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Abstract

Our objective was to study the effect of increasing postruminal supply of linseed oil (L-oil), as a
source of cis-9, cis-12, cis-15 18:3, on milk fatty acid profile and to assess the resulting impact
on the development of volatile degradation products during the storage of homogenized milk.
Five Holstein dairy cows fitted with a rumen cannula were randomly distributed in a 5 × 5
Latin square design. Abomasal infusion of L-oil was performed at the rate of 0, 75, 150,
300, and 600 ml/d during periods of 14 d. The concentration of cis-9, cis-12, cis-15 18:3 in
milk fat increased linearly with L-oil dose. Concentrations of primary (conjugated diene and
triene hydroperoxides) and secondary oxidation products (1-octen-3-one, propanal, hexanal,
trans-2 + cis-3-hexenals, cis-4-heptenal, trans-2, cis-6-nonadienal trans-2, trans-4-nonadienal)
increased during 11 d of storage at 4°C of homogenized milk under fluorescent light. The mag-
nitude of the increase (difference between final and initial measurements) was linearly greater
for all nine lipid oxidation products evaluated in response to increasing level of infusion.
Results of the current experiment have shown that milk enriched in cis-9, cis-12, cis-15
18:3 via postruminal supply of L-oil is highly prone to oxidative degradation. This low
oxidative stability, exposed under controlled experimental conditions, would represent a
major obstacle to those who aim to market milk enriched in polyunsaturated fatty acids.

The adequate intake of α-linolenic acid (cis-9, cis-12, cis-15 18:3) has been established at 1.6 g/d
for adult men and 1.1 g/d for adult women (Flock et al., 2013). Dairy products may contribute to
a low proportion of this recommendation, as the consumption of two servings of regular whole
milk (3.25% fat) containing 4.1 mg cis-9, cis-12, cis-15 18:3/g of fatty acids (FA; Heck et al., 2012)
brings only 33mg of this essential FA.

Linseed (also called flaxseed; Linum usitatissimum) is a rich source of cis-9, cis-12, cis-15
18:3 (INRA-AFZ, 2004). This oilseed has been evaluated for its potential to increase the con-
centration of n-3 FA in milk fat. In this regard, a meta-analysis by Leduc et al. (2017) has
shown that the transfer efficiency of dietary cis-9, cis-12, cis-15 18:3 varied from 1.95%,
with diets supplemented with linseed oil (L-oil), to 5.84% with diets based on mechanically
treated whole linseed. As a result of this transfer, consumption of food products (including
milk) from animals fed linseed has been associated with positive effects on blood lipid profile
in humans (Weill et al., 2002).

Unfortunately, experiments have shown that milk enriched in cis-9, cis-12, cis-15 18:3 is highly
prone to oxidative deterioration (Fauteux et al., 2016; Rico et al., 2021). Oxidation of polyunsat-
urated FA has been associated with the development of undesirable flavours (eg rancidity) and
potentially toxic chemicals (Arab-Tehrany et al., 2012), which can impair the nutritional and sen-
sory properties of dairy products. Liu et al. (2010) studied the effects of graded amounts of cis-9,
cis-12, cis-15 18:3 infused into the duodenum, from 0 to 132 g/d, resulting in a linear increase of
milk fat concentration of this FA from 0.6 to 25.4%. This modification of milk FA profile quad-
ratically decreased the activity of enzymatic radical scavenging systems, such as superoxide dismu-
tase, glutathione peroxidase and catalase (Liu et al., 2010). However, the subsequent consequences
on the development of volatile degradation products such as aldehydes and ketones responsible
for the development of milk off-odours and off-flavours have not been assessed.

Our objective was to study the effect of increasing postruminal supply of L-oil as a source of
cis-9, cis-12, cis-15 18:3 on milk FA profile, and to assess the resulting impact on the develop-
ment of volatile degradation products during the storage of homogenized milk.

