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A FAMILY OF 2-DIMENSIONAL LAGUERRE PLANES OF
GENERALISED SHEAR TYPE

B. POLSTER AND G.F. STEINKE

We construct a family of 2-dimensional Laguerre planes that generalises ovoidal
Laguerre planes and the Laguerre planes of shear type, as described by Lowen and
Pfuller, by gluing together circle sets from up to eight different ovoidal Laguerre
planes. Each plane in this family admits all maps (s, y) t-+ (x, ry) for r > 0 as
central automorphisms at the circle y = 0.

1. INTRODUCTION

A Laguerre plane C = {P,C, ||) is an incidence structure consisting of a point set
P, a circle set C and an equivalence relation || (parallelism) defined on the point set
such that three mutually non-parallel points can be joined by a unique circle; such that
the circles which touch a fixed circle C at p € C partition P \ \p\, where |p| denotes
the parallel class of p; such that each parallel class meets each circle in a unique point
(parallel projection); and such that there is a circle that contains at least three points
(richness); compare [2] and [3].

In this paper we are only concerned with Laguerre planes whose common point set
is the cylinder 2 = S 'xR (where S1 usually is represented as Ru{oo}), whose circles
are graphs of functions S1 —»• R and whose parallel classes of points are the generators
on the cylinder. Note that for an incidence structure on the cylinder with circles and
parallel classes like this the axioms of parallel projection and richness are automatically
satisfied. In particular, we are interested in 2-dimensional or flat Laguerre planes on
the cylinder. These Laguerre planes are characterised by the fact that all then- circles
axe graphs of continuous functions from S1 to R; (see [2, 3]).

The classical 2-dimensional Laguerre plane is obtained as the geometry of non-
trivial plane sections of a cylinder in R3 with an ellipse in R2 as base, or equivalently,
as the geometry of non-trivial plane sections of an elliptic cone, in real projective three-
space, with its vertex removed. The parallel classes are the generators of the cylinder
or cone. By replacing the ellipse in this construction by arbitrary ovals in R2, that
is, convex, differentiate simply closed curves, we also obtain 2-dimensional Laguerre
planes. These are the so-called 2-dimensional ovoidal Laguerre planes.
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70 B. Polster and G.F. Steinke [2]

Circles of 2-dimensional Laguerre planes, as described above, are homeomorphic
to the unit circle S1. When the circle sets are topologised by the Hausdorff metric
with respect to a metric that induces the topology of the point set, then the planes are
topological in the sense that the operations of joining three points by a circle, intersecting
two circles, and touching are continuous with respect to the induced topologies on their
respective domains of definition. For more information on topological Laguerre planes
we refer to [2] and [3].

Associated with every point p of a 2-dimensional Laguerre plane £ there is a
derived incidence structure, called the derived affine plane Ap = (AP,CP) at p, whose
point set Ap « R2 consists of all points of C that are not parallel to p and whose
line set Cp consists of all restrictions to Ap of circles of C passing through p and
of all parallel classes not passing through p. Indeed, each derived affine plane Ap of
a 2-dimensional Laguerre plane is even a topological affine plane and extends to a 2-
dimendional compact projective plane Vp. For example, each derived affine plane of an
ovoidal Laguerre plane is desarguesian. Circles not passing through the distinguished
point p induce closed ovals in Vp by removing the point parallel to p and adding in Vp,
the infinite point of the lines that come from parallel classes of L. The line at infinity
of Vp (relative to Ap) is a tangent to this oval. In Ap one has a parabolic curve.
This gives us a very convenient description of a Laguerre plane in one derived affine
plane. We have the lines of the affine plane and a collection of parabolic curves. To
obtain the entire Laguerre plane, however, we extend this model by one parallel class.
According to [6, Proposition 2] we do not have to worry about the topology, that is,
there is a unique topology extending the natural topology of the affine plane such that
one obtains a 2-dimensional Laguerre plane. We are using this form of representation
in this paper.

