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Abstract We prove existence and unicity of slope-stable vector bundles on a general polarized hyperkähler
(HK) variety of type K3[n] with certain discrete invariants, provided the rank and the first two Chern
classes of the vector bundle satisfy certain equalities. The latter hypotheses at first glance appear
to be quite restrictive, but, in fact, we might have listed almost all slope-stable rigid projectively
hyperholomorphic vector bundles on polarized HK varieties of type K3[n] with 20 moduli.

1. Introduction

1.1. Background

A prominent rôle in the theory of K3 surfaces is played by spherical (i.e. rigid and simple)

vector bundles. In [O’G22], we have proved existence and uniqueness results for stable
vector bundles on general polarized hyperkähler (HK) variety of type K3[2] with certain

discrete invariants (of the polarization and of the vector bundle). In the present paper, we

show that the main result in [O’G22] extends to HK varieties of type K3[n] of arbitrary
(even) dimension. More precisely, we prove that for certain choices of rank and first two

Chern classes on a polarized HK variety (X,h) of type K3[n], there exists one and only

one stable vector bundle with the assigned rank and first two Chern classes provided the

moduli point of (X,h) is a general point of a certain irreducible component of the relevant
moduli space of polarized HK varieties.

We like to think of this result as evidence in favour of the following slogan: stable vector

bundles on higher dimensional HK manifolds behave as well as stable sheaves on K3
surfaces, provided one restricts to (stable) vector bundles whose projectivization extends

to all small deformations of the base HK manifold (i.e. projectively hyperhomolomorphic

vector bundles).
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2 K. G. O’Grady

1.2. The main result
Let K d

e (2n) be the moduli space of polarized HK varieties of type K3[n] of degree e and

divisibility d. Thus, K d
e (2n) parametrizes isomorphism classes of couples (X,h), where

X is an HK manifold of type K3[n], h ∈ NS(X) is the class of an ample divisor class
(we assume that h is primitive), such that qX(h) = e and div(h) = d, where qX is the

Beauville-Bogomolov-Fujiki (BBF) quadratic form of X and div(h) is the divisibility of

h, that is the positive generator of qX(h,H2(X;Z)). Note that div(h) divides 2(n−1). It

is known under which hypotheses K d
e (2n) is not empty. If that is the case, then it is a

quasi-projective variety (not necessarily irreducible) of pure dimension 20.

We recall that if F is a (coherent) sheaf on a complex smooth variety, the discriminant

of F is defined to be the Betti cohomology class

Δ(F ) := 2rc2(F )− (r−1)c1(F )2 =−2r ch2(F )+ch1(F )2. (1.2.1)

Theorem 1.1. Let n,r0,g,l,e ∈ N+, with n≥ 2, and let

e :=

{
e if r0 is even,

4e if r0 is odd.

Assume that

g divides

{
(r0−1) if r0 is even,

(r0−1)/2 if r0 is odd,
(1.2.2)

that

l|(n−1), gcd{l,r0}= 1, gcd

{
l,
r0−1

g

}
= 1, (1.2.3)

that

g2 ·e+2(n−1)(r0−1)2+8≡ 0 (mod 8r0), (1.2.4)

and that

e+
2(n−1)(r0−1)2

g2
≡ 0 (mod 8l2). (1.2.5)

Let i ∈ {1,2} be such that i≡ r0 (mod 2). Then there exists an irreducible component of

K il
e (2n), denoted by K il

e (2n)good (see Definition 5.3), such that for a general [(X,h)] ∈
K il

e (2n)good, there exists one and only one (up to isomorphism) h slope-stable vector

bundle E on X, such that

r(E ) = rn0 , c1(E ) =
g · rn−1

0

i
h, Δ(E ) =

r2n−2
0 (r20 −1)

12
c2(X). (1.2.6)

Moreover, for such a vector bundle, Hp(X,End0(E )) = 0 for all p.
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1.3. Comments

1.3.1. Special cases. Let g = l = 1 in Theorem 1.1. Then the hypotheses reduce to

the following congruences:

e≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4(n−1)r0−2n−6 (mod 8r0) if r0 ≡ 0 (mod 4),
1
2 ((n−1)r0−n−3) (mod 2r0) if r0 ≡ 1 (mod 4),

−2n−6 (mod 8r0) if r0 ≡ 2 (mod 4),

− 1
2 ((n−1)r0+n+3) (mod 2r0) if r0 ≡ 3 (mod 4).

(1.3.1)

In particular, for n=2 (and g= l=1), Theorem 1.1 reduces to the main result in [O’G22].
Note also that in this case, K il

e (2n) is irreducible by [Deb22, Theorem 3.5], and hence

K il
e (2n)good = K il

e (2n).

1.3.2. Rank and Chern classes. The choice of rank and first two Chern classes in

Theorem 1.1 is not as special as one would think. Let us first consider a rigid stable vector
bundle E on a polarizedK3 surface (S,h) of rank r with c1(E )= ah. Since χ(S,EndE )= 2,

we have

2rc2(E )− (r−1)a2h2 =Δ(E ) = 2(r2−1). (1.3.2)

It follows that gcd{r,a} = 1. The following result is a (weak) extension to higher
dimensions.

Proposition 1.2. Let (X,h) be a polarized HK variety of type K3[n], and let F be a

slope-stable vector bundle on X. Suppose that c1(F ) = ah and that the natural morphism

Def(X,F )→Def(X,h) is surjective. Then

r(F ) = rn0m, a ·div(h) = rn−1
0 mb′0, (1.3.3)

where r0,m,b′0 are integers, and gcd{r0,b′0}= 1.

Note that in Proposition 1.2, we do not assume that F is rigid. There are examples

of slope-stable projectively hyperholomorphic vector bundles for which m> 1 which are

not rigid (see [Mar21, Bot22] and [Fat23]). The tangent vector bundle of an HK manifold
of type K3[2] is an example of a rigid slope-stable projectively hyperholomorphic vector

bundle with m > 1 (in fact, m = 4) (see [Gav21]). There are no other examples of the

latter type that I am aware of.

The stable vector bundles in Theorem 1.1, together with those obtained by tensoring
with powers of the polarization, cover many of the choices of rank and first Chern class

with m= 1 which are a priori possible according to Proposition 1.2.

Regarding the discriminant of the vector bundle(s) E in Theorem 1.1, we note the
following. First, the formula for the discriminant in (1.2.6) for n=1 is exactly the formula

in (1.3.2). Next, since −Δ(E ) is the second Chern class of the pushforward to X of the

relative tangent bundle of P(E )→ X, and P(E ) extends to all small deformations of X
(because H2(X,End0(E )) = 0), the cohomology class Δ(E ) remains of type (2,2) for all

deformations of X. It follows that Δ(E ) is a linear combination of c2(X) and q∨X (see

the main result in [Zha15]). If n ∈ {2,3}, then c2(X) and q∨X are linearly dependent, and
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hence, it follows (without doing any computation) that Δ(E ) is a multiple of c2(X). If

n> 3, then c2(X) and q∨X are linearly independent, hence, there is no ‘a priori’reason why

Δ(E ) should be a multiple of c2(X). In fact, I know of no examples of stable projectively
hyperholomorphic vector bundles on HK varieties of type K3[n] whose discriminant is

not a multiple of the second Chern class.