Materials and methods

Animals and treatments

The experimental procedures involving dairy cows followed the guidelines of the Canadian
Council on Animal Care (2009) and were approved by the Université Laval Animal Care
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Committee (Protocol # 2015001). Information about cows, feed-
ing, treatments, and experimental design is reported in a compan-
ion paper (Gervais et al., 2023, In press). Briefly, 5 Holstein dairy
cows (36 ± 2 d postpartum; mean ± SD) were randomly distributed
in a 5 × 5 Latin square design with periods of 21 d. All cows were
fed the same total mixed ration. During the first 14 d of each per-
iod, L-oil (Pokonobe Industries Inc., Westmount, QC; containing
5.6% 16:0, 3.4% 18:0, 18.4% cis-9 18:1, 0.7% cis-11 18:1, 14.9%
cis-9, cis-12 18:2, 55.9% cis-9, cis-12, cis-15 18:3, and 0.2% 20:0)
was abomasally infused at 0, 75, 150, 300, and 600 mL/d using
peristaltic pumps. Infusions were followed by a 7-d washout
interval.

Sampling, measurements, and analyses

Dry matter intake and milk yield were recorded, and samples of
feed and milk were harvested during the last 3 d of each infusion
period. Data on dry matter intake, milk production, as well as
concentration and yield of major milk constituents were reported
previously (Gervais et al., 2023, In press). An additional set of
milk samples without preservative was harvested during the last
3 d of each infusion and stored at −20°C for later determination
of the FA profile following the procedure described by Boivin
et al. (2013), and reported in the online Supplementary File,
material and methods. Glycerol in milk fat was calculated as
described by Stamey et al. (2010).

A last set of milk samples for oxidative stability analyses was
collected during the morning milking on day 11 of each infusion
period. These samples were immediately transported to Université
Laval pilot plant in 1-L stainless-steel cans, while being kept on ice
until processed as described by Fauteux et al. (2016). Briefly, milk
samples were heated at 50°C, homogenized at 24MPa
(EmulsiFlex-C50, Avestin, Ottawa, ON, Canada), and then cooled
at 4°C.

Oxidation was induced by the addition of 0.001% Fe (as
FeSO4). Samples were stored horizontally for 0, 2, 4, 7, and 11
d in two sets of glass tubes at 4°C in a cabinet under fluorescent
light (warm white, linear T12, 40 W; Lumisolution Inc., Québec,
QC, Canada). Sodium azide (0.02%) was added to prevent micro-
bial growth. Samples in the first set of tubes were analysed for
1-octen-3-one, propanal, hexanal, trans-2 + cis-3-hexenals,
cis-4-heptenal, trans-2, cis-6-nonadienal, and trans-2, trans-4-
nonadienal. The second set of tubes was analysed for redox poten-
tial, as well as conjugated diene and triene hydroperoxides. The
same analyses were performed on fresh non-homogenized milk
on day 0. A second subsample of fresh milk was stored at −20°C,
without preservative, until analysed for FA profile as described
above. In order to assess susceptibility of milk fat to oxidation
as affected by unsaturated FA content, a peroxidability index
(PI) was calculated for each sample based on milk concentrations
of monoenoic (Mono), dienoic (Di), trienoic (Tri), tetraenoic
(Tetra), pentaenoic (Penta), and hexaenoic (Hexa) FA (Witting
and Horwitt, 1964), as follows:

PI = (0.025 × Mono) + (1 × Di) + (2 × Tri) + (4 × Tetra)

+ (6 × Penta) + (8 × Hexa)

to account for individual oxidation sensitivity of FA. The use of
concentrations of these FA groups as a proportion of milk consti-
tuents, rather than as a proportion of total fat, was intended to
account for the variation in substrate availability for peroxidation

resulting from differences in milk fat concentration among
samples.