There are many models of 2-dimensional Laguerre planes known, see for example
[1, 4, 5,10,13,14] for large classes of planes. In [10] all 2-dimensional Laguerre planes
that are composed of two ovoidal halves were classified, that is, in what ways can the
two halves one arrives at by removing two parallel classes from an ovoidal plane be
fitted together again to give new planes. The aim of the present paper is to show how
one can glue together parts of circle sets of ovoidal Laguerre planes and thus generalise
the construction of 2-dimensional Laguerre planes of shear type in [5]. We construct
a rather large family of 2-dimensional Laguerre planes whose circle spaces are fitted
together from up to eight different 2-dimensional ovoidal Laguerre planes. This gives
again a very large class of 2-dimensional Laguerre planes that can be described in very
easy terms. The Laguerre planes in this family depend on four continuous functions
f,g,h and k on R, see the following section for a description of the Laguerre planes
£{f,9,h,k). In [15] it was shown that these planes comprise, up to isomorphisms, all
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2-dimensional Laguerre planes whose kernels are at least 3-dimensional. More precisely,
these planes are obtained for h = id, k = 1, or / = g, k = 1, or / = g, h = id.

Furthermore, all 2-dimensional Laguerre planes that admit 4-dimensional groups of
automorphisms that fix at least two parallel classes are also of this form; see [16].

2. T H E CONSTRUCTION AND RESULTS

Let / and g be two functions on R. We say that / : R -» R is parabolic if and only
if / is differentiable and its derivative / ' is an orientation-preserving homeomorphism
of R. Note that our definition of parabolic function differs from the one in [5] where a
parabolic function / is normalised, that is, / satisfies / (0) = / ' (0) = 0 and / ( I ) = 1.

Next, we define the binary operation *yi9 on R by

fa/(x), ifa>0,
I * / o X = <

\ag(x), ifa<0.

Furthermore, id denotes the identity function I I - > I and 1 denotes the constant func-
tion x H> 1. With this notation we can describe the following family of 2-dimensional
Laguerre planes.

THEOREM 1. Let f, g, h, k : R —» R be four continuous functions on R such that
the following conditions are satisfied.

(1) k is positive, that is, k(x) > 0 for all x e R;
(2) h is an orientation-preserving homeomorphism of R;
(3) the functions <t> and ip defined by <f>(x) = x/k(x) and ij>(x) = h(x)/k(x)

for x € R are homeomorphisms of R;
(4) the functions f, g, foh'1, goh'1, ( / A W " 1 , {g/k)o^, (//ifcjo^-1,

(g/k) o T/I"1 are parabolic.

Let C(f, g,h,k) be the collection of all circles of the form

{(x,a*ftgX + b*id,hX + c*iikx) | a; e R} U {(oo,a)}

for a,b,c € R. Then C(f,g,h,k) is the circle set of a 2-dimensional Laguerre plane
£(/, g, h, k) represented on the cylinder Z = (R U {oo}) x R.

For all r > 0 the maps (x, y) i-» (x, ry), x € R U {oo}, are automorphisms of
C(f,g,h,k).

A Laguerre plane £(/ , g, h, k) is ovoidal if and only if g is related to f by g(x) =
af(x) + bx + c for some a, b, c 6 R, a > 0, h is an afEne function, and k is constant.

The Laguerre planes C(f,g,h,k) comprise all ovoidal Laguerre planes; (see [5,
Theorem 3]). Indeed, C(f,f,id,l) is the ovoidal plane over the oval obtained from
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{(x,/(a:)) | x £ R} by augmenting the infinite point of the y-axis. The planes
£(f,g,id, 1) are the Laguerre planes of shear type in [5]. Furthermore, Steinke [15]
showed that the family of Laguerre planes C(f,g,h,k) comprises, up to isomorphisms,
all 2-dimensional Laguerre planes whose kernels are at least 3-dimensional; they are
obtained for h — id, k = 1 or f = g, k = 1 or f = g, A = id. The respective planes
admit the 3-dimensional groups

( (x,ry + bx + c), for x € R 1

[ (oo, ri/), for a; = oo J

x ( (x,ry+af(x) + c), for a; £ R "I
;,^)i->< a,c,r e R,r > 0 > and

^(oo,ri/4-a), for i = oo J
f
l

(x,ry + af(x) + bx), for x € R
' a , 6 , r 6 R , r > 0 } ,

(oo,rj/ + o), for a; = oo

respectively.
One can think of £(/ , g, h,k) as a Laguerre plane whose circle space is made

up of pieces of the circle spaces from eight different ovoidal Laguerre planes that have
certain circles in common. The ovoidal planes involved are represented by the parabolic
functions / , g, / o A - ' . j o A " 1 , ( / A W " 1 , (g/k)o^-\ ( / / fc)o^- \ (s/Jb)o^->.
The 'basic' circles are graphs of the functions / , g, id, h, 1 and k augmented by
the infinite points (oo, 1) or (oo,0). Then linear combinations are formed. In fact,
one can generalise £(/, g, h, k) a bit further by replacing the identity id by another
orientation-preserving homeomorphism and the constant function 1 by another positive
function. However, no new Laguerre planes arise.