The vector bundles E in Theorem 1.1 are atomic, in fact, they are in the OX -orbit (see
[Mar21]), and hence, the Beckmann-Markman extended Mukai vector ṽ(E ) (see [Mar21,

Theorem 6.13], [Bec23, Definition 4.16], [Bec22, Definition 1.1]) is determined uniquely

(if we require that its first entry equals r(E )), in particular, q̃(ṽ(E )) = −(n+3)r2n−2
0 /2

by [Bec23, Lemma 4.8]. By the formula relating the projection of the discriminant Δ(E )

on the Verbitsky subalgebra and the square q̃(ṽ(E )) in [Bot22, Proposition 3.11], we get

that if Δ(E ) is a multiple of c2(X), then it is given by the formula in (1.2.6).

The natural question to ask is the following: Are we close to having listed all slope-stable
rigid vector bundles on a polarized HK variety of type K3[n] with 20 moduli?

1.3.3. Projective bundles. Let X and E be as in Theorem 1.1. The projectivization
P(E ) extends (uniquely) to a projective bundle on all (small) deformations of X because

H2(X,End0(E )) = 0. Actually, Markman [Mar21, Theorem 1.4] shows that P(E ) extends

to a projective bundle on all deformations of X (it is projectively hyperholomorphic).
In fact, the (possibly twisted) locally free sheaf E on S[n] appearing in Markman loc.

cit. is obtained by deforming the vector bundle F [n]+ associated to a spherical vector

bundle F on S, see Definition 3.1 (or Definition 5.1 in [O’G22]), and likewise the vector
bundles in Theorem 1.1 are obtained by deforming F [n]+. Theorem 1.1 should provide a

uniqueness result for stable projective bundles P of dimension (rn0 −1) with characteristic

class given by the third equality in (1.2.6) (i.e. −c2(ΘP/X), where ΘP/X is the relative

tangent bundle of P→X) on a general HK manifold of type K3[n]. In order to turn this
into a precise statement, one would need to specify with respect to which Kähler classes

the projective bundle is supposed to be stable. The zoo of conditions in Theorem 1.1

would then correspond to the cases in which the projective bundle is the projectivization
of a vector bundle, that is to the vanishing of the relevant Brauer class.

1.3.4. Franchetta property. Let U il
e (2n) ⊂ K il

e (2n) be an open nonempty subset
with the property that there exists one and only one stable vector bundle E on [(X,h)] ∈
U il

e (2n), such that the equations in (1.2.6) hold, and let X →U il
e (2n) be the tautological

family of HK (polarized) varieties (we might need to pass to the moduli stack). By
Theorem A.5 in [Muk87], there exists a quasitautological vector bundle E on X , that is

a vector bundle whose restriction to a fibre (X,h) of X → U il
e (2n) is isomorphic to E ⊕d

for some d > 0, where E is the vector bundle of Theorem 1.1. If [(X,h)] ∈ U il
e (2n), the

generalized Franchetta conjecture, see [FLV19], predicts that the restriction to CH2(X)Q

of ch2(E) ∈CH(X )Q is equal to −d
r2n−2
0 (r20−1)

12 c2(X). In other words, it predicts that the

third equality in (1.2.6) holds at the level of (rational) Chow groups. In general, it is not
easy to give a rationally defined algebraic cycle class on a nonempty open subset of the

moduli stack of polarized HK varieties. Theorem 1.1 produces such a cycle, and hence, it

provides a good test for the generalized Franchetta conjecture.
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1.4. Basic ideas

The key elements in the proof of the main result are the following. First, there is the

extension to modular sheaves (defined in [O’G22]) on higher dimensional HK manifolds

of the decomposition of the (real) ample cone of a smooth projective surface into open

chambers for which slope stability of sheaves with fixed numerical characters does not
change (see [O’G22]).

The second element is the behaviour of modular vector bundles on a Lagrangian HK

manifold. If the polarization is very close to the pullback of an ample line bundle from the
base, then the restriction of a slope-stable vector bundle to a general Lagrangian fibre is

slope semistable, and if it is slope-stable, then it is a semihomogeneous vector bundle, in

particular, it has no nontrivial infinitesimal deformations keeping the determinant fixed.
In the reverse direction, if the restriction of a vector bundle to a general Lagrangian

fibre is slope-stable, then the vector bundle is slope-stable (provided the polarization is

very close to the pullback of abrn ample line bundle from the base). The key element

in the proof of existence is a construction discussed in [O’G22] (and in [Mar21]) which
associates to a vector bundle F on a K3 surface S a sheaf F [n]+ on S[n]. The sheaf

F [n]+ is locally free by Haiman’s highly nontrivial results in [Hai01]. If F is a spherical

vector bundle, then End0(F [n]+) has no nonzero cohomology by Bridgeland-King-Reid’s
derived version of the McKay correspondence. This gives that F [n]+ extends to all (small)

deformations of (S[n], detF [n]+), and that the projectivization P(F [n]+) extends to all

(small) deformations of S[n] (the last result follows from a classical result of Horikawa). We
prove slope stability of F [n]+ in the case of an elliptic K3 surface S by using our results

on vector bundles on Lagrangian HK manifolds. In fact, if S is an elliptic K3 surface, then

there is a Lagrangian fibration S[n] → (P1)(n) ∼= Pn, whose general fibre is the product of

n fibres of the elliptic fibration. If F is a slope-stable rigid vector bundle on S, then the
restriction to an elliptic fibre is slope-stable. It follows that the restriction of F [n]+ to a

general fibre of the Lagrangian fibration S[n] →Pn is slope-stable. From this, one gets that

the (unique) extension of F [n]+ to a general Lagrangian deformation of (S[n], detF [n]+)
is slope-stable with respect to detF [n]+ (provided we move in a Noether-Lefschetz locus

with high enough discriminant). Uniqueness of a general slope-stable vector bundle with

the given numerical invariants is obtained by proving uniqueness for vector bundles on
(polarized) HK varieties with Lagrangian fibrations (with discriminant high enough and

almost coprime to the rank). The main points in the proof of the latter result are the

following. Let F be a spherical vector bundle on an elliptic K3 surface S : the vector

bundle EX on a (small) Lagrangian deformation X of S[n] obtained by extension of
F [n]+ restricts to slope-stable semihomogeneous vector bundles on Lagrangian fibres

parametrized by a large open subset of the base (the complement has codimension at

least 2). Any slope-stable vector bundle E on X with the same rank c1 and c2 as EX

restricts to a slope-stable semihomogeneous vector bundle on a general Lagrangian fibre.

Any two simple semihomogeneous vector bundles on an Abelian variety with the same

rank and determinant are obtained one from the other via tensorization with a (torsion)
line bundle. This, together with a monodromy argument, gives that EX and E restrict

to isomorphic vector bundles on a general Lagrangian fibre. Since the set of Lagrangian
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6 K. G. O’Grady

fibres for which the restriction of EX is slope-stable has the complement of codimension

at least 2, one concludes that EX and E are isomorphic.

1.5. Outline of the paper

Sections 2 and 3 are devoted to the computation of the discriminant of the vector
bundle F [n]+ on S[n], provided F is a spherical vector bundle on the K3 surface S.

Since P(F [n]+) extends to all (small) deformations of S[n], one knows a priori that the

discriminant is a linear combination of c2(S
[n]) and the inverse q∨

S[n] of the BBF quadratic

form. From this, it follows that one can work on the open subset of S[n] parametrizing
subschemes whose support has cardinality at least n− 1, and then a straightforward

computation gives that the discriminant is as in (1.2.6).

