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A QUESTION OF PAUL ERDOS AND
NILPOTENT-BY-FINITE GROUPS

B1iaN TAERI

Let n be a positive integer or infinity (denoted o), k a positive integer. We denote
by 2k(n) the class of groups G such that, for every subset X of G of cardinality

n + 1, there exist distinct elements z,y € X and integers fo,%1,... ,£ such that
[zé°,:z;i‘,... ,xfc“] = 1, where z; € {z,y}, i1 = 0,1,... ,k, 79 # 7. If the integers
to, t1,..- ,tx are the same for any subset X of G, we say that G is in the class

Qi(n). The class Ug(n) is defined exactly as Q(n) with the additional conditions
:cﬁ“ # 1. Let tg,t3,... ,t be fixed integers. We denote by W,: the class of all groups
G such that for any infinite subsets X and Y there exist z € X, y € Y such that

20F99

[z0,21,2% ... , 2] = 1, where z; € {z,y},70 # 1, i = 2,3,... ,k. Here we prove

that

(1) If G € Ux(2) is a finitely generated soluble group, then G is nilpotent.

(2) IfG € Q(oo) is a finitely generated soluble group, then G is nilpotent-

by-finite.

(3) If G € Q(n), n a positive integer, is a finitely generated residually

finite group, then G is nilpotent-by-finite.

(4) If G is an infinite W,:-group in which every nontrivial finitely generated

subgroup has a nontrivial finite quotient, then G is nilpotent-by-finite.

1. INTRODUCTION AND RESULTS

In response to a question of Paul Erdés, B.H. Neumann proved in [19] that a group

is centre-by-finite if and only if every infinite subset contains a commuting pair of distinct

elements. The extension of the questions of Paul Erdés, firstly, is considered by Lennox

and Wiegold [15]. Further questions of a similar nature, with different aspects, have been
considered by many people (see for example [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

15, 16, 17, 23, 24, 20, 25, 26, 27]).

Our notation and terminology are standard, and can be found in [22]. For a group

G, and elements z,y,21,... ,zx € G we write

[z1,22] = 27 2y zg = 27022, (20, 2k] = [[zl, e Tk ],zk]
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[z, Oy] =, [7;7 kY] = [[.’L‘, k-ly]’y]-

A group is said to be k-Engel (Engel) group if for all z,y € G, [z, xy] = 1 (respectively,
there exist a positive integer ¢ depending on z and y such that [z, .y] = 1). The class
of k-Engel (Engel) groups will be denoted by & (respectively, £). For elements z,y, z of
a group G, the following commutative identities will be used frequently without special
reference.

[zy, 2] = [z, 2Ply, ), [2,92] = [z, 2][=, o

Let k be a positive integer, n a positive integer or infinity (denoted o0o). We denote
by (N, n) (respectively, (Mg, n)) the class of all groups G such that, for every subset X
of cardinality n + 1, there exist distinct elements z,y € X such that {z,y) is nilpotent
(respectively, nilpotent of class at most k). We also denote by £x(n) (respectively, £(n))
the class of all groups G such that, for every subset X of cardinality n + 1, there exist
distinct elements =,y € X such that [z, xy] = 1 (respectively, [z, ,y] = 1 for some positive
integer ¢ depending on z,y). Lennox and Wiegold [15] proved that a finitely generated
soluble group G € (N, o) if and only if G is finite-by-nilpotent. Abdollahi and Taeri [3]
proved that a finitely generated soluble group G € (M, 00) if and only if G is a finite
extension by a group in which any two generator subgroup is nilpotent of class at most
k.

Let n be a positive integer or n = co. We denote by {(n) the class of groups G in
which for every subset X of G of cardinality n+ 1, there exist distinct elements z,y € X,
such that the following condition holds.

There exist a positive integer k and elements zg,zi,...,2z¢ € {z,y} with
To # T1, and integers to, t1, . .. ,tx, such that [z, 2%, ..., 2] = 1.

If the integer k is the same for any subset X of G, we say that G is in the class
Q(n). If G € Qx(n) and the integers ¢g,1;, ... ,t; are the same for any subset X of G,
we say that G is in the class Qx(n). Since all torsion groups belong to 4 (n), we define
another class of groups: the class Ux(n) (respectively, Uy (n)) is defined exactly as Q(n),
(respectively, Qx(n)) with additional conditions z¥ # 1,4 =0,1,... , k.