COROLLARY 1 . Let / i , fi, hi, hi, k\, hi • R -> R be six continuous functions on
R such that the following conditions are satisfied.

(1) kx and k^ are positive;
(2) the functions ij>iti, i,j e {1,2}, defined by faj(x) - hi{x)/kj(x) for

x e R are orientation-preserving homeomorphisms of R;

(3) the functions fij,m,n = (/«/*3)°^m!n & r *'*h m, n € {1,2} are parabolic.

Let C{f\, ji, hi, hi, k\, ki) be the collection of all circles of the form

{(*>a */i,/j x + b*hlMx + c *huk2 I ) ) I 6 R } U { ( O O , a)}

for a,b,c€ R. Then C(fi,fi, hi, hi, fci, £2) is the circle set of a 2-dimensional Laguerre
plane C{fi,fa, hi,h2, ki,k2) represented on the cylinder Z = (RU {oo}) x R.

Moreover, C(fi,fi,hi,h2,ki,ki) is isomorphic to £(/i,i,i,i,/1,2,1a.h,k) where
h = <h,x o <t>\t\ and k = (fe/Aii) o <p~\.
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[5] 2-dimensional Laguerre planes 73

The conditions on the functions f , g , h and k are ra ther restrictive, see also

Proposition 5. For example, since <£ is a homeomorphism, the function k cannot go

to infinity too fast as x tends to infinity. However, all conditions can be satisfied for

nontrivial functions f,g,h and k, see Section 5, Example 1.

Note tha t there are many isomorphisms between planes of the form C(f,g,h,k).

For example, each of / , g, h or A; can be replaced by a positive multiple without

actually changing the circle set. Furthermore, the roles of / and g and k and 1 can be

exchanged in certain situations. Note, however, t h a t if we change the representation of

£ ( / , 91 h> fc) by describing all circles in the derived affine plane a t a finite point (xo, yo),

xo € R, we do not , in general, obtain a description as for C(f,g,h,k); see Section 5,

Example 2. It seems to us tha t there should be some larger family of Laguerre planes

that properly includes the planes C(f,g,h,k) and their isomorphic copies obtained as

above.

3. CUT-AND-PASTE METHODS

In order to show that £(/ , g, h,k) is a Laguerre plane we apply some of the cut-and-
paste methods described in [8]. The two basic constructions we apply are as follows.
For a point p of a Laguerre plane with circle set C let Cp be the collection of all circles
through p and let Cp+ and Cp- be the collection of all circles that intersect the parallel
class of p above or below p, respectively. We then have the following result, see [7,
Proposition 5] or [8, Proposition 1].

PROPOSITION 1. Let C= (Z,C,\\) and C = (Z,C*,||) be two 2-dimensional

Laguerre planes. Let p e Z and suppose that Cp = C*. Then (z,Cp\JCp+ UC*_, |[)
is a 2-dimensional Laguerre plane.

For the second construction we need the notion of a pre-reflection. A pre-refiection
7 of a 2-dimensional Laguerre plane £ is an involutory homeomorphism of the cylinder
Z that maps parallel classes to parallel classes; that fixes exactly the points of two
distinct parallel classes IIo and IIoo; and such that for all p 6 Z for which p / ~/(p)
each circle through p and 7(p) is globally fixed by 7. Note that we do not require a
pre-reflection to be an automorphism of £.

Let 7 be a pre-reflection of C. Let TTQ and n^ denote the two parallel classes fixed
by 7 and let Hi, H2 be the two connected components of Z \ (VQ U TTQO). Clearly, if
c e C is a circle that is not fixed by 7, then c and 7(0) intersect in exactly two points,
one in TTQ , the other one in TTK, . Let Cy denote the collection of all circles fixed by 7
and let C7+ (C7-) be the set of all circles c € C such that c lies above (below) y(c)
on Hi. With this notation we proved in [8, Proposition 3* ] the following.