In Section 4, we show that by starting from slope-stable spherical vector bundles F
on an elliptic surface S → P1, we can produce vector bundles F [n]+ on S[n] with rank

and first two Chern classes covering all the cases in Theorem 1.1. Moreover, we study the

restriction of such an F [n]+ to fibres of the Lagrangian fibration S[n] → (P1)(n) ∼= Pn.

Section 5 is the most demanding part of the paper. The key ideas, outlined in Section
1.4, are combined together in order to give the proof of Theorem 1.1 (and of Proposition

1.2).

2. The isospectral Hilbert scheme

2.1. Summary of results

We start by introducing notation and recalling known results. Let S be a K3 surface. The

isospectral Hilbert scheme of n points on S, denoted by Xn =Xn(S), was introduced and
studied by Haiman (see Definition 3.2.4 in [Hai01]). We have a commutative diagram

Xn(S)

ρ

��

τ �� Sn

π

��
S[n] γ �� S(n)

. (2.1.1)

In fact, Xn(S) is the reduced scheme associated to the fibre product of Sn and S[n]

over S(n). Moreover, the map τ is identified with the blow up of Sn with centre the big

diagonal (see Corollary 3.8.3 in [Hai01]). Let pri : S
n → S be the i -th projection, and let

τi : Xn(S)→ S be the composition τi := pri ◦τ . Let

(Sn)∗ := {x= (x1, . . . ,xn) ∈ Sn | at most two entries of x are equal}, (2.1.2)

and let Xn(S)∗ := τ−1((Sn)∗). Let En ⊂Xn(S)∗ be the exceptional divisor of Xn(S)∗ →
(Sn)∗. Then En is smooth because the restriction of the big diagonal to (Sn)∗ is smooth.

We let

en := cl(En) ∈H2(Xn(S)∗;Q). (2.1.3)

Let η ∈H4(S;Q) be the fundamental class.
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Rigid stable vector bundles on hyperkähler varieties of type K3[n] 7

If X is an HK manifold, the nondegenerate BBF symmetric bilinear form H2(X)×
H2(X) → C defines a symmetric bilinear form H2(X)∨ ×H2(X)∨ → C, that is a
symmetric element of H2(X)⊗H2(X), whose image in H4(X) via the cup product map

is a rational Hodge class q∨X .

Below are the results obtained in the present section.

Proposition 2.1. Let n≥ 2. We have the following equalities in the rational cohomology
of Xn(S)∗:

ρ∗
(
ch2(S

[n]
)
|Xn(S)∗

=−24
n∑

l=1

τ∗l (η)|Xn(S)∗ +3e2n, (2.1.4)

ρ∗(q∨)|Xn(S)∗ =− (2n−24)
n∑

l=1

τ∗l (η)−
4n−3

2n−2
e2n. (2.1.5)

Before stating the next result, we note that while q∨X is a rational cohomology class,

(2n−2)q∨X lifts to an integral class (uniquely because the group H∗(S[n];Z) is torsion-free

by the main result in [Mar07]).

Proposition 2.2. Let n≥ 4, and let Tn ⊂H4(S[n];Z) be the saturation of the subgroup
spanned by c2(S

[n]) and (2n−2)q∨X . The map

Tn −→ H4(Xn(S)∗;Z)
a 
→ ρ∗(a)|Xn(S)∗

(2.1.6)

is injective.

The proof of Propositions 2.1 and 2.2 are, respectively, in Sections 2.2 and 2.3.

2.2. Proof of Proposition 2.1

We start by recalling a couple of formulae. First, suppose that j : D ↪→W is the embedding
of a smooth divisor in a smooth ambient variety, and that F is a sheaf on D. Then, by

Grothendieck-Riemann-Roch and the push-pull formula, we have

ch(j∗(F )) = j∗(ch(F )) ·Td(OW (D))−1 = j∗(ch(F )) · (1− cl(D)

2
+

cl(D)2

6
+. . .). (2.2.1)

Next, we recall how one computes the Chern classes of a blow up. Let Z be a smooth

variety, and let Y ⊂ Z be a smooth subvariety of pure codimension c. Let f : Z̃ → Z

be the blow up of Y. Let j : E ↪→ Z̃ be the inclusion of the exceptional divisor of f,
and let e ∈ H2(Z̃;Q) be the class of E. If NY/Z is the normal bundle of Y in Z, then

E ∼= P(NY/Z), and the restriction of O
˜Z(E) to E is isomorphic to the tautological subline

bundle OE(−1). Let Q be the quotient bundle on E, that is the vector bundle fitting into
the exact sequence

0−→ OE(−1)−→ f∗
ENY/Z −→ Q −→ 0, (2.2.2)
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where fE : E → Y is the restriction of f. The differential of f gives the exact sequence

0−→Θ
˜Z

df−→ f∗(ΘZ)−→ j∗(Q)−→ 0. (2.2.3)

Taking Chern characters, and applying the formula in (2.2.1) to the inclusion j : E ↪→ Z̃
and the sheaf Q, we get the formula

ch(Z̃) = f∗(ch(Z))− ch(j∗(Q)) = f∗(ch(Z))− j∗(ch((Q)) ·
(
1− e

2
+. . .

)
=

= f∗(ch(Z))− j∗
(
(c−1)+f∗

E(c1(NY/Z)− j∗(e)
)
·
(
1− e

2
+. . .

)
≡

≡ f∗(ch(Z))− j∗
(
f∗
E(c1(NY/Z)

)
− (c−1)e+

c+1

2
e2 (mod H6(Z̃;Q)). (2.2.4)

Proof of the equality in (2.1.4). Since Xn(S)∗ is the blow up of (Sn)∗ with centre

the smooth locus of the big diagonal, we can relate the Chern characters of Xn(S)∗ and
(Sn)∗ via the equality in (2.2.4). Since ch2(S

n) =−24
∑n

i=1 τ
∗
i (η), and the normal bundle

of the big diagonal in Sn has trivial first Chern class, the equation in (2.2.4) gives that

ch2(Xn(S)∗) =
3

2
e2n−24

n∑
l=1

τ∗l (η)|Xn(S)∗ . (2.2.5)

The differential of the map ρ : Xn(S)→ S[n] gives the exact sequence

0−→ ρ∗(Ω1
(S[n])∗

)
(dρ)t−→ Ω1

Xn(S)∗
−→ ι∗(ι

∗(OXn(S)∗(−En)))−→ 0, (2.2.6)

where ι : En ↪→Xn(S)∗ is the inclusion map. Taking Chern characters, we get that

ch2(Xn(S)∗) = ρ∗ ch2((S
[n])∗)−

3

2
e2n. (2.2.7)

The equality in (2.1.4) follows from the equalities in (2.2.5) and (2.2.7).

