILPOTENT-BY-FINITE GROUPS

BlJAN TAERI

Let n be a positive integer or infinity (denoted oo), k a positive integer. We denote

by f2jt(n) the class of groups G such that, for every subset X of G of cardinality

n + 1, there exist distinct elements x,y 6 X and integers to,t\,... ,tk such that

[ ig°,x\ ' , . . . ,xk
h] = 1, where x, e {x,y}, i = 0 , 1 , . . . ,k, XQ # x\. If the integers

to,ti,... ,tk are the same for any subset X of G, we say that G is in the class

Q.k(n). The class Uk(n) is defined exactly as Qfc(n) with the additional conditions

a:'' ^ 1. Let <2, *3> • • • ,tk be fixed integers. We denote by W*k the class of all groups

G such that for any infinite subsets X and Y there exist x e X, y e Y such that

[xo,x\,xl2 •.. ,xk
k] = 1, w h e r e Xi € {x,y},xo ^ x \ , i = 2 , 3 , . . . ,k. H e r e w e p r o v e

that

(1) If G G £4(2) is a finitely generated soluble group, then G is nilpotent.
(2) If G e fi,t(oo) is a finitely generated soluble group, then G is nilpotent-

by-finite.

(3) If G e fMn), n a positive integer, is a finitely generated residually
finite group, then G is nilpotent-by-finite.

(4) If G is an infinite W^-group in which every nontrivial finitely generated
subgroup has a nontrivial finite quotient, then G is nilpotent-by-finite.

1. INTRODUCTION AND RESULTS

In response to a question of Paul Erdos, B.H. Neumann proved in [19] that a group
is centre-by-finite if and only if every infinite subset contains a commuting pair of distinct
elements. The extension of the questions of Paul Erdos, firstly, is considered by Lennox
and Wiegold [15]. Further questions of a similar nature, with different aspects, have been
considered by many people (see for example [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
15, 16, 17, 23, 24, 20, 25, 26, 27]).

Our notation and terminology are standard, and can be found in [22]. For a group
G, and elements x, y, X\,... , Xk € G we write

[xi,x2] =x-[1x^lxix2 =x^x\\ [xu... ,xk] = [ [ z i , . . . ,x,k-x],xk]

Received 21st November, 2000
This research was in part supported by a grant from IPM.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/01 SA2.00+0.00.

245

https://doi.org/10.1017/S0004972700039903 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700039903


246 B. Taeri [2]

[x, oy] = x, [x, ky] = [[x, k-iy],y]-

A group is said to be fc-Engel (Engel) group if for all x,y e G, [x, ky] = 1 (respectively,
there exist a positive integer t depending on x and y such that [x, ty\ = 1). The class
of A;-Engel (Engel) groups will be denoted by £k (respectively, £). For elements x,y,z of
a group G, the following commutative identities will be used frequently without special
reference.

[xy, z] = [x, z]y[y, z], [x, yz] = [x, z][x, y]z

Let fcbea positive integer, n a positive integer or infinity (denoted oo). We denote
by (A/", n) (respectively, (Afk,n)) the class of all groups G such that, for every subset X
of cardinality n + 1, there exist distinct elements x,y € X such that (x, y) is nilpotent
(respectively, nilpotent of class at most A;). We also denote by £k(n) (respectively, £(n))
the class of all groups G such that, for every subset X of cardinality n + 1, there exist
distinct elements x, y € X such that [x, ky] = 1 (respectively, [x, ty] = 1 for some positive
integer t depending on x, y). Lennox and Wiegold [15] proved that a finitely generated
soluble group G € (Af, oo) if and only if G is finite-by-nilpotent. Abdollahi and Taeri [3]
proved that a finitely generated soluble group G S (Afk,oo) if and only if G is a finite
extension by a group in which any two generator subgroup is nilpotent of class at most
k.

Let n be a positive integer or n = oo. We denote by Q(n) the class of groups G in
which for every subset X of G of cardinality n +1, there exist distinct elements x, y € X,
such that the following condition holds.

There exist a positive integer k and elements xo,xu... ,xk 6 {x,y} with
x0 ^ Xi, and integers to> *i, • • • , **, such that [x$, x[l,..., xk

k] = 1.

If the integer k is the same for any subset X of G, we say that G is in the class
fifc(n). If G e fijt(n) and the integers to,tu... ,tk are the same for any subset X of G,
we say that G is in the class fifc(n). Since all torsion groups belong to flfc(n), we define
another class of groups: the class Uk(n) (respectively, Uk(n)) is defined exactly as £lk(n),
(respectively, n*(n)) with additional conditions x\' ^ 1, i — 0 , 1 , . . . , k.