Analyses of secondary lipid oxidation products of fresh and
stored milk were conducted using the solid-phase microextraction
technique with a Combi PAL autosampler (CTC Analytics,
Zwingen, Switzerland) attached to an Agilent 6890N gas chro-
matograph with a 5973 inert mass spectrometry detection
(Agilent Technologies Canada Inc.) as previously described by
Fauteux et al. (2016). Finally, redox potential and conjugated
diene and triene hydroperoxides were analysed as reported in
the online Supplementary File, Material and methods.

Statistical analysis

Data were analysed using the MIXED procedure of SAS 9.4 (SAS
Institute Inc, Cary, NC, USA). For variables where repeated mea-
sures were not performed, the following model was fit:

Yijkl = m + Ti + Pj + Sk + Cl (Sk) + 1ijkl

where Yijkl is the individual observation, μ the overall mean, Ti the
fixed effect of treatment (i = 1–5), Pj the random effect of period
( j = 1–5), Sk the random effect of sequence (k = 1–5), Cl(Sk) the
random effect of cow (l = 1–5) nested in sequence, and εijkl the
residual error terms. Linear and quadratic contrasts for treatment
effect were performed.

For variables submitted to repeated measures, data were ana-
lysed according to the following model:

Yijklm = m + Ti + Pj + Sk + Cl (Sk) + Dm + TDim + 1ijklm

where Yijklm is the individual observation, μ the overall mean, Ti

the fixed effect of treatment (i = 1–5), Pj the random effect of per-
iod ( j = 1–5), Sk the random effect of sequence (k = 1–5), Cl(Sk)
the random effect of cow (l = 1–5) nested in sequence, Dm the
effect of day (m = 1–5) + TDim the interaction of treatment and
day, and εijklm the residual error terms. Linear and quadratic con-
trasts for the effects of treatment and day were performed.
Differences between treatments were declared at P≤ 0.05.

Results

Complete data are provided in the online Supplementary File for
milk fat composition (Table S1), oxidative stability parameters
(Table S2) and changes in redox potential and volatile products
during storage (Table S3). The concentration of cis-9, cis-12
18:2 and cis-9, cis-12, cis-15 18:3 in milk fat increased linearly
with L-oil dose (Fig. 1). Conversely, the concentration of 14:0
decreased linearly, and the concentration 16:0 decreased linearly
and quadratically with the level of L-oil. Proportions of 6:0, 8:0,
10:0, 12:0, 18:0, and cis-9 18:1 were not affected by L-oil infusion
(Fig. 1). The PI increased linearly with the level of L-oil (Fig. 2).

In fresh milk, redox potential as well as concentrations of pro-
panal, hexanal, trans-2 cis-3-hexenals, cis-4-heptenal, and conju-
gated diene hydroperoxide increased linearly with the dose of
L-oil (Fig. 2). The concentration of conjugated triene hydroperox-
ides was not affected, whereas trans-2, cis-6-nonadienal and
trans-2, trans-4-nonadienal were not detected in fresh milk.

Redox potential and concentrations of all nine lipid oxidation
products evaluated increased during the storage of homogenized
milk under light exposure (Fig. 3). The magnitude of the
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Figure. 1. Milk fat concentrations of 6:0 (a), 8:0 (b), 10:0 (c), 12:0 (d), 14:0 (e), 16:0 (f), 18:0 (g), cis-9 18:1 (h), cis-9, cis-12 18:2 (i), and cis-9, cis-12, cis-15 18:3 ( j) in
dairy cows abomasally infused with increasing levels of linseed oil. SEM = standard error of the mean. L, linear, and Q, quadratic effect of the level of linseed oil
infusion. *P ≤ 0.05 and **P≤ 0.01. NS, not significantly affected (P > 0.10). See online Supplementary File, Table S1 for complete fatty acid profiles.
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difference between final and initial measurements increased
linearly with the level of infusion for the concentrations of
1-octen-3-one, propanal, hexanal, trans-2 + cis-3-hexenals,
cis-4-heptenal, trans-2, cis-6-nonadienal trans-2, trans-4-
nonadienal, and conjugated diene and triene hydroperoxides
(Fig. 4).