Also we denote by W; the class of all groups G such that for any infinite subsets

X and Y there exist z € X, y € Y such that [zo,21,2%,... ,z*] = 1, where ¢ is an
integer, z; € {z,y},To # Z1, 1 = 2,3,... , k. If the integers ¢y, t3,. .. , tx are the same, we

obtain the class W,. Note that
(N, n) C Ek(n) C Uk(n) C Q(n) C Q(n+ 1),
and

U(n) € (n) C Q(oo) and Wi C Wi C Q(c0).
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Endimioni [9] proved that if G € (M,n), n £ 3, is a finite group, then G is nilpotent.
Abdollahi |2] considered £(2)-groups and proved that if G € £(2) is a finite group, then
G is nilpotent. We generalise this result.

THEOREM 1. Let G be a finite group with the condition Uy (2), then G is nilpo-
tent.

Note that £ C U(1) C U(2). Thus Theorem 1 is a generalisation of a well known
result due to Zorn (see for example [22, Theorem 12.3.4]) which states that a finite Engel
group is nilpotent. Trabelsi [27] proved that a finitely generated soluble group G is
nilpotent-by-finite if and only if for every pair X,Y of infinite subsets of G there exist
in X, y in Y and two positive integers m = m(z, y),n = n(z,y) satisfying [z, ,y™] = 1.
We generalise this result and prove that

THEOREM 2. Let G € Qx{(00) be a finitely generated soluble group. Then G is
nilpotent-by-finite.

Longobardi and Maj [16] (see also [8]) proved that a finitely generated soluble group
G € &(o0) if and only if G is finite-by-nilpotent. Theorem 2 and [2, Lemma 7] gives
another proof for this result. Abdollahi [2] has proved that a finitely generated residually
finite £x(n)-group, n a positive integer, is finite-by-nilpotent. We consider the weaker
condition 4(n) and obtain the following result.

THEOREM 3. Let G € Qi(n) be a finitely generated residually finite group. Then
G in nilpotent-by-finite.

Recall that a group G is said to be locally graded whenever every finitely generated
subgroup has a nontrivial finite quotient. We say that a group G is an &}-group provided
that whenever X, Y are infinite subsets of G, there exist z in X and y in Y, such that
[z, ky] = 1. Note that & C W,. Puglisi and Spiezia [20] proved that every infinite
locally finite or locally soluble £;-group is a k-Engel group. Abdollahi [1] improved this
result for locally graded groups. We consider W,:

THEOREM 4. Let G € W,: be a locally graded group. Then G is nilpotent-by-
finite.

2. PrROOFS
We begin by an easy lemma without proof.

LEMMA 1. Let G be a group with A as an Abelian normal subgroup, and let g
be any element of G, then for all distinct elements a and b of A we have

[zg, 28, ... ,z;c“] = [g‘“,ab‘l,g“,g”,... ,g"]

where z; € {g“,g"}, To = g%,z = ¢.
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LEMMA 2. Let G be an infinite group in Qi(co), and A be a normal Abelian
subgroup of G. If there exists a torsion free element g of G such that the centraliser of
g™ in A, Ca(g™) = 1, for all integer m, then A is finite.

PROOF: Suppose that A is infinite. Then the set g* = {¢® | a € A} is infinite,
as Cx(g) = 1. Now, since G € (0c0), there exist distinct elements a,b € A and
integers t; such that {zf,z}',... ,z*] =1, where 7 = ¢°,z) = ¢%, and x; € {g°, ¢},
i =0,1,2,...k. Thus, by Lemma 1, [g",ab™!,¢%,g%,... 9] = 1. Now, since 4 is
normal Abelian, u = [g%,ab™!, g%, g",... ,g%-!] € C4(g") = 1. Sou = 1. Continuing in
this way we find that [g%,ab™'] € Ca(g") = 1. Soab™! € C4(g®) = 1, a contradiction. 0

The following lemma is proved similarly.

LEMMA 3. Let G be a group in Ui(n), A be a normal Abelian subgroup of G. If
there exists g € G, such that Cs(g™) = 1, for all integers m with g™ # 1, then |A} < n.

Now we are ready to prove Theorem 1.

