A DOUBLE-INFINITY CONFIGURATION

D. W. BARNES

(Received 8 May 1967)

The double-six configuration in classical 3-dimensional projective geometry has been discussed by a number of authors. ${ }^{1}$ It consists of two sets a_{1}, \cdots, a_{6} and b_{1}, \cdots, b_{6} of six lines such that no two lines of the same set intersect, and a_{i} meets b_{j} if and only if $i \neq j$. The existence of a doublesix in the 3 -dimensional projective geometry over a field F has been proved by Hirschfeld in [2] for all fields F except those of 2,3 and 5 elements. For an arbitrary 3-dimensional projective geometry in which the number of points on a line is at least 5 but is not 6 , the existence of a double-six follows from the fact that the geometry is a geometry over a division ring D with a subfield F satisfying the conditions of Hirschfeld's theorem.

In the classical theory, it is proved that no line a_{7} meeting $b_{1}, \cdots b_{6}$ can be added to the system. This proof depends on the commutativity of the coordinate system. We show that it is possible for a non-Pappusian geometry to contain a double configuration with infinitely many lines in each set.

Let D be a division ring. We denote by $\Gamma(D)$ the 3 -dimensional projective geometry over D. A system consisting of two sets $\left\{a_{i} \mid i \in I\right\}$ and $\left\{b_{i} \mid i \in I\right\}$ of lines of $\Gamma(D)$, each indexed by the index set I of cardinal c, is called a double- c configuration if
(i) no two members of the same set intersect, and
(ii) a_{i} meets b_{j} if and only if $i \neq j$.

TheOrem. Let c be any cardinal number. Then there exists a 3-dimensional projective geometry in which there is a double-c configuration.

Proof. Let V be a 4 -dimensional left vector space over a division ring D. Then the points, lines and planes of $\Gamma(D)$ are the 1 -, 2 - and 3dimensional subspaces of V. We denote by $\left\langle v_{1}, \cdots, v_{r}\right\rangle$ the subspace of V spanned by the elements $v_{1}, \cdots, v_{r} \in V$. Let $e_{1}, e_{2}, e_{3}, e_{4}$ be a basis of V. For $\alpha \in D$, let m_{α}, n_{α} be the lines $\left\langle e_{1}+\alpha e_{2}, e_{3}+\alpha e_{4}\right\rangle,\left\langle e_{1}+\alpha e_{3}, e_{2}+\alpha e_{4}\right\rangle$ respectively. Then $M=\left\{m_{\alpha} \mid \alpha \in D\right\}$ and $N=\left\{n_{\alpha} \mid \alpha \in D\right\}$ are families of

[^0]skew lines. The line m_{α} meets n_{β} if and only if $\alpha \beta=\beta \alpha$. If $\left\{\alpha_{i} \mid i \in I\right\}$ and $\left\{\beta_{i} \mid i \in I\right\}$ are subsets of D satisfying the condition
\[

$$
\begin{equation*}
\alpha_{i} \beta_{j}=\beta_{j} \alpha_{i} \text { if and only if } i \neq j \tag{*}
\end{equation*}
$$

\]

then the sets of lines $\left\{m_{\alpha_{i}} \mid i \in I\right\}$ and $\left\{n_{\beta_{i}} \mid i \in I\right\}$ form a double- c configuration, where c is the cardinal of I.

It remains to show that, for given c, there exists a division ring D with two subsets $\left\{\alpha_{i} \mid i \in I\right\}$ and $\left\{\beta_{i} \mid i \in I\right\}$, each indexed by a set I of cardinal c, satisfying the condition (*). The following construction was suggested by B. H. Neumann. We take any set I of cardinal c. For each $i \in I$, let F_{i} be the free group on the two generators α_{i}, β_{i}. Let G be the restricted direct product of the F_{i}. Then the subsets $\left\{\alpha_{i} \mid i \in I\right\}$ and $\left\{\beta_{i} \in I\right\}$ of G satisfy (*). We embed G in the multiplicative group of a division ring.

By Neumann [4] Corollary 3.3, each F_{i} can be ordered. By [4] Theorem 3.6, G can be ordered. By Neumann [3] Theorem 5.9, this implies that G can be embedded in the multiplicative group of a division ring D. This division ring D clearly has the required properties.

References

[1] H. F. Baker, Principles of Geometry, Vol. III (C.U.P., 1923).
[2] J. W. P. Hirschfeld, Ph. D. Thesis, Edinburgh (1965).
[3] B. H. Neumann, 'On ordered division rings', Trans. Amer. Math. Soc. 66 (1949) 202-252.
[4] B. H. Neumann, 'On ordered groups,' Amer. J. Math. 71 (1949) 1-18.
Department of Pure Mathematics
University of Sydney

[^0]: ${ }^{1}$ For an account of the classical theory, see Baker [1] pp. 159-164.