PROPOSITION 2 . Let C = (Z,C,\\) and C* = (Z,C*,\\) be two 2-dimensional
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74 B. Polster and G.F. Steinke [6]

Laguerre planes. Suppose both Laguerre planes admit the pre-reSection 7 and that

C7 = C*. Then (z,CyUC7+ U C*_, 11 j is a 2-dimensional Laguerre plane.

Each of the sets Cp and C7 in Propositions 1 and 2, respectively, forms a separating
set S of the circle space, that is, C \ S is not connected. Propositions 1 and 2 then
say that one can exchange corresponding connected components of different Laguerre
planes with respect to the same separating set. In this form the propositions were
generalised in [9] as follows.

THEOREM 2 . Let C = (Z,C, ||) and C* = {Z,C*,\\) De tw° 2-dimensional La-
guerre planes and let S C C C\C* be a separating set of both circle sets. Suppose
that C\S and C* \S have precisely two (non-empty) connected components C+, C_
and C\, Ct, respectively, and that each of these components is path-connected. Fur-
thermore, the labelling of the components C+ and C+ agrees, that is, there are three
mutually non-parallel points p\, P2 and ps such that the circles joining these three
points in the respective Laguerre planes belong to C+ and C+, respectively. Then
(Z, S U C+ U C_, 11) is a 2-dimensional Laguerre plane.

4. PROOF OF THEOREM 1

In the following Lemma we collect some easy to prove properties of parabolic
functions. As the name suggests, parabolic functions behave in many respects like
quadratic functions (whose graphs are Euclidean parabolae).

LEMMA 1. Let / : R - ) R b e a paraboJic function. Then the following statements

hold.

(1) The function x >-+ f{x) + ax + b is parabolic for all a, 6 e R.

(2) / assumes its minimum at a unique i o € R and /'(xo) = 0.
(3) The function x >-¥ f(x) — xf'{x{), where X\ € R, assumes its minimum

at x\.

(4) The equation f(x) = c has at most two solutions. If c = f(u) for some
u € R, then f(x) = c has exactly two soiutions unless f'(u) = 0 (and
f(u) is the minimum of f and u is the only solution).

(5) The function x 1-4 f(x) — xf'(x) has at most two zeros.

To be begin with, we consider the ovoidal Laguerre plane £( / ) = C(f,f,id,l).
Let xo € R be the unique element at which / assumes its minimum and for each
x € R, x ^ xo, let x € R, x j= x, be such that f(x) = f(x). We further define
x0 = x0 and 00 = 00. The map pf : Z -*• Z denned by Pf{x,y) = (x,y) clearly is
an involutory permutation of Z that fixes each point on the parallel classes {00} x R
and {xo} x R. It furthermore takes parallel classes of Z to parallel classes. A circle
Ca,b,c = {(x,o/(x) + bx+c) | i e R } u { ( o o , o ) } is fixed under pf if and only if bx = bx
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[7] 2-dimensional Laguerre planes 75

for all x e R, tha t is, if and only if 6 = 0. Finally, if Ca,b,c is a circle through (x, y)

and p/(x,y) where x / oo .xo , then 6 = 0, and thus this circle is fixed under pf. This

shows tha t pf is a pre-reflection of £ ( / ) .

We now consider the ovoidal Laguerre plane C(f o / j - 1 ) . The m a p from Z to Z

given by

f ( / i~ 1 (x ) ,y ) , for x e R,

[ (oo, y), for x = oo

provides an isomorphism from this plane onto one whose circles have the form

{(x,af(x) + bh(x)+c) | x € R} u{(oo,a)}

for a, 6, c e R. As above we see t h a t the same m a p pf is a pre-reflection of t he lat ter

Laguerre plane. Furthermore, the circles fixed under pf in this plane are exactly the

same circles as in C(f). Let Hi = {(x, y) € R2 | x > xo } ; this is one of the two

connected components of Z\ ({xo, oo} x R) . Since h is orientation-preserving, we have

tha t h(x) - h(xo) > 0 for all x > xo . We now find tha t a circle C from the Laguerre

plane above or from C(f) lies above p/(C) on Hi if and only if 6 > 0, and likewise C

lies below pf(C) on Hi if and only if 6 < 0 . By applying Proposit ion 2 we obta in the

following result.