Proof of the equality in (2.1.5). Let {α1, . . . ,α22} be an orthonormal basis of

H2(S;C). Then

q∨ =

22∑
i=1

μ(αi)
2− 1

2n−2
δ2n, (2.2.1)

and hence

ρ∗(q∨)|Xn(S)∗ =

22∑
i=1

(
n∑

l=1

τ∗l (αi)

)2

− 1

2n−2
e2n =

= 22

n∑
l=1

τ∗l (η)+2
∑

1≤l<m≤n

(
22∑
i=1

τ∗l (αi) · τ∗m(αi)

)
− 1

2n−2
e2. (2.2.2)

Let Dn ⊂ Sn be the big diagonal. Then

cl(Dn) = (n−1)

n∑
l=1

τ∗l (η)+
∑

1≤l<m≤n

(
22∑
i=1

τ∗l (αi) · τ∗m(αi)

)
. (2.2.3)
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Table 1. Integrals of αn,e2n over Γ,Ω.

αn e2n

Γ 1 −(n−1)
Ω 0 −d

Moreover, it follows from the “Key Formula”(see, for example, Proposition 6.7 in [Ful84])

that we have the relation

τ∗(cl(Dn))|Xn(S)∗ =−e2n. (2.2.4)

The equality in (2.1.5) follows at once from the equalities in (2.2.3) and (2.2.4).

2.3. Proof of Proposition 2.2.

Lemma 2.3. Let n ≥ 2. Then the classes αn :=
∑n

l=1 τ
∗
l (η)|Xn(S)∗ and e2n are linearly

independent in H4(Xn(S)∗;Z).

Proof. We prove the lemma by integrating αn and e2n over algebraic 2 cycles on Xn(S)∗
defined as follows. Let p1, . . . ,pn−1 ⊂ S be n−1 distinct points, and let

Γ := ρ−1({p1, . . . ,pn−1,x) | x ∈ S}). (2.3.1)

Clearly, Γ⊂Xn(S)∗, and it is isomorphic to the blow up of S at p1, . . . ,pn−1. In order to

define the second 2 cycle, we assume (as we may) that S contains two smooth curves C1,C2

intersecting with transverse intersection of cardinality d> 0. Let q1, . . . ,qn−2 ⊂ (S\C1\C2)

be n−2 distinct points, and let

Ω := ρ−1({q1, . . . ,qn−2,x1,x2) | xi ∈ Ci}). (2.3.2)

Clearly, Ω⊂Xn(S)∗, and it is isomorphic to the blow up of C1×C2 at the d points (x,x)
for x ∈ C1∩C2.

It makes sense to integrate αn and e2n over Γ,Ω because the latter are compact (complex)

surfaces contained in Xn(S)∗. One checks easily that the 2× 2 “Gram matrix” of the
integrals of αn and e2n over Γ and Ω is given by Table 1. It follows that αn and e2n are

linearly independent.

Now we can prove Proposition 2.2. Proposition 2.1 expresses the restriction to Xn(S)∗
of ρ∗(c2(S

[n]) and q∨ as linear combinations of αn and en. The determinant of the 2×2

matrix with entries the corresponding coefficients is nonsingular if and only if n /∈ {2,3},
hence, Proposition 2.2 follows from Lemma 2.3.

Remark 2.4. Let n ∈ {2,3}. By Proposition 2.1, the classes ρ∗
(
ch2(S

[n]
)
|Xn(S)∗

and

ρ∗(q∨)|Xn(S)∗ are linearly dependent. This agrees with known results. In fact, if X is an

HK of type K3[2], then c2(X) and q∨X are linearly dependent because Sym2H2(X;Q) =
H4(X;Q), and if X is an HK of type K3[3], then c2(X) and q∨X are linearly dependent

although Sym2H2(X;Q) is strictly contained in H4(X;Q) (see Example 14 in [Mar02],

or Remark 3.3 in [GKLR22]).
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3. Basic modular vector bundles on S[n]

3.1. Summary of results

Let S be a K3 surface. We maintain the notation introduced in Section 2.1. Let F be a
locally free sheaf on S. Then

Xn(F ) := τ∗1 (F )⊗. . .⊗ τ∗n(F ) (3.1.1)

is a locally free sheaf on Xn(S). The map ρ in (2.1.1) is finite, and moreover, it is flat

because Xn(S) is Cohen–Macaulay (CM) by Theorem 3.1 in [Hai01]. It follows that the

pushforward ρ∗(Xn(F )) is also locally free. The symmetric group Sn acts on Xn(S)
compatibly with its permutation action on Sn, and hence, the action lifts to an action

μ+
n on Xn(F ). Since μn maps to itself any fibre of ρ : Xn(S) → S[n], we get an action

μ+
n : Sn →Aut(ρ∗Xn(F )).

Definition 3.1. Let F [n]+ ⊂ ρ∗Xn(F ) be the sheaf of Sn-invariants for μ
+
n .

Since ρ∗Xn(F ) is locally free, so is F [n]+.
Let r0 be the rank of F . Below is the main result of the present section.

Proposition 3.2. Suppose that F is spherical, that is hp(S,End0(F )) = 0 for all p. Let
n≥ 2. Then

rk(F [n]+) = rn0 , (3.1.2)

c1(F [n]+) = rn−1
0

(
μ(c1(F ))− r0−1

2
δn

)
, (3.1.3)

Δ(F [n]+) =
r2n−2
0 (r20 −1)

12
c2(S

[n]). (3.1.4)

Remark 3.3. The notation in (3.1.3) and (3.1.4) is unambiguous because the group

H∗(S[n];Z) is torsion-free by the main result in [Mar07] (see also [Tot20]). Notice that

Proposition 3.2 holds also (trivially) for n= 1, provided we set δ1 = 0.

If F is spherical, then the vector bundle F [n]+ is modular by Proposition 3.2, and we

refer to it as a basic modular vector bundle. The proof of Proposition 3.2 is in Section

3.4.

Remark 3.4. The equalities in Proposition 3.2 should hold with the weaker hypothesis

χ(S,End0(F )) = 0. To prove this, it would suffice to show that such a vector bundle is
the limit of spherical vector bundles.

3.2. Chern classes of ρ∗F [n]+ restricted to Xn(S)∗

Let h+ ∈H1,1
Q (S[n]) be given by

h+ := μ(c1(F ))− r0−1

2
δn. (3.2.1)

In the present subsection, we prove the following result.

https://doi.org/10.1017/S1474748023000452 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000452


Rigid stable vector bundles on hyperkähler varieties of type K3[n] 11

Proposition 3.5. Let S be a K3 surface, and let F be a vector bundle on S, such that

χ(S,End0(F )) = 2. Let r0 be the rank of S, and let h+ ∈H1,1
Q (S[2]) be as in (3.2.1). Then

the following equalities hold:

ch0(ρ
∗F [n]+)|Xn(S)∗ = rn0 (3.2.2)

ch1(ρ
∗F [n]+)|Xn(S)∗ = rn−1

0 ρ∗(h+)|Xn(S)∗ (3.2.3)

ch2(ρ
∗F [n]+)|Xn(S)∗ = rn−2

0 ρ∗
(
(r20 −1)

24
ch2(S

[n])+
1

2
h2
+

)
|Xn(S)∗.