PROOF OF THEOREM 1: Suppose the assertion of the Theorem is false and choose
a counter-example G of smallest order. Now G is a finite minimal nonnilpotent group.
By a result of Schmidt (see [22, Theorem 9.1.9]) G is a {p, ¢}-group, where p,q are
distinct primes and G has a normal Sylow p-subgroup P and a cyclic Sylow g-subgroup
Q. Let z € @Q be an element of order g. Then, since the centre of G Z(G) = 1, we
have Cz(py(z) = 1, and therefore, by Lemma 3, |Z(P)| < 2. Thus Z(P) < Z(G) =1, a
contradiction. Therefore G is nilpotent. 0

Note that S3 € Us(3), so that the bound 2 in Theorem 1 cannot be improved.

COROLLARY 1. Let G € U(2) be a finitely generated soluble group. Then G is
nilpotent.

ProoF: If G is not nilpotent, then by a result of Robinson and Wehrfritz (see
[22, Theorem 15.5.3]) G has a nontrivial finite nonnilpotent image. This contradicts
Theorem 1. 0

A result of Kropholler states that if a finitely generated soluble group G has no
section isomorphic to the restricted wreath product of a cyclic group of prime order with
the infinite cyclic group, then G has finite rank. Therefore to prove Theorem 2, we first
prove the following.

LEMMA 4. Let G = A Wr B be the restricted wreath product of a cyclic group A
of prime order p with the infinite cyclic group B = (b). Then G ¢ (o).

PROOF: Let R = AP, be the base group of G = A Wr B. We shall write r - b for
the conjugate of 7 under b and r - (b* + &) for r- b* + r - b, for all r € R and integers
A, . Every element of R can be expressed in the form

J0) =3 b

i=0
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with r; € Ry, where Ry is the first isomorphic copy of A in R. Note that R is a free
F,(b)-module with basis {r}, where Ry = (r). Thus the above f(b) can be written as

m-1
f)y=r- zsib‘
i=0
where s; € F,. Elements of G will be expressed in the form (f(b),b") with f(b) € R
and A € Z, with multiplication given by (f(b),5*)(g(b),4*) = (f(b) + g(b) - b=, b**#).
Note that the conjugate (b/ (”))'\ of b* under an element f(b) of R is expressed in the form
(—f(b)+ f(b)-b=*,b). Also we have the commutator identity [f(b),b*] = f(b)-(—1+b%).
Now suppose, for a contradiction, that G € (% (c0), and consider the elements.f;(b) =
r-b,1=1,2,3,.... Since G € 2(co) there exists i # j such that [z, z},... ,zf] =1,
where 1o = b®) z, = bi® g, € {bf‘(”), bfi(")}. Since R is a normal Abelian subgroup of
G we have, by Lemma 1, that

[bfo, fuf;h 00, 0%, 0] =1,
or in additive notation,

0= (fi— fi) (1 =0°) (=1 +b6") (=1 +b%) - (=1 +b%)
=7 (b = P)(1 = b0) (=1 + b ) (=1 +6) -+ (1 + b%),

Since R is a free F,(b)-module with basis {r}, in the group ring F,(b), we have
(6 — b)) (1 — b)(1 — b")(1 — b%2) - - - (1 — b*) = 0,

a contradiction, as the order of b is infinite. 0

The proof of Theorem 2 is similar to that of [11, Theorem 2]. We include it for
completeness.

PROOF OF THEOREM 2: Suppose G is not nilpotent-by-finite. Since (4 (c0) is a
quotient closed class of groups and since finitely generated nilpotent-by-finite groups are
finitely presented, it follows, by [21, Lemma 6.17], that we may assume that every proper
quotient of G is nilpotent-by-finite. Let A be a nontrivial normal Abelian subgroup of
G. Then G/A is nilpotent-by-finite. Since, by Lemma 4, G has no section isomorphic
to the wreath product of a cyclic group of order prime p with the infinite cyclic group,
a result of [14] shows that G has finite rank. This means that, for some positive integer
t, every proper subgroup of G can be generated by at most ¢ elements. Let T be the
torsion subgroup of A. Then T is finite and so C = Cg(T), the centraliser of T in G, is
of finite index in G. If T # 1 then G/T is nilpotent-by-finite and thus C/T is nilpotent-
by-finite. Since T < Z(C), then C¢(T) and hence G would be nilpotent-by-finite. Thus
T =1, and A is torsion free Abelian, and by passing to a suitable subgroup of finite
index in G, if necessary, we may assume further that G/A is a finitely generated torsion
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free nilpotent group. Thus there exists a finite set T = {t;,... ,t,} of elements of G such
that G = (A4, T), and