Also we denote by W£ the class of all groups G such that for any infinite subsets
X and Y there exist x € X, y S Y such that \XQ,XI,X^,. .. ,xk

k] = 1, where U is an
integer, X{ € {x,y},x0 ^ X\, i = 2 , 3 , . . . ,k. If the integers t2,t3,... , tk are the same, we
obtain the class Wk. Note that

(M, n) C £k(n) C W*(n) C fifc(n) C n t (n + 1),

and

Uk(n) C nfc(n) C Hfc(oo) and W^ C Wt' C fifc(oo).
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Endimioni [9] proved that if G € (N,n), n ^ 3, is a finite group, then G is nilpotent.

Abdollahi [2] considered £(2)-groups and proved that if G € £(2) is a finite group, then

G is nilpotent. We generalise this result.

THEOREM 1 . Let G be a finite group with the condition £4(2), then G is nilpo-

tent.

Note that £ C U{\) C U(2). Thus Theorem 1 is a generalisation of a well known
result due to Zorn (see for example [22, Theorem 12.3.4]) which states that a finite Engel
group is nilpotent. Trabelsi [27] proved that a finitely generated soluble group G is
nilpotent-by-finite if and only if for every pair X, Y of infinite subsets of G there exist x
in X, y in Y and two positive integers m = m(x,y),n = n{x,y) satisfying [x, nU1"} = 1-
We generalise this result and prove that

THEOREM 2 . Let G € f4(oo) be a finitely generated soluble group. Then G is
nilpotent-by-finite.

Longobardi and Maj [16] (see also [8]) proved that a finitely generated soluble group
G € £(oo) if and only if G is finite-by-nilpotent. Theorem 2 and [2, Lemma 7] gives
another proof for this result. Abdollahi [2] has proved that a finitely generated residually
finite £A;(n)-group, n a positive integer, is finite-by-nilpotent. We consider the weaker
condition Clk(n) and obtain the following result.

THEOREM 3 . Let G e fi*(n) be a finitely generated residually finite group. Then
G in nilpotent-by-finite.

Recall that a group G is said to be locally graded whenever every finitely generated
subgroup has a nontrivial finite quotient. We say that a group G is an ££-group provided
that whenever X, Y are infinite subsets of G, there exist x in X and y in Y, such that
[s> ky] = 1- Note that S*k C V\!*k. Puglisi and Spiezia [20] proved that every infinite
locally finite or locally soluble ££-group is a A;-Engel group. Abdollahi [1] improved this
result for locally graded groups. We consider W*k.

THEOREM 4 . Let G e Wk be a locally graded group. Then G is nilpotent-by-
finite.

2. PROOFS

We begin by an easy lemma without proof.

LEMMA 1 . Let G be a group with A as an Abelian normal subgroup, and let g
be any element ofG, then for all distinct elements a and b of A we have

[xo i x \ > • • • > x k \ ~~ Y" ' >" ' " ' • • • >9 J

where x{ £ {ga,gb}, xQ = ga,Xi = gb.

https://doi.org/10.1017/S0004972700039903 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700039903


248 B. Taeri [4]

LEMMA 2 . Let G be an infinite group in f2fc(oo), and A be a normal Abelian
subgroup of G. If there exists a torsion free element g of G such that the centraliser of
gm in A, CA(gm) = 1, for all integer m, then A is finite.

PROOF: Suppose that A is infinite. Then the set gA = {ga \ a € A} is infinite,
as CA(g) = 1. Now, since G € fi/t(oo), there exist distinct elements a, b € A and
integers U such that [x$,x[l,... ,xl£] = 1, where x0 = ga,x\ = gb, and xt € {ga,gb},
i = 0 ,1 ,2 , ...k. Thus, by Lemma 1, [gto, ab~l, gli, gt2,... ,gtk] = 1. Now, since A is

normal Abelian, u = [gto, ab~l, gl1, gh,... ,gtk-1] € CA(gh) = 1. Sou = l. Continuing in
this way we find that [gto, ab~l] 6 CA{gl1) = 1. So ab~l € CA(gio) = 1, a contradiction. D

The following lemma is proved similarly.

LEMMA 3 . Let G be a group in Uk{n), A be a normal Abelian subgroup ofG. If
there exists g e G, such that CA{gm) = 1, for all integers m with gm ^ 1, then \A\ < n.

