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The dispersion relation of a surface wave generated by a drifting plasma in an infinite duct
surrounded by vacuum is derived non-relativistically by means of the Vlasov equation.
The kinematic boundary condition imposed on the distribution function, the specular
reflection conditions on the four sides of duct, can be satisfied by placing an infinite
number of fictitious surface charge sheets spaced by the duct widths. The surface wave
mode is specifically the transverse magnetic mode, often called the surface polariton,
which propagates with phasor exp(ikzz − iωt). The method of placing appropriate
fictitious surface charge sheets enables one to treat the surface waves in semi-infinite, slab
and duct plasmas simultaneously on an equal footing, kinetically. The streaming effect
manifests itself through the Doppler-shifted frequency and a correction-like term u2/c2,
where u is the streaming velocity and c is the speed of light.
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1. Introduction

We consider surface waves of wave number kz and frequency ω, generated by a plasma
beam travelling in a duct interfaced with vacuum by using the Vlasov equation. Surface
waves are given rise to by satisfying the kinetic and electromagnetic boundary conditions
on the interface between the plasma and the vacuum surrounding it. The electric and
magnetic fields in the plasma are connected with the vacuum side fields by the appropriate
connection formula, and the latter can be deciphered from the basic equations themselves
that we adopt. The connection formula can be easily worked out mathematically if the
density gradient across the plasma and the other side is very steep. We talk about ‘a
sharp interface’ if the density gradient is theoretically infinite. In this case, the connection
formula can be obtained by ‘infinitesimal integration’ across the interface, which is the
operation performed on a certain relevant equation in the manner

∫ ε

−ε
(· · · ) dx. If the

quantity (· · · ) is a perfect differential, this operation yields a non-vanishing surface term
that contributes to the connection formula. Usually, the surface term is the surface charge
or surface current, In this way, the well-known electromagnetic and dynamic boundary
conditions on the boundary can be derived (Lee & Cho 1997). In a gross picture, the
surface wave and the vacuum side wave are two different manifestations of ‘the same
wave’ given rise to in an extreme inhomogeneous plasma.
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A cold drifting plasma has a characteristic boundary condition (Lee & Cho 1997, 1999),
which can be expressed in the form

[By] = u
c

[Ex] (1.1)

or equivalently,

[Dx] = ckz

ω
[By] (1.2)

where [· · · ] signifies the jump across the interface, Dx is the normal to the interface
component of D, the electric displacement, u is the drift velocity in the z-direction,
By is the tangential component of the magnetic field and c is the speed of light, and
the other symbols have the usual meaning. The casual use of [Dx] = 0 or [By] = 0
in a drifting plasma leads to erroneous results as, discussed in earlier works (Lee
& Cho 1997; Lee 2005). The physical origin of the boundary relation in (1.1) is
due to the surface current formed in a cold drifting plasma, as is evident in the
equation.

In a bounded Vlasov plasma, the kinematic boundary condition that is usually referred to
as the specular reflection condition is assumed to be satisfied on a sharp boundary (Landau
1946). The kinetic theory of surface waves in semi-infinite plasmas is well known (Barr &
Boyd 1972; Alexandrov, Bogdankevich & Rukhadze 1984). The kinetic dispersion relation
of a surface wave in a slab plasma was worked out earlier (Lee & Lim 2007). In this work,
we investigate surface waves of a moving Vlasov plasma in a duct. We consider an infinite
duct formed by the intersections of four planes: x = 0, a and y = 0, b, with −∞ < z < ∞.
Thus the specular reflection condition on the x = a plane, for example, requires for
the distribution function f (r, v, t) to satisfy f (a, y, z, vx, vy, vz, t) = f (a, y, z,−vx, vy, vz, t)
or, on the y = b plane, f (x, b, z, vx, vy, vz, t) = f (x, b, z, vx,−vy, vz, t), with similar
equations for x = 0 and y = 0. In our duct-bounded plasma, the kinematic conditions
on the four planes are satisfied by introducing an extended electric field in the
fashion

Ex(−x, y, z) = −Ex(x, y, z), Ex(2a − x, y, z) = −Ex(x, y, z), (1.3a,b)

Ey(x,−y, z) = −Ey(x, y, z), Ey(x, 2b − y, z) = −Ey(x, y, z). (1.4a,b)

This scheme is workable if f0(v), the zero-order distribution function, is invariant with
respect to the reflections vx → −vx and vy → −vy, and clearly this reflectional property is
satisfied by the moving Maxwellian, to be introduced later.