PROPOSITION 3 . C(f,f,h,l) is a 2-dimensional Laguerre plane for f and h

as in Theorem 1.

Since we can replace / by g we also have the following.

COROLLARY 2 . C(g, g, h, 1) is a 2-dimensional Laguerre plane for g and h as

in Theorem 1.

In the Laguerre plane C(f, f,h,l) the circles through the infinite point p = (oo,0)

are exactly those with o = 0 . Circles tha t intersect the infinite parallel class TTOO =

{oo} x R above p are exactly those with a > 0 and circles intersecting JTOQ below p are

exactly those with a < 0 . The same situation occurs in the Laguerre plane C(g, g,h,l).

Hence, we obtain by Proposit ion 1:

PROPOSITION 4 . C(f,g,h,l) is a 2-dimensional Laguerre plane for f, g and

h as in Theorem 1.

Let F = (f/k) o 0 " 1 , G = (f/k) o^'1 and H = i/> o 0 " 1 . Then F, G and H

satisfy the same conditions as / , g and h in Theorem 1. Hence we obta in again a

Laguerre plane.

COROLLARY 3 . C(F, G,H,\) is a 2-dimensional Laguerre plane for / , g, h and

k as in Theorem 1 and F, G, H as above.
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We now make the coordinate transformation

J (0~ (x),y-ky/>~ (•c)))i for x 6 R,

\ (oo,y), forx = oo

which takes £(F, G, H, 1) to a Laguerre plane whose circles have the form

{(x,a *f,gx + b*id,h x + c- k{x)) | x € R} U {(oo,a)}

for a, 6, c € R, that is, to £(/,g, id, h, k, k).

The latter Laguerre plane looks like the Laguerre plane £{f,g,h,l) except that the

term c in the representation of circles as above is replaced by c • k(x). Note, however,

that £(/ , g, h, 1) and £(/ , g, id, h, k, k) both contain the circles of the form

{(x,o *f,g x + b*id,h x) | x 6 R} U {(oo, a)}

for a,6 € R. Then £(f,g,h,k) is obtained by taking 'half the circles from the planes
£(f,g,h,l) and £(f,g,id,h,k,k) each.

To be more precise, let Ca<b,c = {(x, a */i9 x + 6 *idth x + c) | x € R} U {(oo, a )} .
Then the map cr : R3 —¥ C(f, g, h, 1) given by a(a, b, c) = CaAc is a homeomorphism.
Since projection from R3 onto the third coordinate is continuous, we see that 5 =
{Ca,b,o I o,6 € R} » R2 is a separating set of C(f,g,h, 1) « R3. Also, C(f,g,h,l)\S
has the two connected components

C+ ={Ca,b,c | a, 6, c € R, c > 0} and

C_ ={CO)6,C | a, b, c € R, c < 0}.

Clearly, both components are homeomorphic to R3 and thus are path connected. For
the circles C*bc = {(x, a*/lgX+6*idi/lx+cfc(x)) | x € R}u{(oo,a)} in £(f,g,id,h,k,k)

we have the same separating set S = {C* 6 0 | a,b € R} and we similarly obtain that

C*+ ={<%,b,c I a ,6 ,c€ R , c > 0} and

Cl={C:Ac\a,b,ceR,c<0}

are the connected components of C(f, g, id, h, k,k)\S and that each of these is path
connected.

Let pi = (oo,0), p2 = (0,1) and p 3 = (1,1). The unique circle in £(f,g,h,l)

through these three points is Co,o,i • In £ ( / , g, id, h, k, k) the three points are joined by
the circle Cg 0 1 ,k,0-.. These circles belong to C+ and C+, respectively. This shows that
the labellings of the positive components agree. Hence £( / ,g,h ,k) is a 2-dimensional
Laguerre plane by Theorem 2.
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Clearly, each m a p (x, y) i-f (x, ry) for r > 0 is an automorphism of £ ( / , g, h, k).

Before we come to the determinat ion of the ovoidal planes among the Laguerre

planes C(f, g, h, k) we describe the bundles of circles in C(f, g, h, k) t h a t touch the

circle C0,0,o = ( R u {oo}) x {0} a t (oo ,0) .