Now we are ready to prove Theorem 1.

P R O O F OF THEOREM 1: Suppose the assertion of the Theorem is false and choose
a counter-example G of smallest order. Now G is a finite minimal nonnilpotent group.
By a result of Schmidt (see [22, Theorem 9.1.9]) G is a {p, g}-group, where p,q are
distinct primes and G has a normal Sylow p-subgroup P and a cyclic Sylow g-subgroup
Q. Let x € Q be an element of order q. Then, since the centre of G Z(G) = 1, we
have CZ(p)(x) = 1, and therefore, by Lemma 3, \Z(P)\ ^ 2. Thus Z{P) ^ Z{G) = 1, a
contradiction. Therefore G is nilpotent. D

Note that S3 € W2(3), so that the bound 2 in Theorem 1 cannot be improved.

COROLLARY 1 . Let G e Uk(2) be a finitely generated soluble group. Then G is
nilpotent.

PROOF: If G is not nilpotent, then by a result of Robinson and Wehrfritz (see
[22, Theorem 15.5.3]) G has a nontrivial finite nonnilpotent image. This contradicts
Theorem 1. D

A result of Kropholler states that if a finitely generated soluble group G has no
section isomorphic to the restricted wreath product of a cyclic group of prime order with
the infinite cyclic group, then G has finite rank. Therefore to prove Theorem 2, we first
prove the following.

LEMMA 4 . Let G = A Wr B be the restricted wreath product of a cyclic group A
of prime order p with the infinite cyclic group B — (b). Then G £ fi*(oo).

PROOF: Let R = AB, be the base group of G = A Wr B. We shall write r • 6 for
the conjugate of r under b and r • (b* + b^) for r • bx + r • b^, for all r € R and integers
A, n. Every element of R can be expressed in the form

m-l

i=0
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with Ti £ RQ, where Ro is the first isomorphic copy of A in R. Note that R is a free

Fp(6)-module with basis {r} , where RQ = (r) . Thus the above f(b) can be written as

i = 0

where st € F p . Elements of G will be expressed in the form (f(b),bx) with f(b) € R

and A € Z, with multiplication given by (/(&),&A)(p(&),&") = ( / (&)+

)Note that the conjugate (b-^6') of 6A under an element f(b) of /? is expressed in the form
{-f(b) + f(b)-b-x,bx). Also we have the commutator identity [f(b),bx] = f(b)-(-l + bx).

Now suppose, for a contradiction, that G € f2jt(oo), and consider the elements fi(b) =
r • b\ i = 1,2,3,. . . . Since G € fijt(oo) there exists i ^ j such that [x$, x[l,... , x[k] = 1,
where x0 = bfiW,xi - bf^b\xs € { ^ ^ . i ^ W } . Since R is a normal Abelian subgroup of
G we have, by Lemma 1, that

[bt\hf-\bt\bt\...,bi*}=\,

or in additive notation,

0 = (/i - /;) • (1 - 6'°)(-l + &")(-! + 6'2) • • • ( -1 + ft(t)

= r • (b{ - b>)(l - bt0)(-l + bl')(-l + bh) • • • ( - ! + b1-).

Since R is a free Fp(6)-module with basis {r}, in the group ring Fp(6), we have

(V - fr>)(l - bt0){l - btl)(l - bt2) • • • (1 - 6tl) = 0,

a contradiction, as the order of b is infinite. D

The proof of Theorem 2 is similar to that of [11, Theorem 2]. We include it for
completeness.

PROOF OF THEOREM 2: Suppose G is not nilpotent-by-finite. Since fl*(oo) is a
quotient closed class of groups and since finitely generated nilpotent-by-finite groups are
finitely presented, it follows, by [21, Lemma 6.17], that we may assume that every proper
quotient of G is nilpotent-by-finite. Let A be a nontrivial normal Abelian subgroup of
G. Then G/A is nilpotent-by-finite. Since, by Lemma 4, G has no section isomorphic
to the wreath product of a cyclic group of order prime p with the infinite cyclic group,
a result of [14] shows that G has finite rank. This means that, for some positive integer
t, every proper subgroup of G can be generated by at most t elements. Let T be the
torsion subgroup of A. Then T is finite and so C = CG(T), the centraliser of T in G, is
of finite index in G. If T ^ 1 then G/T is nilpotent-by-finite and thus C/T is nilpotent-
by-finite. Since T ^ Z(C), then CG(T) and hence G would be nilpotent-by-finite. Thus
T = 1, and A is torsion free Abelian, and by passing to a suitable subgroup of finite
index in G, if necessary, we may assume further that G/A is a finitely generated torsion
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free nilpotent group. Thus there exists a finite set T = {t\,... , tr} of elements of G such
that G = (A,T), and