The function Ex(x), as defined in (1.3a,b), is a periodic function of a piecewise
continuous function of period ′a′ extending over the range −∞ < x < ∞ with
discontinuity at x = ±2na with a jump of A1 (say) and with discontinuity at
x = ±(2n − 1)a with a jump of A2 (say), where n is an integer. The profile of the piecewise
function Ex(x) is plotted in Lee (2019). The algebra involved in carrying out the Fourier
transform of the piecewise discontinuous functions with the aforementioned discontinuous
jumps is quite taxing (Lee & Lim 2007). However, it turns out that, after all the algebraic
hard work, the discontinuities that are present in the extended field components Ex(x, y)
and Ey(x, y) in (1.3a,b) and (1.4a,b) at the locations x = ±2na and x = ±(2n − 1)a and
y = ±2nb and y = ±(2n − 1)b are mathematically (as well as physically) tantamount to
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placing fictitious surface charges at the corresponding jump locations in the form

S(x, y, z, t) = A1

∑
n=0,1,2,...

δ(x ± 2na) + A2

∑
n=1,2,...

δ(x ± (2n − 1)a)

+B1

∑
n=0,1,2,...

δ( y ± 2nb) + B2

∑
n=1,2,...

δ( y ± (2n − 1)b). (1.5)

This is the vital point of improvement in this work as compared with the earlier work (Lee
& Lim 2007). The surface charges are associated with the surface currents by satisfying
the charge conservation equation

∂S
∂t

+ ẑ · J s = 0. (1.6)

Therefore, we can assume the presence of the fictitious surface currents

J s(r, ω) = ẑ iωS(x, y, z, ω). (1.7)

The surface charges in (1.5) and the surface currents in (1.7) should be included in the
Maxwell equations for our duct plasma wave analysis.

The basic equations are the linearized Vlasov equation and the Maxwell equations for
electrons. Ions are assumed to be stationary and only form the neutralizing background

∂

∂t
f (r, v, t) + v · ∂f

∂r
− e

m

(
E(r, t) + 1

c
v × B

)
· ∂f0(v)

∂v
= 0, (1.8)

∇ × E = −1
c

∂B
∂t

, (1.9)

∇ × B = 4π

c
J + 1

c
∂E
∂t

+ ẑJs, (1.10)

where

Js = A′
1

∑
n=0,1,2,...

δ(x ± 2na) + A′
2

∑
n=1,2,...

δ(x ± (2n − 1)a)

+B′
1

∑
n=0,1,2,...

δ( y ± 2nb) + B′
2

∑
n=1,2,...

δ( y ± (2n − 1)b), (1.11)

J (r, t) = −e
∫

vf (r, v, t) d3v, (1.12)

∇ · E = −4πe
∫

f d3v + S(x, y, z), (1.13)

∇ · B = 0. (1.14)

It should be noted that the last term in (1.8) involving the magnetic field vanishes if
f0 is isotropic, but in a beam plasma, that term contributes to complexity. The zero-order
distribution function is a moving Maxwellian

f0(v) =
( m

2πT

)3/2
exp

[
− m

2T
(v − u)2

]
. (1.15)

We Fourier transform the above equations by performing
∫∞

−∞ d3r exp(ik · r)(· · · )
and by assuming ∂/∂t = iω. Then, the wave has a phasor exp(ikzz − iωt). The (kz, ω)
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dependency in the Fourier amplitudes will be suppressed. Equation (1.8) is Fourier
transformed to give

f (k, v, ω) = e
m

i
ω

Ej

ω − k · v

[
(ω − k · v)δsj + ksvj

] ∂f0

∂vs
, (1.16)

where the repeated indexes are summed over. Here, and in the following, the
Fourier-transformed variables are expressed by the argument; for example, f (t) and f (ω)
have different dimensions. If f0 is isotropic, ∂f0/∂vs ∼ f0vs, and (1.16) reduces to the
expression for the isotropic case.