Discussion

Here, abomasal infusion of L-oil has been effective in increasing
milk fat concentration of polyunsaturated FA. In particular, the

proportions of cis-9, cis-12 18:2 and cis-9, cis-12, cis-15 18:3
increased by 2.3- and 16.4-fold, respectively, when infusing 600
ml/d of L-oil as compared with control (no infusion). The greatest
level of cis-9, cis-12, cis-15 18:3 (9.0 g/100 g fat) is equivalent to
772 mg in a glass of whole milk (3.25% fat). At this concentration,
adequate intake of cis-9, cis-12, cis-15 18:3 for adult women (1.1 g/d)
and men (1.6 g/d; Flock et al., 2013) could be achieved by the
consumption of 2 servings of milk per day. These increases
were mainly compensated by decreased concentrations of 14:0
and 16:0. Similar effects on milk FA profile were reported by
Lima et al. (2014) in cows abomasally infused with L-oil.

Figure. 2. Peroxidability index (a), redox potential (b), and concentrations of propanal (c), hexanal (d), trans-2 + cis-3-hexenals (e), cis-4-heptenal (f), and conju-
gated diene (g) and triene (h) hydroperoxides in fresh milk of dairy cows abomasally infused with increasing levels of linseed oil. SEM, standard error of the
mean. L, linear and Q, quadratic effect of the level of linseed oil infusion. *P ≤ 0.05 and **P ≤ 0.01. NS, not significantly affected (P > 0.05). Table values can be
found in online Supplementary File, Table S2.
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Fatty acids are not distributed randomly in milk TAG (Jensen,
2002). By feeding formaldehyde treated sunflower seeds as a
source of ruminally protected unsaturated FA, Morrison and
Hawke (1977a) observed an increase in the concentration of
cis-9, cis-12 18:2 from 1.8 to 15.5% of milk FA, on a molar

basis, mostly at the expense of 14:0 and 16:0. Bovine milk fat
can be divided into high- and low-molecular-weight TAG.
Morrison and Hawke (1977b) reported the stereospecific distribu-
tion of FA in the high molecular weight fractions and showed that
increases in cis-9, cis-12 18:2 in each of the three positions of TAG

Figure. 3. Effect of time of storage under light exposure on redox potential (a) and on concentrations of 1-octen-3-one, (b) propanal (c), hexanal (d), trans-2 +
cis-3-hexenals, (e) cis-4-heptenal (f), trans-2, cis-6-nonadienal (g), trans-2, trans-4-nonadienal (h), and conjugated diene (i) and triene ( j) hydroperoxides in
homogenized milk from cows abomasally infused with linseed oil at the rate of 0 (×), 75 (⬤), 150 (■), 300 (▲), and 600 (◆) ml/d. TL, Linear effect of
treatment; TQ, Quadratic effect of treatment; LL, Linear effect of infusion level; LQ, Quadratic effect of infusion level, *P ≤ 0.05 and **P≤ 0.01. NS, not significantly
affected (P > 0.05).

128 Daniel E. Rico et al.

https://doi.org/10.1017/S0022029923000262 Published online by Cambridge University Press