LEMMA 2 . Let Ca>btC = {(x,a*fygX + b*id^x + c*itkx) \ x e R}u{(oo,o)}
be a circie in C(f,g,h,k) for a,b,ce R. Then Ca,4|C touches Co,o,o at (oo, 0) if and
only if o = b = 0.

PROOF: Since k is positive, it is clear that the circle Co,o,c for c e R touches
Co,o,o at (0,0). Furthermore, these circles for c 6 R partition the affine part R2 of
C(f,g,h,k). Now, since C(f,g,h,k) is a Laguerre plane, this family of circles must
contain all circles that touch Co,o,o at (0,0). D

We now assume that the Laguerre plane C(f, g, h, k) is ovoidal. Then the derived
affine plane at (oo, 0) is desarguesian. The non-vertical lines in this affine plane have
the form {(x, b*^ x + c*i,/tx) | x € R} for 6, c € R. Therefore, the map (x, y) *-*
(x, y + x) extends to an automorphism a of £(/ , g, h, k). Let Co><,iC be as in Lemma
2. Then a(COi(,tC) must be a circle of C(f,g,h,k) for all a,b, c e R. In particular,
a(Co,o,-i) is a circle. But Co,o,-i touches the circle Cb,o,o at (oo,0); hence a(Co,o,-i)
touches 0(6*0,0,0) = Co,o,i at a(oo,0) = (00,0). Since Co,o,i touches Co,o,o at the same
points, we see that a(Co,o,-i) also touches Co,o,o at (00,0). Hence a(Co,o,-i) = Co,o,c
for some c € R by Lemma 2. From this identity we obtain that 1 — k(x) = c*i^x for all
x e R. But then 1 — k(x) = c or 1 — k(x) = ck(x) for c > 0 and c < 0, respectively. In
both cases it follows that k is constant. Hence £(/ , g, h, k) is isomorphic to £(/ , g, h, 1).

The non-vertical lines in the derived affine plane at (00,0) thus have the form
{(x, 6 *id,h x + c) I x G R} for 6, c € R. The dual of the projective extension of this
plane is semiclassical in the sense of [12]. Dualising [12, Corollary 3.2] and taking into
account that h need not be normalised as in [12] we obtain that h must be affine, that
is, h(x) = rx + t for some r,t € R, r > 0. But then C(f,g,h,k) is isomorphic to
£(/, g, id, 1). This is a 2-dimensional Laguerre plane of shear type as defined in [5]. By
[5, Theorem 4] and again taking into account that / and g need not be normalised one
obtains that #(x) = a/(x) + 6x + c for some a,b,c € R, a > 0. This proves Theorem 1.

PROOF OF COROLLARY 1: The transformation

(oo,y), forx = 00

takes a circle {(x.a*^,^ x + 6*hi,fc2
 x + c**i.*2 z ) I x e *} u {(°°>a)} to a circle

{(x,a*/,sx + 6*id,hX + c*i,fcx) I xeR}u{(oo,o)} where / = /i,i,i,i- 9 = /i,2,i,i>
h = <fo,i o <j>l\ and k = (fc2/fci) ° ^ 1 •
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Since h = $2,1 ° <t>i\ > 0 = ^1,2 ° 4>\\ and i/> = ^2,2 ° 4>i\ > these functions are
orientation-preserving homeomorphisms of R. Clearly, / and g are parabolic by as-
sumption. Furthermore, / o h~l = /1,1,2,1, g°h~x = /a,i,a,i» ( /A) ° ^ " ! = f 1,2,1,2,
(glk)o4>~1 — /2,2,i,2i (f/k)°il>~1 — f 1,2,2,2, (g/fyotp'1 = f2,2,2,2, so that all these func-
tions are parabolic. Hence £( / , g, h,k) is a 2-dimensional Laguerre plane by Theorem 1.
Since £( / i , /2 , hi, ha, ki, fa) and C(f,g,h,k) are isomorphic, jC(/i,/2,Ai,/i2,fci,fc2) is
a Laguerre plane and by [6, Proposition 2] it is even a 2-dimensional Laguerre plane. D

Note that in the proof of Corollary 1 we only used that the functions fiti,i,i,

f 1,2,1,1, f 1,1,2,1, /2,i,2,i, /i,2,i,2, h,2,i,2, h,2,2,2 and /2,2,2,2 are parabolic. Hence we
can weaken the assumptions on the 16 functions fi,j,m,n m Corollary 1 to requiring
that only the above eight functions are parbolic.