Eliminating B between (1.9) and (1.10) gives

k × (k × E) + ω2

c2
εij · E(k, ω) = ẑJs(k, ω), (1.17)

where εij is the dielectric tensor in a moving medium

εij =
(

1 − ω2
p

ω2

)
δij +

ω2
p

ω2

∫
d3v

vivjks

ω − k · v

∂f0

∂vs
, (1.18)

with ωp being the plasma frequency. In (1.17), Js(k, ω), the Fourier transform of the surface
currents in (1.11), is

Js(k, ω) = δ(ky)[A1Σ0 exp(±i2nakx) + A2Σ1 exp(±i(2n − 1)akx)]

+δ(kx)[B1Σ0 exp(±i2nbky) + B2Σ1 exp(±i(2n − 1)bky)], (1.19)

where the A and B values may be functions of kz, the double signs are summed over and
the notations Σ0 and Σ1 are the summations in (1.11).

The foregoing formulation can be applied for simpler boundaries: in a semi-infinite
plasma, we can suppose a single surface charge sheet S(x) = Aδ(x), and in a slab geometry
0 < x < a, the surface charges are assumed in the form of (1.5) with B1 = B2 = 0. The
dispersion relation of surface waves in a slab plasma was worked out earlier without
introducing the fictitious surface charges by directly Fourier transforming the extended
electric field in (1.3a,b) (Lee & Lim 2007).

2. Solutions for plasma fields

First, let us calculate εij in (1.18) by using the moving Maxwellian as given in (1.15).
The velocity integral therein can be carried out by transforming w = v − u, and thus
performing the integral over the isotropic Maxwellian distribution f0(w). Using

∂f0

∂vs
= m

T
(us − vs)f0, (2.1)

the velocity integral becomes

∫
d3v

vivjks

ω − k · v

∂f0

∂vs
= δij + m

T
uiuj − m

T
ω′
∫ ∞

−∞
d3v

vivj

ω′ − k · w
f0(v), (2.2)
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where ω′ = ω − kzu is the Doppler-shifted frequency. Using (2.1) again for vif0, eventually
(2.2) is integrated to yield∫

d3v
vivjks

ω − k · v

∂f0

∂vs
= δij + m

T
uiuj − ω′I1

(
δij + m

T
uiuj

)

−ω′I2(uikj + kiuj) − 2ω′ T
m

kikjI3, (2.3)

where In =
∫ ∞

−∞

f0(w)

(ω′ − k · w)n
d3w, (n = 1, 2, 3) (2.4)

can be written in terms of the plasma dispersion function Z(ζ )

Z(ζ ) = 1√
π

∫ ∞

−∞

e−q2 dq
q − ζ

(
ζ = ω′/k√

2T/m

)
. (2.5)

We have I1 = −ζZ/ω′, I2 = −2ζ 2(1 + ζZ)/ω′2 and I3 = ζ 2[ζZ − 2ζ 2(1 + ζZ)]/ω′3.
Then, (1.18) can be written in the form

εij = δij +
ω2

p

ω2

[(
δij − kikj

k2

)
ζZ(ζ ) + 2ζ 2(1 + ζZ(ζ ))

×
(

kikj

k2
+ kiuj + kjui

ω′ + k2uiuj

ω′2

)]
. (2.6)

Equation (2.6) agrees with the dielectric tensor in a moving medium obtained from
Lorentz transform (Alexandrov et al. 1984). When the beam velocity u = 0, the dielectric
tensor in (2.6) reduces to the well-known result for an isotropic medium. It is convenient
to introduce the longitudinal and transverse dielectric permittivities,

εL = 1 + 2
ω2

p

ω2
ζ 2(1 + ζZ(ζ )), (2.7)

εT = 1 + ω2
p

ω2
ζZ(ζ )). (2.8)

In the above expressions, two frequencies are involved: the wave frequency ω and the
Doppler-shifted frequency ω′ hidden in the variable ζ . In terms of εL,T , we have