A=Gy £ (Go,t1)) =G < - < Gty ) =G, =G

is a central series from A to G with torsion free factors. Suppose r = 1 then G = (A,t,).
If CA(tT) = 1, for all m, then by Lemma 2, A is finite, a contradiction. Thus there exists
a positive integer m;, such that Ca(t") # 1. Therefore Z((A,t7")) # 1 and hence
D=ANnZ ((A, t7)) is a nontrivial normal subgroup of G. So G/D is nilpotent-by-finite
and hence G is nilpotent-by-finite. Now assume that we have established the result when
r < s, and suppose r = s. Then G,_; is nilpotent-by-finite and G = (G,_1,t). Let
H = (A,G™,) for some suitable m > 0, so that H is nilpotent. Let Y = AN Z(H),
then Y is normal in (H,t,) which is of finite index in G. Moreover Z({Y,t7)) # 1, for
some m;, by Lemma 2. So D; = Y N Z((Y,tT™)) is a nontrivial subgroup of G contained
in the centre of (H,t7) which is of finite index in G. We may replace (H,t?™) by its
normal interior in G, if necessary; H still contains A and hence D;. Now {H,t™)/D;
is nilpotent-by-finite, D\ < Z((H,t™)) and (H,t™) is of finite index in G, thus G is
nilpotent-by-finite, a contradiction. 0

COROLLARY 2. Let G be a finitely generated soluble group. Then G € Q(o0) if
and only if G is nilpotent-by-finite.

Now, we want to consider a finitely generated residually finite group in Qx(n), n
a positive integer. We use a result of Wilson [28] which states that if G is a finitely
generated residually finite group and N is a positive integer such that G has no section
isomorphic to the twisted wreath product Atwre B, where B is finite and cyclic, A4 is
an elementary Abelian group acted on faithfully and irreducibly by C, and |B : C| > N,
then G is virtually a soluble minimax group. For the definition of the twisted wreath
product we refer readers to Neumann [18].

Suppose that tp,t),...,t are fixed integers. Recall that a group G is in the class
Qx (n) if for every subset X of G of cardinality n+1, there exist distinct elements z,y € X,

such that [z¢,z}',...,zf*] = 1, where z0,21,... ,7% € {z,y} with o # z,. In the
following lemma we may assume that to,¢),... , ¢ are positive.

LEMMA 5. Let A be a nontrivial Abelian group, B = (b} a finite cyclic group C,
a-subgroup of B of index m, and suppose that C acts on A. Let W = Atwrc B be the
twisted wreath product of A by B with respect to the action of C on A. If G € Qx(n),
n a positive integer, thenm < n+tg+t; 4+ -+ + 1.

PROOF: Suppose that C = (b™) and let Y be a transversal to C' in B so that
Y = {b,t%,...,bm 1 1}. Then W = Atwre B = B x AY is the splitting extension of
AY by B. The action of B on AY is given by f?(y) = f(y')¢', where € Y and c € C
are unique elements such that yb = cy’.
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Now assume, for a contradiction, that m > n + ¢y +¢; + --- + £ and consider n + 1
elements fy, fi,..., fo so that

1 j#i

a j=1

fult’) =

where a is a fixed nontrivial element of A. Since G € Qx(n) there exists i # j such that
[z, 23, -, 7] = 1, where zo = bfi,z; = bli,z, € {b/:,b/i}. Then, as in Lemma 4,
we have (fif]-‘l)(l"’m)(l""‘)"‘(1"’"‘) =1. If i > j, then for all s € {0,1,...,m} we have
i+s<n+tg+t+--+t <m—1, and thus b** € Y. Therefore f;(b'**) = 1, as
i+ s> 7 and

1 s#0

(57 @) = 2@ (@) = £ (e ) =9 T

Hence (f,-fj‘l)“""°)(1—°")"‘(l‘bt")(b") = a, a contradiction. In the same way, if i < j we
get a contradiction. a

Now we are in the position to prove Theorem 3.