We conclude this section with a few remarks on differentiability properties of the
functions h and fe. In Theorem 1 there is no mentioning that these functions and (j>

and t/> need to be differentiable but they almost are, see section 5 for examples where
these functions are not differentiable everywhere. Also note that the homeomorphisms
<j> and i/> are orientation-preserving.

PROPOSITION 5 . Let f, g, h and k be continuous functions as in Theorem 1.

Then the following statements hold.

(1) h is continuously differentiable on R \ A where 4 c R contains at most

one element xo £ R for which f'(x0) = s'(xo) = 0.

(2) k is continuously differentiable on R \ B where B c R contains at most
two elements Xi,x2 € R for which /(XJ) -x</'(xi) = g(x{) -Xig'{xi) = 0
for i = l ,2 .

PROOF: (1) By assumption / and / = / o h " 1 are parabolic and thus continuously
differentiable. From

/ ( » ) - /(u) _ f{h(x)) - f{h(u)) h(x) - h(u)
x — u h(x) — h(u) x — u

we see that h must be differentiable at u and h'(u) = /'(«)//'{h(u)) unless f'{h{u)) =

0. Hence h is continuously differentiable on R with the possible exception of at most
one point Xo for which /'(/i(xo)) = 0. But then / has a minimum at h(xo) and thus
/ has a minimum at xo. Hence /'(xo) = 0. Of course the same argument applies to g

so that h is continuously differentiable on R unless / ' and g' have a common zero xo.
(2) By assumption / and F = (f/k) o <j>~x are parabolic and thus continuously
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differentiable. Prom

f(x)-f(u) _k(u)

x — u k(x) <f>(

we see that k must be continuously differentiable at w and

k'(u) =

unless F(4>(u)) - <t>{u)F'(<f>(u)) = 0. By Lemma 1, the equation F(z) - zF'(z) = 0 has
at most two solutions Xi and Xi .

For i = 1,2 let /<(x) = f(x) - xF'(<j>{xi)) and ^ (x ) = F(x) - xF'(<j>(xi)). Then
fi and F* are parabolic and fi(x) = k(x)Fi(</>(x)). Therefore Fi(<t>(xi)) = 0 and
/«(*«) = k(xi)Fi(<l)(xi)) = 0. Since Fi assumes its minimum at <p(xi), see Lemma 1,
we have Fi(x) ^ 0 for all x € R and thus fi(x) ^ 0. By the definition of x^ we know
that fl(xi) = 0 and thus / ' (XJ) = F'(<f>(xi)). Substitution of this identity into the
expression for fi then yields /<(£<) = f(xi)Xif'(Xi) = 0. The same argument applies
to g so that k is continuously differentiable except possibly at at most two points
Xi € R for which f(xt) - Xif'(xi) = g(xi) - Xig'fa) = 0. D

Note that A and B being non-empty can actually occur. In fact, it is possible
that xo, xi , x2 are all distinct so that there are three exceptional values at which h
or k (and consequently <f> and V) are not differentiable, see the following section for
an example.

5. EXAMPLES

We conclude this paper with a few examples illustrating some aspects of Theorem 1
beginning with one that shows that the conditions on the functions / , g, h and k in
Theorem 1 can be satisfied nontrivially.

EXAMPLE 1. Let

h(x) =x3,

g(x) =x6 = h(xf,

/ (x) =x 1 2 = A(x)4.
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Clearly k(x) > 0 for all x € R. For the functions <j> and t/> one finds

All six functions are twice continuously differentiable so that one can determine whether
or not the functions occuring in Theorem 1 are homeomorphisms or parabolic by using
the familiar first and second derivative test, respectively.

Obviously, h is an orientation-preserving homeomorphismof R and / , g, f o/T"1

and goh-1 are parabolic. (Note that foh~1(x) = x4, j oA" 1 ^ ) = x2.) Since <j> and
ip are polynomial functions and because (j>'(x) = 3a;2+ 1 ^ 1 and il>'(x) = 5x4+3x2 > 0
for x ^ 0, it readily follows that <t> and ip are orientation-preserving homeomorphisms
of R.