εij = εTδij + kikj

k2
(εL − εT) + (εL − 1)Uij, (2.9)

where Uij is the tensor associated with the beam velocity components

Uij = kiuj + kjui

ω′ + k2uiuj

ω′2 , (2.10)

whose non-zero components are

Uxz = Uzx = ukx

ω′ , Uyz = Uzy = uky

ω′ , Uzz = 2kzu
ω′ + k2u2

ω′2 , (2.11a–c)

and the other elements are zero.
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2.1. Solution for E(k, ω)

Using (2.9) in (1.17) gives[
δij(εT − n2) + kikj

k2
(n2 + εL − εT) + Uij(εL − 1)

]
Ej = ẑ

c2

ω2
Js, (2.12)

where n2 = c2k2/ω2 is the refractive index.
We inverted the 3×3 matrix in (2.12) to obtain E

Ex = − Js

Δ

(
kxkz

k2
α + γ Uxz

)
, (2.13)

Ey = − Js

Δ

(
kykz

k2
α + γ Uyz

)
, (2.14)

Ez = Js

Δ

(
k2

x + k2
y

k2
α + β

)
, (2.15)

Bx = c
ω

Js

Δ
ky

(
εL + γ

ukz

ω′

)
, (2.16)

By = − c
ω

Js

Δ
kx

(
εL + γ

ukz

ω′

)
, (2.17)

Bz = 0, (2.18)

where

α = εL − εT + n2, β = εT − n2, γ = εL − 1, (2.19a–c)

Δ = β

[
εL + (εL − 1)

(
Uzz − u2

ω′2 (k2
x + k2

y)

)]
. (2.20)

We use (2.18) since we investigate a transverse magnetic mode.
The above expressions for E(k) need to be Fourier inverted to E(r) to apply the

boundary conditions. To make further development easier and the equations more
transparent, we employ the cold plasma approximation. Then we have the cold plasma
dielectric permittivities

εL = εT = 1 − ω2
p

ω2
. (2.21)

In a cold plasma, Δ in (2.20) becomes

Δ = β

[(
1 − ω2

p

ω2

)
− ω2

p

ω2

(
u2k2

z

ω′2 + 2kzu
ω′

)]
. (2.22)

The above expression reduces to, for non-relativistic beam velocity (u2/c2 << 1),

Δ =
(

1 − ω2
p

ω2
− c2k2

ω2

)(
1 − ω2

p

ω′2

)
. (2.23)
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The field components are

Ex(k, ω) = − Js

Δ

c2

ω2
kx

(
kz − uω2

p

c2ω′

)
, (2.24)

Ey(k, ω) = − Js

Δ

c2

ω2
ky

(
kz − uω2

p

c2ω′

)
, (2.25)

Ez(k, ω) = Js

Δ

(
1 − ω2

p

ω2
− c2k2

z

ω2

)
, (2.26)

Bx(k, ω) = Js

Δ

c
ω

ky

(
1 − ω2

p

ωω′

)
, (2.27)

By(k, ω) = − Js

Δ

c
ω

kx

(
1 − ω2

p

ωω′

)
, (2.28)

where Js is given in (1.19).
The Fourier inversion integrals must be carried out to obtain the plasma fields in

ordinary coordinate space before the boundary conditions are applied. The integrals
involve infinite series through the surface charge Js, but the infinite series are nicely
summed at the particular positions corresponding to x = 0, a and y = 0, b. Thus, we apply
the boundary conditions along the two infinite lines (x, y, z) = (0, 0, z) and (a, b, z) with
−∞ < z < ∞. The two lines correspond to the two seams of the duct which are diagonally
opposite. When the inversion integrals are performed, the following formulas are useful,
which can be verified by a simple change of variable, as is shown in earlier work (Lee &
Lim 2007). We have integrals of the type in the inversion integrals

J(x) =
∫ ∞

−∞
dkxkxΦ(k) eikxx

[
A1Σ0 exp(±i2nakx) + A2Σ1 exp(±i(2n − 1)akx)

]
, (2.29)

where Φ(k) is an even function of kx. Then, we have

J(0) = A1

∫ ∞

−∞
dkxkxΦ(kx), (2.30)

J(a) = −A2

∫ ∞

−∞
dkxkxΦ(kx). (2.31)