(3.2.4)

Proof. Let Dn ⊂ (Sn)∗ be the (intersection of (Sn)∗ with the) big diagonal. For 1≤ j <

k ≤ n, let Dn(j,k)⊂Dn be the set of points (x1, . . . ,xn), such that xj = xk. We have the

open embedding

Dn(j,k)
εj,k
↪→ Sn−1

(x1, . . . ,xn) 
→ (xj,x1, . . . ,xj−1,x̂j,xj+1, . . . ,xk−1,x̂k,xk+1, . . . ,xn).
(3.2.5)

Let τEn
: En →Dn be the restriction of τ to En, and let En(j,k) := τ−1

En
(Dn(j,k)). Then

En =
∐

En(j,k). Let τj,k : En(j,k) → Dn(j,k) be defined by the restriction of τEn
, and

let

En(j,k)
εj,k−→ Sn−1

y 
→ εj,k(τj,k(y)).
(3.2.6)

Let Qj,k be the locally free sheaf on En(j,k) defined by

Qj,k := ε∗j,k

(
2∧

F �F �. . .�F

)
. (3.2.7)

Let ιj,k : En(j,k) ↪→Xn(S)∗ be the inclusion map. We have an exact sequence

0−→ ρ∗F [n]+ −→ τ∗1 (F )⊗. . .⊗ τ∗n(F )−→⊕1≤j<k≤nιj,k,∗(Qj,k)−→ 0. (3.2.8)

It follows that

ρ∗ ch(F [n]+) = τ∗1 ch(F ) ·. . . · τ∗n ch(F )−
∑

1≤j<k≤n

ch(ιj,k,∗(Qj,k)). (3.2.9)

Since χ(S,End0(F )) = 2, the Hirzebruch-Riemann-Roch theorem gives that

2r0 ch2(F ) = ch1(F )2−2(r20 −1)η. (3.2.10)

Using the above equality, one gets that modulo H6(Xn(S)∗;Q), we have

τ∗1 (ch(F )) ·. . . · τ∗n(ch(F )) = rn0 + rn−1
0

n∑
l=1

τ∗l (c1(F ))+

+
1

2
rn−2
0

n∑
l=1

τ∗l (c1(F )2−2(r20 −1)η)+

+ rn−2
0

∑
1≤l<m≤n

τ∗l (c1(F )) · τ∗m(c1(F )). (3.2.11)
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Let en(j,k) = cl(En(j,k)). Using the equality in (2.2.1), one gets that modulo

H6(Xn(S)∗;Q), we have

ch(ιj,k,∗(Qj,k)) = ιj,k,∗(ch(Qj,k)) ·
(
1− en(j,k)

2

)
=

= ιj,k,∗

(
ι∗j,k

((
r0
2

)
rn−2
0 +

1

2
(r0−1)rn−2

0

n∑
l=1

τ∗l c1(F )

))
·
(
1− en(i,j)

2

)
=

=

(
r0
2

)
rn−2
0 en(j,k)+

1

2
(r0−1)rn−2

0 en(j,k) ·
n∑

l=1

τ∗l c1(F )− 1

2

(
r0
2

)
rn−2
0 en(j,k)

2.

The equalities in (3.2.2), (3.2.3) and (3.2.4) follow at once from the equalities in (3.2.9),
(3.2.11) and the above equality.

3.3. Deformations of (S[n],P(F [n]+))

Let F be a vector bundle on S, and let f : P(F [n]+)→ S[n] be the structure map. We

let Def(P(F [n]+),f,S[n]) be the deformation functor of the map f (see Definition 8.2.7

in [Man22]).

Proposition 3.6. Suppose that the K3 surface S is projective and that F is a spherical
vector bundle on S. Then the natural map Def(P(F [n]+),f,S[n])→Def(S[n]) is smooth.

Proof. The result follows from a theorem of Horikawa. In fact, let X := P(F [n]+), Y :=

S[n], and consider the exact sequence of locally free sheaves on X

0−→ΘX/Y −→ΘX
df−→ f∗ΘY −→ 0. (3.3.1)

By [Hor74, Theorem 6.1] (see also Corollary 8.2.14 in [Man22]), it suffices to prove that the

map H1(X,ΘX)→H1(X,f∗ΘY ) is surjective and the map H2(X,ΘX)→H2(X,f∗ΘY ) is
injective. By the exact sequence in (3.3.1), it suffices to show that H2(X,ΘX/Y ) = 0. By

the local-to-global spectral sequence abutting to H2(X,ΘX/Y ), we are done if we prove

that

Hp(X,Rqf∗(ΘX/Y )) = 0 p+ q = 2. (3.3.2)

We have

Rqf∗(ΘX/Y ))∼=
{
End0F [n]+ if q = 0,

0 if q > 0.
(3.3.3)

It follows from the McKay correspondence (see Proposition 5.4 in [O’G22]) that

Hp(S[n],End0F [n]+) = 0 ∀p, (3.3.4)

and this finishes the proof.

Corollary 3.7. Suppose that the K3 surface S is projective and that F is a spherical

vector bundle on S. If n≤ 3, then Δ(F [n]+) belongs to the saturation of c2(S
[n]), if n≥ 4,

then Δ(F [n]+) belongs to the saturation of the span of c2(S
[n]) and q∨.
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Proof. Let X
F−→ Y

G−→ T be representative of Def(P(F [n]+),f,S[n]). Thus both
F and G are proper holomorphic maps of analytic spaces, there exists 0 ∈ T , such

that F−1(G−1(0)) → G−1(0) is identified with f : P(F [n]+) → S[n], and every (small)

deformation of f is identified with F−1(G−1(t)) → G−1(t) for some t ∈ T (close to
0). For t ∈ T (close to 0), the map F−1(G−1(t)) → G−1(t) is a Pr−1 fibration, where

r = rk(F [n]+), and hence, the pushforward F∗(ΘX /Y ) is a vector bundle on Y (of rank

r2 − 1). By Proposition 3.6, the family G : Y → T is versal at t = 0, and hence, the

characteristic class c2(F∗(ΘX0/Y0
) (here, X0 = F−1(G−1(0)) and Y0 = G−1(0)) remains

of type (2,2) for all small deformation of Y0 = S[n]. If n≤ 3, it follows that c2(F∗(ΘX0/Y0
)

belongs to the saturation of c2(S
[n]), and if n ≥ 4, it follows that c2(F∗(ΘX0/Y0

)

belongs to the saturation of the span of c2(S
[n]) and q∨ (see [Zha15]). We are done

because

c2(F∗(ΘX0/Y0
)) = c2(End0F [n]+) =−Δ(F [n]+).

Remark 3.8. Let Def(S[n], detF [n]+)) be the deformation functor of the couple

(S[n], detF [n]+)). The natural map Def(F [n]+) → Def(S[n],c1(F [n]+)) is an isomor-
phism, by the Artamkin-Mukai theorem [Muk84, Art88] (see also [IM19]) and by the

vanishing in (3.3.4). Hence, F [n]+ extends (uniquely) to a vector bundle on any small

deformation of S[n] keeping c1(F [n]+) of type (1,1).

3.4. Proof of Proposition 3.2

The equality in (3.1.2) follows at once from the equality in (3.2.2). Similarly, the equality
in (3.1.3) follows at once from the equality in (3.2.3), because the restriction map

H2(S[n];Z)→H2(ρ(Xn(S)∗)) is an isomorphism (the complement of ρ(Xn(S)∗) in S[n]

has codimension greater than one). Lastly, we prove the equality in (3.1.4). Proposition
3.5 and a straightforward computation give that

ρ∗Δ(F [n]+)|Xn(S)∗ = ρ∗
(
r2n−2
0 (r20 −1)

12
c2

(
S[n]

))
|Xn(S)∗

.