To show that the remaining four functions are parabolic is more tedious. For the
second derivatives of these functions one finds

£ o ^(x) =22M10(21U4 + 23w2 + 6)/(3u2 + l ) 3 > 0 for x / 0,

| o ^ { x ) =10«4(l2u4 + llu2 + 3)/(3w2 + I)3 > 0 for x # 0,
K

!r O il>~l{x) =18u6(35w4 + 39u2 + 18)/(5v2 + 3)3 > 0 for x ^ 0 and
K

| o ^(x) =6(20v4 + 2bv2 + 9)/(5v2 + 3)3 > 0

where u = <t>~l{x) and v = ^(x). Hence (f/tfof-1, (g/k)o<f>-1, (f/k) o V"1

and (g/k) o ̂ - 1 are parabolic and thus all assumptions of Theorem 1 are satisfied.
Furthermore, the eight ovoidal Laguerre planes involved in this Laguerre plane are
mutually distinct.

EXAMPLE 2. Let

Then / is parabolic and /(0) = — 1 < 0. From above we also know that <j> is an
orientation-preserving homeomorphism of R. For (f/k) o $ - 1 one finds that ((f/k) o
0-i)"(x) = 12u2(w2 + l)/(3u2 +1 ) 3 > 0 for x / 0 where u = 4>~l(x). This shows
that (f/k) o (jr1 is parabolic and we can form the Laguerre plane £(/ , / , id, k).

The circles in this plane have the form {(x,a(x2 — l) +bx + c) | x e R}u{(oo,o)}
for c ^ 0 and {(x,a(x2 - l) + 6x + (c/x2 + l)) | x e R} U {(oo,a)} for c ^ 0. The
coordinate transformation

^ , ^ ) , f o rxeR.x :

for x = 0,

for x = oo,
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gives the new circles

{(x , (c - a)x2 + bx + a)\xeR}u {(oo, c-a)} and

i (c" a ) J r i + b x + R } u {(oo>c"a)

for c ^ 0 and c ^ 0, respectively. These circles almost look like the ones in a Laguerre
plane of Theorem 1 with respective functions x i-v x2, x *-> x 4 / (x 2 + l ) , id and
x i-> l / (x 2 + l) • In fact, these functions satisfy all the assumptions made in Theorem
1. However, the assignment of coefficients does not match the one in Theorem 1.

EXAMPLE 3. A simple example where h is not differentiable everywhere can be ob-

tained as follows. Let f(x) = x2, g = / , k — \ and h = hr where

x, for x ^ 0

rx, for x < 0

for some positive constant r. It is obvious that hr is an orientation-preserving home-
omorphism of R, that hr is continuously differentiable for all x ^ 0 and that / and
g and all the other functions that occur are parabolic. However, for r ^ 1, hT is not
differentiable at 0. The Laguerre planes £ ( / , / , hr, 1) are semi-classical in the sense of
[14], that is, the geometry induced on each connected component of Z \ ({oo, 0} x R)
is isomorphic to the one induced by the classical 2-dimensional Laguerre plane on the
same set of points.

EXAMPLE 4. As for an example where k is not differentiable everywhere and where
there are three exceptional values at which h or k are not differentiable let f(x) =

x2 + 1, g = f, h = hr as in Example 3 and

/I, for \x\ > 1,
k(x) = <

\ 2 - x2, for - 1 s? a: < 1.

It is obvious that k is positive, continuous on R and differentiable for all x / ±1
and that / is parabolic. For the function (f> and its inverse one finds

and
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and

In particular, 0 is a homeomorphism of R. For F = (f/k) o <j> l one then obtains

for |x| > 1

^ for |a;| < 1

for |x| ^ 1

for |x| < 1.

From there it readily follows that F is parabolic. Furthermore,

0{ x2 + 1, for i >

^ 2 + 1 , for x < 0

is parabolic. For the function ij) and its inverse one finds

x,

In particular, ^ is a homeomorphism of R. Then (f/k) o ^>~l becomes

x2 + 1, for x ^ 1

z, for — r ^ x ^ 0

for x < — r .
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From there it readily follows that (f/k) o t^i"1 is parabolic. Hence all assumptions of
Theorem 1 are satisfied and we obtain a Laguerre plane £ ( / , / , hr,k).

Note that r = 1 yields an example where h is differentiable on R but k is not.
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