When we have integrals of the type

L(x) =
∫ ∞

−∞
dkxΦ(k) eikxx

[
A1Σ0 exp(±i2nakx) + A2Σ1 exp(±i(2n − 1)akx)

]
, (2.32)

we have

L(0) = 2
∫ ∞

−∞
dkxΦ(kx)(A1S1 + A2S2), (2.33)

L(a) = 2
∫ ∞

−∞
dkxΦ(kx)(A1S2 + A2S1), (2.34)
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8 H.J. Lee and S.-H. Cho

where

S1 = 1
2

+ exp(2iakx) + exp(4iakx) + · · · , (2.35)

S2 = exp(iakx) + exp(3iakx) + · · · . (2.36)

Integrals (2.30), (2.31), (2.33) and (2.34) are useful for evaluating the integrals. We have

Ex(0, 0, z) = − c2

ω2

(
kz − uω2

p

c2ω′

)∫ ∞

−∞
dkx

∫ ∞

−∞
dky × kx

Δ

[
δ(ky)

(
A1Σ0 exp(±i2nakx)

+ A2Σ1 exp(±i(2n − 1)akx)
)

+ δ(kx)
(

B1Σ0 exp(±i2nbky)

+ B2Σ1 exp(±i(2n − 1)bky)
)]

= − c2

ω2

(
kz − uω2

p

c2ω′

)∫ ∞

−∞
dkx

kx

Δ

(
A1Σ0 exp(±i2nakx) + A2Σ1 exp(±i(2n − 1)akx)

)

= − c2

ω2

(
kz − uω2

p

c2ω′

)
A1

∫ ∞

−∞
dkx

kx

Δ
, (2.37)

where we have used (2.30). In the last (also in the later) integral, k2 hidden in Δ is
k2 = k2

z + k2
x . We have

Ex(a, b, z) = − c2

ω2
(kz − uω2

p

c2ω′ )
∫ ∞

−∞
dkx eikxa

∫ ∞

−∞
dky eikyb

× kx

Δ

[
δ(ky)

(
A1Σ0 exp(±i2nakx) + A2Σ1 exp(±i(2n − 1)akx)

)
+ δ(kx)

(
B1Σ0 exp(±i2nbky) + B2Σ1 exp(±i(2n − 1)bky)

)]

= − c2

ω2
(kz − uω2

p

c2ω′ )
∫ ∞

−∞
dkx eikxa kx

Δ

(
A1Σ0 exp(±i2nakx) + A2Σ1 exp(±i(2n − 1)akx)

)

= − c2

ω2
(kz − uω2

p

c2ω′ ) (−A2)

∫ ∞

−∞
dkx

kx

Δ
, (2.38)

where we used (2.31). Analogous integrations yield

Ey(0, 0, z) = − c2

ω2

(
kz − uω2

p

c2ω′

)
B1

∫ ∞

−∞
dky

ky

Δ
, (2.39)

Ey(a, b, z) = − c2

ω2

(
kz − uω2

p

c2ω′

)
(−B2)

∫ ∞

−∞
dky

ky

Δ
. (2.40)
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In the above (also in the later)
∫

dky integral, k2 hidden in Δ is k2 = k2
z + k2

y

Bx(0, 0, z) = c
ω

(
1 − ω2

p

ωω′

)
B1

∫ ∞

−∞
dky

ky

Δ
, (2.41)

Bx(a, b, z) = c
ω

(
1 − ω2

p

ωω′

)
(−B2)

∫ ∞

−∞
dky

ky

Δ
, (2.42)

By(0, 0, z) = − c
ω

(
1 − ω2

p

ωω′

)
A1

∫ ∞

−∞
dkx

kx

Δ
, (2.43)

By(a, b, z) = − c
ω

(
1 − ω2

p

ωω′

)
(−A2)

∫ ∞

−∞
dkx

kx

Δ
. (2.44)

We encounter a different type of integral in

Ez(0, 0, z) =
(

1 − ω2
p

ω2
− c2k2

z

ω2

)∫ ∞

−∞
dkx

∫ ∞

−∞
dky × 1

Δ

[
δ(ky) (A1Σ0 exp(±i2nakx)