PrOOF OF THEOREM 3: By Lemma 5, G has no section isomorphic to W =
A twre B, where A is elementary Abelian, B is finite cyclic, and C' is a subgroup of B
which acts faithfully irreducibly on A, such that |B : C| > n+ ¢y + ¢ +--- + tx. Thus
by a result of Wilson {28], G is virtually a soluble minimax. Hence there exist a normal
subgroup H of G with finite index, such that H in a soluble minimax group. By Theorem
2, H is nilpotent-by-finite. Hence there exists a normal nilpotent subgroup K of H such
that H/K is finite. Therefore K is finitely generated nilpotent with finite index in G,
and G is nilpotent-by-finite. 0

Let tg,¢,...t be fixed integers. We denote by _Q',: the class of all groups G
such that for any infinite subsets X and Y there exist £ € X, y € Y such that
[:I:f)",:ci‘,zg’... ,xi"] = 1, where z; € {z,y},z0 # 71, ¢ = 0,1,...,k. Note that
W, C W; C ©,. The proof of the following lemma is easy and hence it is omitted.

LEMMA 6. Let N be an infinite normal subgroup of a Q,-group G, then G/N ¢
Q«(1). In particular if G is an infinite residually finite $3;-group, then G € {3(1).

A result of Wilson (see [28, Theorem 2]) states that a finitely generated residually
finite k-Engel group is nilpotent. As a consequence of Theorems 1 and 3 we can generalise
this fact.

COROLLARY 3. Let G be an infinite finitely generated residually finite U (2)-
group, and k be a positive integer. Then G is nilpotent.

PrOOF: By Theorem 3, there exists a normal nilpotent subgroup H of finite index
in G. Now G/H € U(2). Thus, by Theorem 1, G/H is nilpotent, and G is soluble. Now
G is a finitely generated soluble 2/, (2)-group, and by Theorem 1, is nilpotent. 0
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Recall that a group G € Wy if for any infinite subsets X and Y there exist z € X,
y € Y such that [zo,21,2% ... ,z}*] = 1, where ¢; is an integer, z; € {z,y}, 20 # 1,
1 =2,3,...,k. If the integers t5,3,... ,t; are the same, we say that G € W,: Following
[12] we say that a group G is restrained if (z)%) = (2¥' | i an integer) is finitely generated
for all z,y in G. If there is a bound for the number of generators of ()%}, then we call
G strongly restrained.

LEMMA 7. Let G be a group in W;. Then G is restrained.

PROOF: Let z,y € G. We want to show that (z)® is finitely generated. The result
is clear if the order of y is finite. So assume that y is of infinite order. Consider the
sets X = {z¥" | n an integer} and Y = {y™ | m a positive integer}. If X is finite then
(x)® = (X) is finitely generated, as required. So we may assume that X is infinite.
Since G € W, there exist integers i, j such that [zo,21,2%,... 73] = 1 where zp # 1,
zs € {z¥',y7}. Hence [20, 21,25, ... ,2f¥] = 1, where 2o = z and z; = 3 or 2y = ¢/ and
2z =1z, and 29,... ,2 € {z,97}.

Suppose that z;, = 2z, = -+ = z, = ¢/, and z, = z, forall ¢t # i,. Let T =
{ti,, tis,--. ,ti,}, and denote by T the set of all sums of r distinct elements of T, and
denote by S() the set of all sums of r distinct elements of T U {1}. Then it is easy to see
that

k k
<zo, (20, 21], [zo,zl,z?],.. . [zo,zl,zgz, . ,zfc" > = <z,z”’,zyﬂ; rE UT(i) U US(")>‘
i=1 i=1

Therefore (z)® < (z¥'"; |r| < k(ti, +---+1t;, +1)). This completes the proof. 0

COROLLARY 4. Let G be an infinite finitely generated soluble W} -group. Then
G is polycyclic.
Proor: This follows immediately from Lemma 7 and {12, Corollary 4]. 0

PROOF OF THEOREM 4: As in Lemma 7, G must be strongly restrained. Thus
by [12, Theorem A] G is polycyclic-by-finite, and therefore residually finite. Now, by
Lemma 6, G € Q(1), and thus, by Theorem 3, G is nilpotent-by-finite. 0
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