If n≤ 3, then by Proposition 3.7 (note: we may assume that S is projective), Δ(F [n]+)
is a (possibly rational) multiple of c2

(
S[n]

)
. Since the restriction of ρ∗c2

(
S[n]

)
to Xn(S)∗

is nonzero (by the equality in (2.1.4) and Lemma 2.3), the equality in (3.1.4) follows. If

n≥ 4, then by Proposition 3.7 Δ(F [n]+) is a linear combination (possibly with rational
coefficients) of c2

(
S[n]

)
and q∨, and the equality follows from Proposition 2.2.

4. Basic modular vector bundles on S[n] for S an elliptic K3 surface

4.1. Contents of the section

We show that by starting from slope-stable spherical vector bundles F on an elliptic
surface S, we can produce vector bundles F [n]+ on S[n] with rank and first two Chern

classes covering all the cases in Theorem 1.1. We also study the restriction of such an

F [n]+ to fibres of the Lagrangian fibration S[n] → Pn.
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4.2. Basic modular sheaves with the required topology

The present section contains analogues of the results in Sections 6.2 and 6.3 of [O’G22].

Let S be a K3 surface with an elliptic fibration S → P1; we let C be a fibre of the elliptic

fibration. The claim below follows from surjectivity of the period map for K3 surfaces.

Claim 4.1. Let m0,d0 be positive natural numbers. There exist K3 surfaces S with an

elliptic fibration S → P1, such that

NS(S) = Z[D]⊕Z[C], D ·D = 2m0, D ·C = d0. (4.2.1)

The following result is a (slight) extension of Proposition 6.2 in [O’G22] (and is more

or less well-known by experts).

Proposition 4.2. Let m0,r0,s0 ∈ N+, and let t,d0 ∈ Z. Suppose that

(a) t2m0 = r0s0−1,

(b) d0 is coprime to r0,

(c) we have

d0 >
(2m0+1)r20(r

2
0 −1)

4
. (4.2.2)

Let S be an elliptic K3 surface as in Claim 4.1. Then there exists a vector bundle F on

S, such that the following hold:

(1) v(F ) = (r0,tD,s0),

(2) χ(S,End(F )) = 2,

(3) F is L slope-stable for any polarization L of S,

(4) and the restriction of F to every fibre of the elliptic fibration S→ P1 is slope-stable.

(Notice that every fibre is irreducible by our assumptions on NS(S), hence, slope-stability
of a sheaf on a fibre is well-defined, i.e. independent of the choice of a polarization.)

Proof. One proceeds, literally, as in the proof of Proposition 6.2 in [O’G22].

Assume that n,r0,g,l,e ∈ N+, and that the equalities in (1.2.3), (1.2.4) and(1.2.5) (in
Theorem 1.1) hold. Let

s0 :=
g2e+(2n−2)(r0−1)2+8

8r0
, m0 :=

g2e+2(n−1)(r0−1)2

8g2l2
. (4.2.3)

Then s0,m0 are integers by the equalities in (1.2.4) and in (1.2.5). A straightforward

computation gives that

(gl)2m0 = r0s0−1. (4.2.4)

Let S be a K3 surface as in Claim 4.1, where m0 is as in (4.2.3), and d0 is an integer
coprime to r0, such that the inequality in (4.2.2) holds. By Proposition 4.2, there exists

a vector bundle F on S, such that

v(F ) = (r0,glD,s0) (4.2.5)

and Items (2)–(4) of that same proposition hold.
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Claim 4.3. Keep notation and hypotheses as above, in particular, F is the vector bundle

on S, such that the equation in (4.2.5) and Items (2)–(4) of Proposition 4.2 hold. Let
E := F [n]+. Then we have

r(E ) = rn0 , c1(E ) =
g · rn−1

0

i
h, Δ(E ) =

r2n−2
0 (r20 −1)

12
c2(S

[n]), (4.2.6)

where h ∈NS(S[n]) is primitive, q(h) = e and div(h) = il.

Proof. Let

h := ilμ(cl(D)− i
r0−1

2g
δn. (4.2.7)

Then h is integral by the hypothesis in (1.2.2), primitive by the third equality in (1.2.3),

q(h) = e by the second equality in (4.2.3) and div(h) = il. The equalities in (4.2.6) hold

by Proposition 3.2.

4.3. Restriction of F [n]+ to Lagrangian fibres

Definition 4.4. Let S → P1 be an elliptically fibred K3 surface. If x ∈ P1, we let Cx be

the (scheme theoretic) elliptic fibre over x. Let B = {b1, . . . ,bm} ⊂ P1 be the set of x, such

that Cx is singular. Then B is not empty (generically, m= 24). The Lagrangian fibration

associated to S → P1 is the map π : S[n] → Pn given by the composition

S[n] → S(n) → (P1)(n) ∼= Pn. (4.3.1)

We record a few facts regarding the (scheme theoretic) fibres of π. Let x1, . . . ,xn ∈ P1

be pairwise distinct: then

π−1(x1+. . .+xn)∼= Cx1
×. . . Cxn

. (4.3.2)

Next, we describe the discriminant locus of π : S[n] → (P1)(n), that is the subset
D ⊂ (P1)(n) parametrizing cycles x1+ . . .+xn, such that π−1(x1+ . . .+xn) is singular.

For bj ∈B, let D(bj)⊂ (P1)(n) be the irreducible divisor parametrizing cycles x1+. . .+xn,

such that xi = bj for some i ∈ {1, . . . ,n}. Let

T := {
∑
i

mixi ∈ (P1)(n) |mi ≥ 2 for some i ∈ {1, . . . ,n}}. (4.3.3)

Note that the fibres of π over points of T are reducible and nonreduced.

Proposition 4.5. The irreducible decomposition of the discriminant locus D of π : S[n] →
Pn is given by

D = T ∪
m⋃
j=1

D(bj). (4.3.4)

Below is the main result of the present subsection.

Proposition 4.6. Let S be a K3 surface with an elliptic fibration S → P1 as in Claim

4.1, and let π : S[n] → Pn be the associated Lagrangian fibration. Let F be a vector bundle

on S as in Proposition 4.2. Then the following hold:
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(a) If x1, . . . ,xn ∈ P1 are pairwise distinct, then the restriction of F [n]+ to π−1(x1+

. . . + xn) is slope-stable for any product polarization (this makes sense by the
isomorphism in (4.3.2)).

(b) Let U ⊂ (P1)(n) be the open subset parametrizing cycles x1+. . .+xn, such that the

restriction of F [n]+ to π−1(x1+. . .+xn) is a simple sheaf. The complement of U

has codimension at least 2.

Before proving Proposition 4.6, we notice that Proposition 6.10 in [O’G22] holds for

products of projective varieties of arbitrary dimension.

Lemma 4.7. For i ∈ {1,2}, let (Xi,Li) be an irreducible polarized projective variety of
dimension di, and let Vi be a slope-stable vector bundle on Xi. Then V1�V2 is slope-stable

for any product polarization L := Lm1
1 �Lm2

2 (of course, m1,m2 ∈ N+).