+ A2Σ1 exp(±i(2n − 1)akx)) + δ(kx)
(
B1Σ0 exp(±i2nbky)

+ B2Σ1 exp(±i(2n − 1)bky)
)]

, (2.45)

which becomes

Ez(0, 0, z) =
(

1 − ω2
p

ω2
− c2k2

z

ω2

)[∫ ∞

−∞

dkx

Δ
(A1Σ0 exp(±i2nakx)

+ A2Σ1 exp(±i(2n − 1)akx))

+
∫ ∞

−∞

dky

Δ

(
B1Σ0 exp(±i2nbky) + B2Σ1 exp(±i(2n − 1)bky)

)]
, (2.46)

which we write in the form

Ez(0, 0, z) = 2

(
1 − ω2

p

ω2
− c2k2

z

ω2

)[∫ ∞

−∞

dkx

Δ
(A1S1(akx) + A2S2(akx))

+
∫ ∞

−∞

dky

Δ

(
B1S1(bky) + B2S2(bky)

)]
, (2.47)

where we have used (2.33), and

S1(ξ) = 1
2

+ e2iξ + e4iξ · · · S2(ξ) = eiξ + e3iξ + · · · . (2.48)

Analogously, we obtain

Ez(a, b, z) = 2

(
1 − ω2

p

ω2
− c2k2

z

ω2

)[∫ ∞

−∞

dkx

Δ
(A1S2(akx) + A2S1(akx))

+
∫ ∞

−∞

dky

Δ

(
B1S2(bky) + B2S1(bky)

)]
, (2.49)
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where we have used (2.34).

2.2. Vacuum solution
Vacuum solutions should solve (

∇2 + ω2

c2

)
B = 0, (2.50)

and

E = ic
ω

∇ × B. (2.51)

Equation (2.50) is solved by

B ∼ eikzz e±kxx e± kyy (2.52)

with constraint k2
x + k2

y = k2
z − ω2/c2 ≡ λ2 and ∇ · B = 0. Furthermore, we assume

Bz = 0 since we consider the transverse magnetic mode.
The vacuum regions corresponding to (or exterior to) the lines (0, 0, z) and (a, b, z),

which we designate as (i) and (ii), respectively, are:
Vacuum region (i) x < 0, y < 0, where we have

Bv
x(i) = Hx eikzz ekxx ekyy, (2.53)

Bv
y(i) = Hy eikzz ekxx ekyy, (2.54)

kxHx + kyHy = 0, (2.55)

Ev
z (i) = i c

ω
(Hykx − Hxky) eikzz ekxx ekyy, (2.56)

Ev
x (i) = c

ω
kzHy eikzz ekxx ekyy, (2.57)

Ev
y (i) = − c

ω
kzHx eikzz ekxx ekyy. (2.58)

Vacuum region (ii) x > a, y > b, where

Bv
x(ii) = Gx eikzz e−kxx e−kyy, (2.59)

Bv
y(ii) = Gy eikzz e−kxx e−kyy, (2.60)

kxGx + kyGy = 0, (2.61)

Ev
z (ii) = i c

ω
(−Gykx + Gxky) eikzz e−kxx e−kyy, (2.62)

Ev
x (ii) = c

ω
kzGy eikzz e−kxx e−kyy, (2.63)

Ev
y (ii) = − c

ω
kzGx eikzz e−kxx e−kyy. (2.64)

Putting (x, y) = (0, 0) or (a, b) in the above equations gives the vacuum side values of the
relevant quantities.
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3. Dispersion relation

We enforce the following boundary conditions to connect the plasma and the vacuum
fields: [Ez] = 0, [By] = (u/c)[Ex], [Bx] = −(u/c)[Ey]

Along line (0, 0, z)
[Ez] = 0 gives, per (2.47) and (2.56),(

1 − ω2
p

ω2
− c2k2

z

ω2

)
(A1I1 + A2I2 + B1J1 + B2J2) = ic

ω
(Hykx − Hxky), (3.1)

where Ii = 2
∫ ∞

−∞

dkx

Δ
Si(akx), Ji = 2

∫ ∞

−∞

dkx

Δ
Si(bky), (i = 1, 2), (3.2)