A = Go s$ <G0,fi) = Gi ^ • • • ̂  (Gr-uU) = Gr = G

is a central series from A to G with torsion free factors. Suppose r = 1 then G = (A,t\).
If CU(£]™) = ^! f°r a ^ TO> then by Lemma 2, A is finite, a contradiction. Thus there exists
a positive integer m\, such that CU(i™') ^ 1. Therefore Z((/M™')) / 1 and hence
D = ADZ({A,t™)) is a nontrivial normal subgroup of G. So G/D is nilpotent-by-finite
and hence G is nilpotent-by-finite. Now assume that we have established the result when
r < s, and suppose r = s. Then Gs_i is nilpotent-by-finite and G = (Gs_i,i). Let
H = (AGJLi) f o r s o m e suitable m > 0, so that # is nilpotent. Let V = A n Z(#) ,
then y is normal in (H,t3) which is of finite index in G. Moreover Z((Y,t™M)) ^ 1, for
some ms: by Lemma 2. So £>i = Yr\Z((Y,t™')) is a nontrivial subgroup of G contained
in the centre of (H,t™') which is of finite index in G. We may replace (H,t™') by its
normal interior in G, if necessary; H still contains A and hence D\. Now {H,t™')/Di
is nilpotent-by-finite, A ^ Z{(H,t™')) and (H,??') is of finite index in G, thus G is
nilpotent-by-finite, a contradiction. D

COROLLARY 2 . Let G be a finitely generated soluble group. Then G € ft(oo) if
and only ifG is nilpotent-by-Gnite.

Now, we want to consider a finitely generated residually finite group in flk(n), n
a positive integer. We use a result of Wilson [28] which states that if G is a finitely
generated residually finite group and TV is a positive integer such that G has no section
isomorphic to the twisted wreath product A twrc B, where B is finite and cyclic, A is
an elementary Abelian group acted on faithfully and irreducibly by C, and \B : C\ > N,
then G is virtually a soluble minimax group. For the definition of the twisted wreath
product we refer readers to Neumann [18].

Suppose that *o. *i. - - - ,tk are fixed integers. Recall that a group G is in the class
£lk{n) if for every subset X of G of cardinality n+1 , there exist distinct elements x, y € X,
such that [XQ0,! ' 1 , . .. ,x^] = 1, where xo,xi,... ,xk € {x,y} with x0 ^ x\. In the
following lemma we may assume that t0,tu • • • ,tk are positive.

LEMMA 5 . Let A be a nontrivial Abelian group, B = (b) a finite cyclic group C,
a subgroup of B of index m, and suppose that C acts on A. Let W = A twrc B be the
twisted wreath product of A by B with respect to the action of C on A. IfG& f2*(n),
n a positive integer, then m ^ n + to + ti + • • • + tk.

P R O O F : Suppose that C = (bm) and let Y be a transversal to C in B so that
Y = {b, b2,... ,bm~1,1}. Then W = 4 twr c B = B x AY is the splitting extension of
AY by B. The action of B on AY is given by fb(y) = f(y')cl, where y' e Y and c 6 C
are unique elements such that yb = cy'.
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Now assume, for a contradiction, that m > n + *o + t\ + ••• + £* and consider n + 1

elements /o, / i , • • • , fn so that

where a is a fixed nontrivial element of A. Since G € f2*(rc) there exists i ^ j such that
[x^,x\\ • • • ,xk

k] = 1, where x0 = bfi,Xi = bf',xs 6 {b}i,b!>}. Then, as in Lemma 4,
we have (/i./-i)0-*'°)(i-'>'1)-(i-6'*) = i. if ; > jt then for all s € {0 ,1 , . . . , m} we have
i + s ^ n + t0 + U + • • • + tk ^ m - 1, and thus bi+s € Y. Therefore fj{bi+s) = 1, as
i + s > j and

Hence (/i/-i)(i-'-'°)(i-<>'1)--(i-i>'*)(^) = a, a. contradiction. In the same way, if i < j we

get a contradiction. D

Now we are in the position to prove Theorem 3.