Proof. Suppose that there exists an injection α : E → V1�V2 with torsion-free cokernel,
such that 0< r(E )< r(V1�V2) and

μL (E )≥ μL (V1�V2). (4.3.5)

The open subset U ⊂ X1×X2 of points p at which α is an injection of vector bundles
(i.e. the stalk of E at p is free and α defines an injection of the fibre of E at p to the fibre

of V1�V2 at p) has the complement of codimension at least 2. Let p= (x1,x2) ∈ U . The

restrictions of α to {x1}×X2 and to X1×{x2} are generically injective maps of vector

bundles. Let

A1 :=md1−1
1 md2

2 degX2

(
d1+d2−1

d2

)
, A2 :=md1

1 md2−1
2 degX1

(
d1+d2−1

d1

)
.

We have

μL (E ) =A1μL1
(E|X1×{x2})+A2μL2

(E|{x1}×X2
), (4.3.6)

and

μL (V1�V2) =A1μL1
(V1)+A2μL2

(V2). (4.3.7)

Since the restrictions of V1 � V2 to X1 × {x2} and to {x1} ×X2 are isomorphic to

the polystable vector bundles V1 ⊗C Cr(V2) and V1 ⊗C Cr(V1), respectively, it follows

from (4.3.5), (4.3.6) and (4.3.7) that μ(E|X1×{x2}) = μ(V1) and μ(E|{x1}×X2
) = μ(V2).

In turn, these equalities give that there exist vector subspaces 0 �=Wi ⊂Cr(Vi), such that

E|X1×{x2} = V1⊗CW2 on U ∩ (X1×{x2}) and E|{x1}×X2
=W1⊗C V2 on U ∩ ({x}1×X2).

It follows that Imα|U = (V1�V2)|U . This is a contradiction.

Proof of Proposition 4.6. (a): Follows from the stability of the restriction of F to any

elliptic fibre of S → P1 (Proposition 4.2), and Lemma 4.7.

(b): Let V ⊂ (P1)(n) be the open subset parametrizing cycles Γ := d1x1+ . . .+ dmxm,
such that dj ≤ 2 for all j ∈ {1, . . . ,m}, and Cxj

is smooth if dj = 2. If Γ is such a cycle,

then the restriction of F [n]+ to π−1(Γ) is a simple sheaf. In fact, π−1(Γ) is a product of

schemes C1×. . .×Cm, where Cj =Cxj
if dj =1, while if dj =2, then Cj is identified with
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the scheme theoretic fibre over 2xj ∈ (P1)(2) of the Lagrangian fibration S[2] → (P1)(2).
Moreover

F [n]+|π−1(Γ)
∼=
(
F|C1

)
�. . .�

(
F|Cm

)
. (4.3.8)

If dj = 1, then Cj = Cxj
and F|Cj

is simple by Proposition 4.2. If dj = 2, then Cj is the

scheme considered in [O’G22, Section 6.4], and F|Cj
is simple by [O’G22, Proposition

6.13]. By the isomorphism in (4.3.8), it follows that F [n]+|π−1(Γ) is simple. Since the

complement of V in (P1)(n) is a (closed) subset of codimension at least 2, this proves

Item (b).

Remark 4.8. By Item (a) of Proposition 4.6, the restriction of F [n]+ to a (singular)
Lagrangian fibre Xt parametrized by a general point t ∈ D(bj) (notation as in (4.3.4)) is

slope-stable for any product polarization.

The following remarks place Item (a) of Proposition 4.6 in the context of known results.

Remark 4.9. Let X → Pn be a Lagrangian fibration of an HK manifold. For t ∈ Pn, let
Xt :=π−1(t) be the schematic fibre ofX→Pn over t. IfXt is smooth, there exists an ample

primitive class θt ∈ H1,1
Z (Xt), such that the image of the restriction map H2(X;Z) →

H2(Xt;Z) is contained in Zθt (see [Wie16]). If F is a sheaf on Xt, slope-(semi)stability
of F will always mean θt slope-(semi)stability.

Remark 4.10. Let X → Pn be a Lagrangian fibration of an HK manifold of type K3[n],

and let Xt be a smooth Lagrangian fibre. Then the primitive ample class θt ∈H1,1
Z (Xt)

is a principal polarization of Xt (see [Wie16]). If S[n] → Pn is the Lagrangian fibration in
(4.3.1), and π−1(x1+. . .+xn)∼=Cx1

×. . . Cxn
is a smooth Lagrangian fibre, then θx1+...+xn

is the product principal polarization.

5. Proof of Theorem 1.1 and Proposition 1.2

5.1. Contents of the section

In the present section, we prove the following two statements.

Proposition 5.1. Let n,r0,g,l,e,i be as in Theorem 1.1. There exists an irreducible
component K il

e (2n)good of K il
e (2n), such that for a general polarized HK variety (X,h)

parametrized by K il
e (2n)good, there exists an h slope-stable vector bundle E on X, such

that the equalities in (1.2.6) hold, and moreover, Hp(X,End0(E )) = 0 for all p.

Proposition 5.2. Let n,r0,g,l,e,i be as in Theorem 1.1. If [(X,h)] ∈ K il
e (2n)good is a

general point, then there exists a unique h slope-stable vector bundle E on X, such that

the equalities in (1.2.6) hold.

The same exact argument given in the “Proof of Theorem 1.4” on p. 30 of [O’G22]
shows that Theorem 1.1 follows from Propositions 5.1 and 5.2.

In Sections 5.2 and 5.3, we prove results that are used in the proof of Propositions 5.1

and 5.2. Proposition 5.1 is proved in Section 5.4. Sections 5.5 and 5.6 contain results that
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are used in the proof of Proposition 5.2. Propositions 5.2 and 1.2 are proved in Sections
5.7 and 5.8, respectively.

5.2. The relevant component of K il
e (2n), and Noether-Lefschetz divisors

Let S be an elliptic K3 surface as in Claim 4.3, and let C,D be divisor classes generating

NS(S) as in loc. cit. Let X0 = S[n], and let

X0
π0−→ (P1)(n) = Pn (5.2.1)

be the Lagrangian fibration associated to the elliptic fibration of S (see (4.3.1)). Let

h0 := ilμ(cl(D))− i
r0−1

2g
δn, f0 := μ(cl(C)) = c1(π

∗
0OPn(1)). (5.2.2)

Definition 5.3. Let K il
e (2n)good ⊂ K il

e (2n) be the irreducible component containing

[(S[n],h0)].

Let d0 = C ·D (see (4.2.1)). The sublattice 〈f0,h0〉 ⊂H1,1
Z (X0) is saturated and

q(f0) = 0, q(h0,f0) = ild0, q(h0) = e (5.2.3)

(the last equality follows from (4.2.3)). Let L0,F0 be the line bundles on X0, such that

c1(L0) = h0 and c1(F0) = f0.

Definition 5.4. Let ϕ : X → B be an (analytic) contractible representative of the

functor Def(X0,L0,F0). Let 0∈B be the base point, so thatX0 =ϕ−1(0)∼=S[n]. For b∈B,

we let Xb := ϕ−1(b), and we let Lb,Fb be the line bundles on Xb which are deformations
of L0,F0, respectively. We let hb := c1(Lb) and fb := c1(Fb).

Our first observation is that if d0 is large enough, then hb is ample for a general b ∈B.
Before proving this, we recall the following elementary result.