[By] = (u/c)[Ex] gives

A1Q

(
1 − ω2

p

ω′2

)
+ ω

c
Hy = 0, (3.3)

where Q =
∫ ∞

−∞
dkx

kx

Δ
=
∫ ∞

−∞
dky

ky

Δ
(3.4)

[Bx] = −(u/c)[Ey] gives

B1Q

(
1 − ω2

p

ω′2

)
− ω

c
Hx = 0. (3.5)

Along line (a, b, z)
[Ez] = 0 gives(

1 − ω2
p

ω2
− c2k2

z

ω2

)
(A1I2 + A2I1 + B1J2 + B2J1) = ic

ω
(−Gykx + Gxky) e−kxa e−kyb, (3.6)

[By] = (u/c)[Ex] gives

A2Q

(
1 − ω2

p

ω′2

)
− ω

c
Gy e−kxa e−kyb = 0, (3.7)

[By] = −(u/c)[Ex] gives

B2Q

(
1 − ω2

p

ω′2

)
+ ω

c
Gx e−kxa e−kyb = 0. (3.8)

In obtaining (3.3), (3.5), (3.7) and (3.8), we neglected u2/c2 � 1 as compared with unity.
In addition, we have, per ∇ · B = 0 and Bz = 0,

kxHx + kyHy = 0, (3.9)

kxGx + kyGy = 0. (3.10)

Thus, we have 8 equations for 8 unknowns; A1, A2, B1, B2, Hx, Hy, Gx, Gy.
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Eliminating Hx, Hy, Gx, Gy gives

A1

(
I1 + i

c2

ω2

η

ξ
kxQ

)
+ A2I2 + B1

(
J1 + i

c2

ω2

η

ξ
kyQ

)
+ B2J2 = 0, (3.11)

A1I2 + A2

(
I1 + i

c2

ω2

η

ξ
kxQ

)
+ B1J2 + B2

(
J1 + i

c2

ω2

η

ξ
kyQ

)
= 0, (3.12)

kyA1 = kxB1, (3.13)

kyA2 = kxB2, (3.14)

where

ξ = 1 − ω2
p

ω2
− c2k2

z

ω2
, η = 1 − ω2

p

ω′2 . (3.15)

Eliminating B1 and B2 gives

A1

[
kxI1 + kyJ1 + ic2

ω2

η

ξ
(k2

x + k2
y)Q

]
+ A2(kxI2 + kyJ2) = 0, (3.16)

A1(kxI2 + kyJ2) + A2

[
kxI1 + kyJ1 + ic2

ω2

η

ξ
(k2

x + k2
y)Q

]
= 0, (3.17)

and (3.16) and (3.17) yield the dispersion relation in the form

kx

∫ ∞

−∞

dkx

Δ

1 ± eiakx

1 ∓ eiakx
+ ky

∫ ∞

−∞

dky

Δ

1 ± eibky

1 ∓ eibky
+ iλ2 c2

ω2

η

ξ

∫ ∞

−∞
kx

dkx

Δ
= 0, (3.18)

where we used ∫ ∞

−∞

dkx

Δ
[S1(akx) ± S2(akx)] = 1

2

∫ ∞

−∞

dkx

Δ

1 ± eiakx

1 ∓ eiakx
. (3.19)

In regard to the Fourier variables kx and ky outside the integrals, we imposed the
constraint k2

x + k2
y = k2

z − ω2/c2 ≡ λ2. Therefore, it is convenient to transform

kx = bλ√
a2 + b2

, ky = aλ√
a2 + b2

(3.20a,b)

(kx, ky inside the integrals are dummy variables and are left as they are). The transform in
(3.20a,b) satisfies the constraint and the relation akx = bky. In fact, it can be derived from
the latter and the constraint. Then, the dispersion relation takes the form

b√
a2 + b2

∫ ∞

−∞

dkx

Δ

1 ± eiakx

1 ∓ eiakx
+ a√

a2 + b2

∫ ∞

−∞

dky

Δ

1 ± eibky

1 ∓ eibky
+ iλ

c2

ω2

η

ξ

∫ ∞

−∞
kx

dkx

Δ
= 0.