P R O O F OF T H E O R E M 3: By Lemma 5, G has no section isomorphic to W =
A twrc B, where A is elementary Abelian, B is finite cyclic, and C is a subgroup of B
which acts faithfully irreducibly on A, such that \B : C\ > n + t0 + t\ + • • • + tk. Thus
by a result of Wilson [28], G is virtually a soluble minimax. Hence there exist a normal
subgroup H of G with finite index, such that H in a soluble minimax group. By Theorem
2, H is nilpotent-by-finite. Hence there exists a normal nilpotent subgroup K of H such
that H/K is finite. Therefore K is finitely generated nilpotent with finite index in G,
and G is nilpotent-by-finite. D

Let to,t\,...tic be fixed integers. We denote by TFk the class of all groups G
such that for any infinite subsets X and Y there exist x 6 X, y € Y such that
[x^,x\\x^ ... ,x[k] = 1, where Xi S {x,y},x0 ^ xu i = Q,l,...,k. No te tha t
Wk C Wk C Q,*k. The proof of the following lemma is easy and hence it is omitted.

LEMMA 6 . Let N be an infinite normal subgroup of a TTk-group G, then G/N 6
f2fc(l). In particular ifG is an infinite residually finite Qk-group, then G € fijt(l).

A result of Wilson (see [28, Theorem 2]) states that a finitely generated residually
finite fc-Engel group is nilpotent. As a consequence of Theorems 1 and 3 we can generalise
this fact.

COROLLARY 3 . Let G be an infinite finitely generated residually finite Uk(2)-
group, and k be a positive integer. Then G is nilpotent.

PROOF: By Theorem 3, there exists a normal nilpotent subgroup H of finite index
in G. Now G/H € Uk{2). Thus, by Theorem 1, G/H is nilpotent, and G is soluble. Now
G is a finitely generated soluble Wt(2)-group, and by Theorem 1, is nilpotent. D
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Recall that a group G € W£ if for any infinite subsets X and Y there exist x € X,
y € Y such that [xo,xi,x% . . . ,x[k] = 1, where tt is an integer, xt e {x,y},x0 ^ xx,
i = 2 , 3 , . . . , k. If the integers t2, t3,... ,tk are the same, we say that G € W*k. Following
[12] we say that a group G is restrained if (x)^ = (xyl | i an integer) is finitely generated
for all x, y in G. If there is a bound for the number of generators of {x)^, then we call
G strongly restrained.

LEMMA 7 . Let G be a group in Wj. Then G is restrained.

P R O O F : Let x,y e G. We want to show that (x)^ is finitely generated. The result
is clear if the order of y is finite. So assume that y is of infinite order. Consider the
sets X = {xyn | n an integer} and Y = {ym \ m a positive integer}. If X is finite then
(x)^ — (X) is finitely generated, as required. So we may assume that X is infinite.
Since G € VV£, there exist integers i,j such that [xo,xi,x%,... ,xl£] = 1 where x0 ^ xit

xs € {xy\ yj}. Hence [z0, zx, z
l
2
2,... , zl

k
k] = 1, where z0 = x and zx = yj or z0 = yj and

z\ = x, and z2 , . . . , zk £ {x, y-7}.
Suppose that z^ = Zi2 = ••• = zia = j / J , and zt = x, for all t ^ ir. Let T =

{U^tiz,... ,ij3}, and denote by T(r) the set of all sums of r distinct elements of T, and
denote by 5 ( r ) the set of all sums of r distinct elements of TU {1}. Then it is easy to see
that

4']) =
k

u

There fo re (x)<y> ^ ( x ^ r ; | r | < k{tu +--- + U.+ 1)>. T h i s comple tes t h e proof. D

COROLLARY 4 . Let G be an infinite finitely generated soluble Wk-group. Then
G is polycyclic.

PROOF: This follows immediately from Lemma 7 and [12, Corollary 4]. D

P R O O F OF THEOREM 4: As in Lemma 7, G must be strongly restrained. Thus
by [12, Theorem A] G is polycyclic-by-finite, and therefore residually finite. Now, by
Lemma 6, G € fifc(l), and thus, by Theorem 3, G is nilpotent-by-finite. D

REFERENCES

[1] A. Abdollahi,, 'Some Engel conditions on infinite subsets of certain groups', Bull Austral.
Math. Soc. 62 (2000), 141-148.

[2] A. Abdollahi, 'Some Engel conditions on finite subsets of certain groups', Houston J.
Math, (to appear).

[3] A. Abdollahi and B. Taeri, 'A condition on finitely generated soluble groups', Comm.
Algebra 27 (1999), 5633-5638.