https://doi.org/10.1017/S0022029923000262


Figure. 4. Variations of redox potential (a) and in concentrations of 1-octen-3-one, (b) propanal (c), hexanal (d), trans-2 + cis-3-hexenals, (e) cis-4-heptenal (f),
trans-2, cis-6-nonadienal (g), trans-2, trans-4-nonadienal (h), and conjugated diene (i) and triene ( j) hydroperoxides during storage of homogenized milk from
dairy cows abomasally infused with increasing levels of linseed oil. Data represent the difference between final (day 11) and initial (day 0) redox potential and
concentrations of each component following storage at 4°C under fluorescent light. SEM, standard error of the mean; L, linear and Q, quadratic effect of the
level of linseed oil infusion. *P≤ 0.05 and **P≤ 0.01. NS, not significantly affected (P > 0.05). Table values can be found in online Supplementary File, Table S3.
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were paralleled by decreases in the levels of 14:0 and 16:0. More
specifically, the preference of cis-9, cis-12 18:2 for position sn-3
over position sn-1 was shown to divert the available 14:0 and
16:0 into position sn-1 at the expense of position sn-3. In our
research, a similar phenomenon could explain lower proportions
of 14:0 and 16:0 in milk fat in response to increasing levels of
cis-9, cis-12 18:2 and cis-9, cis-12, cis-15 18:3 from abomasally
infused L-oil. Such disruption of TAG synthesis, due to increase
availability of polyunsaturated FA for esterification, could also
potentially explain the lower milk fat concentration and yield
observed in response to increasing levels of infusion (Gervais
et al., 2023, In press). The substitution of polyunsaturated for
saturated FA linearly increased the PI of milk fat, from 2.0 mg/g
milk in the control to 10.8 mg/g milk at the highest dose. These
milk samples, with increasing PI, were submitted to oxidative
conditions with the addition of FeSO4 and storage at 4°C under
fluorescent light. Conjugated diene and triene hydroperoxides
were determined as primary lipid oxidation products. Both
cis-9, cis-12 18:2 and cis-9, cis-12, cis-15 18:3 are known to
form conjugated diene hydroperoxides. Conjugated trienes are
produced from cis-9, cis-12, cis-15 18:3 when two positions of
the carbon chain are attacked (Patterson, 1989). Alternatively,
conjugated trienes may be produced by dehydration of conjugated
diene hydroperoxides (Fishwick and Swoboda, 1977).

We observed that the concentration of conjugated dienes in
fresh milk was about 4.8 times greater compared with conjugated
trienes. These concentrations increased quadratically over time,
reaching a plateau at 7 d of storage in milk from cows receiving
the highest level of L-oil infusion (600 ml/d). Hydroperoxides
eventually break down to secondary lipid oxidation products
(Patterson, 1989). In this regard, hexanal (Frankel, 1982) and
1-octen-3-one (Ullrich and Grosch, 1987) are volatile products
expected from cis-9, cis-12 18:2 oxidation. Propanal, cis-4 hepte-
nal, cis-3-hexenal, trans-2-hexenal, trans-2, cis-6-nonadienal,
and trans-2, trans-4-nonadienal arise from oxidation of cis-9,
cis-12, cis-15 18:3 (Frankel, 1982; Josephson and Lindsay, 1987;
Ullrich and Grosch, 1988). Concentrations of secondary lipid oxi-
dation products increased exponentially during storage in our
experiments. This observation is consistent with the fact that oxi-
dative progression is autocatalytic and needs only one initiating
radical to begin the production of hydroperoxides (Timmons
et al., 2001). Such phenomena may explain why the concentra-
tions of secondary lipid oxidation products intensified as storage
time increases. After 11 d under fluorescent light, the overall
increase (d 11 minus d 0) in the concentrations of these secondary
products was enhanced linearly with the level of L-oil infusion.

In conclusion, our results have shown that milk enriched in
cis-9, cis-12 18:2 and cis-9, cis-12, cis-15 18:3 via postruminal sup-
ply of L-oil is highly prone to oxidative degradation. Attempts have
been made in the past to prevent oxidation of milk containing high
levels of polyunsaturated FA (Fauteux et al., 2016; Rico et al., 2021)
using dietary treatments aimed to increase levels of vitamin E, car-
otenoids or enterolactones. None of these interventions have been
efficient in significantly reducing the production of primary and
secondary volatile oxidation products known for their impacts
on organoleptic properties of milk (Bendall, 2001). This low oxi-
dative stability, exposed under controlled experimental conditions,
would represent a major obstacle to commercial initiatives to mar-
ket milk enriched in polyunsaturated FA.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0022029923000262
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