(3.21)
If either a or b → ∞, we recover the slab dispersion relation (Lee & Lim 2007)∫ ∞

−∞

dkx

Δ

1 ± eiakx

1 ∓ eiakx
+ iλ

c2

ω2

η

ξ

∫ ∞

−∞
kx

dkx

Δ
= 0. (3.22)

It is recalled that the k2 hidden in Δ is k2 = k2
z + k2

x in
∫

dkx-integral and k2 = k2
z + k2

y

in
∫

dky-integral. Thus, let us change the integration variables, both kx and ky, in (3.21) to
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κ

b√
a2 + b2

∫ ∞

−∞

dκ

Δ

1 ± eiaκ

1 ∓ eiaκ
+ a√

a2 + b2

∫ ∞

−∞

dκ

Δ

1 ± eibκ

1 ∓ eibκ
+ iλ

c2

ω2

η

ξ

∫ ∞

−∞
κ

dκ

Δ
= 0,

(3.23)
where k2 = k2

z + κ2. In regard to the double signs in (3.23), the upper (lower) signs
correspond to the symmetric (anti-symmetric) mode which also occurs in a slab plasma.
For a square duct (a = b), (3.23) reduces to the form identical to the slab dispersion
equation (3.22), except for the factor

√
2. This reduction is due to the x–y symmetry. To

recover the slab dispersion relation from (3.18), we take ky → 0, b → ∞, and put kx = λ.
We can take ky → 0 since the y-direction has a translational invariance in a slab.

The duct dispersion relation in (3.23) can be contour integrated for a cold plasma, giving

bγ√
a2 + b2

tanh
aγ

2
+ aγ√

a2 + b2
tanh

bγ

2
+
√

k2
z − ω2

c2

(
1 − ω2

p

ω′2

)
= 0, (3.24)

where γ =
√

k2
z − (ω2 − ω2

p)/c2. For the anti-symmetric mode, the tanh-function above is
replaced by a coth-function.

4. Discussion

In a bounded plasma, one way of solving the Vlasov equation by satisfying the specular
reflection condition is to extend the plasma electric field in the manner of (1.3a,b). The
job of Fourier transforming such a piecewise continuous periodic function, extending to
infinity, is taxing. In this work, we present an alternative way of avoiding the hard labour by
placing sheets of fictitious surface charges at the location of discontinuities of the electric
field. The magnitudes of the surface charges are undetermined constants, but they can be
determined through the connection formula with the vacuum side field – resulting in the
dispersion relation of the surface wave. This method enables one to deal with semi-infinite,
slab duct plasmas in a common work frame. Taking b → ∞ in (3.24) gives

γ tanh
aγ

2
+
√

k2
z − ω2

c2

(
1 − ω2

p

ω′2

)
= 0, (4.1)

which is the slab (0 < x < a) dispersion relation. Taking a → ∞ in (4.1) gives

γ +
√

k2
z − ω2

c2

(
1 − ω2

p

ω′2

)
= 0. (4.2)

Equation (4.2) agrees with the semi-infinite dispersion relation obtained by Lee (2005)
without introducing the fictitious surface charge sheet. If u = 0, or ω′ = ω, (4.2) agrees
with the slab dispersion relation obtained from the fluid theory worked out by Gradov &
Stenflo (1983).

For a square duct, putting a = b in (3.24) yields

√
2γ tanh

aγ

2
+
√

k2
z − ω2

c2

(
1 − ω2

p

ω′2

)
= 0, (4.3)

which is similar to the slab dispersion relation. This is because the complete symmetry
between the x and y coordinates makes the three-dimensional problem a two-dimensional
problem practically.
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The Doppler-shifted frequency ω′ appearing in (3.24) represents the streaming effect.
This is the first-order effect of the ratio u/c. The second-order effect enters through Uzz
in (2.11a–c), which produces terms of order u2/c2. If we chase those terms, we end
up with replacing in (3.24) (1 − ω2

p/ω
′2) → 1 − ω2

p/ω
′2(1 − u2/c2). Relativistic treatment

may be desirable to include the higher-order effect of u2/c2 in a systematic way.
This work may find applications in a laboratory or astrophysical situation where

electromagnetic waves propagate through certain channels.
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