[4] A. Abdollahi and B. Taeri, 'A condition on certain variety of groups', Rend. Sem. Mat.
Univ. Padova 104 (2000), 129-134.

https://doi.org/10.1017/S0004972700039903 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700039903


[9] Nilpotent-by-finite groups 253

[5] A. Abdollahi and B. Taeri, 'Some conditions on infinite subsets of infinite groups', Bull.

Malaysian Math. Soc. 22 (1999), 87-93.

[6] A. Abdollahi and B. Taeri, 'On a class of infinite rings', Algebra Colloq. (to appear).

[7] C. Delizia, H. Smith and A.H. Rhamtulla, 'Locally graded groups with a nilpotency

condition on infinite subsets', J. Austral. Math. Soc. Ser. A 69 (2000), 415-420.

[8] G. Endimioni, 'Groups covered by finitely many nilpotent subgroup', Bull. Austral Math.
Soc. 50 (1994), 459-464.

[9] G. Endimioni, 'Groupes finis satisfaisant la condition (A/", n ) \ C. R. Acad. Sci. Paris.
Serie 1319 (1994), 1245-1247.

[10] G. Endimioni, 'On a combinatorial problem in varieties of groups', Comm. Algebra 14

(1995), 5297-5307.

[11] P.S. Kim and A.H. Rhemtulla, 'Permutable word products in groups', Bull. Austral.

Math. Soc. 40 (1989), 243-254.

[12] Y.K. Kim and A.H. Rhemtulla, 'Weak maximality condition and polycyclic groups', Proc.

Amer. Math. Soc. 123 (1995), 711-714.

[13] P.S. Kim, A. Rhemtulla and H. Smith, 'A characterization of infinite metabelian groups',

Houston. J. Math. 17 (1991), 129-137.

[14] P.H. Kropholler, 'Groups with no large wreath product section', Proc. London Math. Soc.

3 (1984), 155-169.

[15] J. Lennox and J. Wiegold, 'Extension of a problem of Paul Erdos on groups', J. Austral.
Math. Soc. Ser. A 31 (1981), 451-463.

[16] P. Longobardi and M. Maj, 'Finitely generated soluble groups with an Engel condition
on infinite subsets', Rend. Sem. Mat. Univ. Padova 89 (1993), 97-102.

[17] P. Longobardi, M. Maj and A.H. Rhemtulla, 'Infinite group in a given variety and Ram-
sey's Theorem', Comm. Algebra 20 (1992), 127-139.

[18] B.H. Neumann, 'Twisted wreath products of groups', Arch. Math. (Basel) 123 (1963),
1-6.

[19] B.H. Neumann, 'A problem of Paul Erdos on groups', J. Austral. Math. Soc. Ser. A 21
(1976), 467-472.

[20] O. Puglisi and L.S. Spiezia, 'A combinatorial property of certain infinite groups', Comm.
Algebra 22 (1994), 1457-1465.

[21] D.J.S. Robinson, Finiteness conditions and generalized soluble groups, Part I
(Springer-Verlag, Berlin, Heidelberg, New York, 1972).

[22] D.J.S. Robinson, A course in the theory of groups (Second edition), Graduate Texts in
Mathematics 80 (Springer-Verlag, Berlin, Heidelberg, New York, 1996).

[23] L.S. Spiezia, 'A property of the variety of 2-Engel groups', Rend. Sem. Mat. Univ. Padova
91 (1994), 225-228.

[24] L.S. Spiezia, 'A characterization of third Engel groups', Arch. Math. 64 (1995), 369-373.
[25] B. Taeri, 'A combinatorial condition on a certain variety of groups', Arch. Math. (Basel)

(to appear).

[26] M.J. Tomkinson, 'Hypercenter-by-finite groups', Publ. Math. Debrecen 40 (1992),
383-417.

[27] N. Trabelsi, 'Characterisation of nilpotent-by-finite groups', Bull. Austral. Math. Soc. 61
(2000), 33-38.

https://doi.org/10.1017/S0004972700039903 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700039903


254 B. Taeri [10]

[28] J.S. Wilson, 'Two generator condition in residually finite groups', Bull. London Math.
Soc. 23 (1991), 239-248.

Department of Mathematics
Isfahan University of Technology
Isfahan
and
Institute for Studies in Theoretical Physics and Mathematics
Iran
e-mail: b.taeri@cc.iut.ac.ir

https://doi.org/10.1017/S0004972700039903 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700039903