Lemma 5.5 (Lemma 4.3 in [O’G22]). Let (Λ,q) be a nondegenerate rank 2 lattice which
represents 0, and hence, disc(Λ) = −d2, where d is a strictly positive integer. Let α ∈ Λ

be primitive isotropic, and complete it to a basis {α,β}, such that q(β)≥ 0. If γ ∈ Λ has

strictly negative square (i.e. q(γ)< 0), then

q(γ)≤− 2d

1+ q(β)
. (5.2.4)

Proposition 5.6. Keep notation as above, and assume that

ild0 > (n−1)2(n+3)(e+1). (5.2.5)

Then Lb is ample on Xb for a general b ∈B.

Proof. Let b ∈ B be a very general point, in the sense that NS(Xb) = 〈hb,fb〉. By the

inequality in (5.2.5) and Lemma 5.5, there are no ξ ∈ NS(Xb), such that −2(n−1)2(n+
3) ≤ q(ξ) < 0. By [Mon15, Corollary 2.7], it follows that the ample cone of Xb is equal

to the intersection of NS(Xb) and the positive cone (if R is the integral generator of

an extremal ray, then, viewed by duality as an element of H2(K3[n],Q), the multiple
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2(n− 1)R is integral because the divisibility of any element of H2(Xb,Z) is a divisor of

2n−2). Hence, either hb or −hb is ample. By considering the limit case b= 0, we get that
hb is ample. This proves that hb is ample for b very general. Since hb is ample for b in

the complement of an analytic subset of B, we are done.

Assume that the inequality in (5.2.5) holds. By Proposition 5.6, we have the moduli
map

B −→ K il
e (2n)

b 
→ [(Xb,hb)].
(5.2.6)

Note that the image of the above period map is contained in a unique (irreducible)

Noether-Lefschetz divisor in K il
e (2n)good.

Definition 5.7. If the inequality in (5.2.5) holds, we let NL(d0) ⊂ K il
e (2n)good be the

unique irreducible Noether-Lefschetz divisor containing the image of the moduli map in

(5.2.6).

Remark 5.8. Let [(X,h)] ∈ NL(d0) be a general point. Then there exists a well-defined

rank two subspace V ⊂NS(X), such that V = 〈h,f〉, where

q(h,f) = ild0, q(f) = 0 (5.2.7)

(for [(X,h)] in a proper Zariski closed subset of NL(d0), there might be more than one
such rank two subspace). For almost all choices (of n,r0,g,l,e,i and d0), there is a unique

class f ∈ V , such that V = 〈h,f〉 and the equalities in (5.2.7) hold, while for special

choices, there are two such classes. If monodromy exchanges these two isotropic classes,
there is no intrinsic way of distinguishing them. Abusing language, we will speak of “the

class f ”. If (X,h) = (X0,h0) (recall that X0 = S[n], where S is our elliptic K3 surface),

then f0 = c1(π
∗
0OPn(1)), where π0 is the Lagrangian fibration given in (5.2.1). By [Mat17,

Theorem 1.2], it follows that if [(X,h)] ∈ NL(d0) is a general point, then there exists a
Lagrangian fibration πX : X → Pn, such that f = c1(π

∗
XOPn(1)).

Proposition 5.9. Keep notation as above, and assume that the inequality in (5.2.5)

holds, and that d0 is coprime to r0. Let NL(d0) ⊂ K il
e (2n)good be the Noether-Lefschetz

divisor of Definition 5.7. There exist an open dense NL(d0)
∗ ⊂ NL(d0), and for each

[(X,h)] ∈NL(d0)
∗, a vector bundle EX on X, such that

r(EX) = rn0 , c1(EX) =
g · rn−1

0

i
h, Δ(EX) =

r2n−2
0 (r20 −1)

12
c2(X), (5.2.8)

Hp(X,End0(EX)) = 0 for all p, and the restriction of EX to a general smooth fibre of the
Lagrangian fibration X → Pn (see Remark 5.8) is slope-stable.

Proof. Let E0 := F [n]+ be the vector bundle on X0 of Claim 4.3. Note that c1(E0) = h0

by loc.cit. If B is small enough, then by Remark 3.8, the vector bundle E0 on X0 deforms
uniquely to a vector bundle Eb on Xb, and hence, we get a vector bundle EX on X

for [(X,h)] in a dense open subset U ⊂ NL(d0). The equations in (5.2.8) hold by the

equations in (4.2.6). SinceHp(X,End0(E0))= 0 for all p (see (3.3.4)), it follows from upper
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semicontinuity of the dimension of cohomology sheaves that for [(X,h)] in a smaller dense

open subset U ′ ⊂U , we have Hp(X,End0(EX)) = 0 for all p. Lastly, it follows from Item

(a) of Proposition 4.6 and Remark 4.10 that for [(X,h)] in a smaller dense open subset
U ′′ ⊂ U ′, the restriction of EX to a general fibre of the Lagrangian fibration X → Pn

(see Remark 5.8) is slope-stable. We set NL(d0)
∗ := U ′′.

5.3. Suitable polarizations

We recall that if h is a-suitable (see [O’G22, Definition 3.5]) and E is a vector bundle on
X with a(E )≤ a (see (3.1.1) loc.cit. for the definition of a(E )), then slope stability of the

restriction of E to a general Lagrangian fibre (there is a canonical choice of polarization

of any smooth Lagrangian fibre, see Remark 4.9) implies slope stability of E , and the

following weak converse holds: slope stability of E implies that the restriction of E to a
general Lagrangian fibre is slope semistable.

Lemma 5.10. Keep assumptions and notation as above, and let a > 0. Suppose that

ild0 > a(e+1). (5.3.1)

Let [(X,h)] ∈ NL(d0) be a general point, and let f ∈ V ⊂ NS(X) be as in Remark 5.8.

Then there does not exist ξ ∈NS(X), such that

−a≤ qX(ξ)< 0, qX(ξ,h)> 0, qX(ξ,f)> 0. (5.3.2)

Proof. Let 〈h,f〉 = V ⊂ NS(X) be as in Remark 5.8. Applying Lemma 5.5 to Λ := V ,

α= f and β = h, one gets that there are no ξ ∈ V , such that −a≤ qX(ξ)< 0. In particular,

if NS(X) = 〈h,f〉 (as is the case for very general [(X,h)]∈NL(d0)), then there is no ξ ∈ V ,

such that the inequalities in (5.3.2) hold.
It follows that the set of [(X,h)] ∈ NL(d0) for which there exists ξ ∈ NS(X), such that

the inequalities in (5.3.2) hold, is the intersection of NL(d0) with a finite union of Noether-

Lefschetz divisors in K il
e (2n), each of which does not contain NL(d0). In fact, suppose

that the inequalities in (5.3.2) hold. Let D be the (finite) index of 〈h,f〉⊕(〈h,f〉⊥∩NS(X))

in NS(X). It is crucial to note that D has an upper bound which only depends on the

discriminant of the restrictions of qX to V (i.e. −(ild0)
2) and to V ⊥, and the latter has

an upper bound depending only on the discriminant of V and the discriminant of qX (i.e.

2n−2). Then

ξ =
ξ1
D

+
ξ2
D
, ξ1 ∈ 〈h,f〉, ξ2 ∈ 〈h,f〉⊥. (5.3.3)

Moreover, we have just proved that ξ2 is nonzero. Since the restriction of qX to h⊥ ∩
NS(X) is negative definite, we get that q(ξ2)< 0. We also have q(ξ1)< 0 by the last two

inequalities in (5.3.2).

Hence, by the first inequality in (5.3.2), there exists a positive M independent of
(X,h), such that −M ≤ q(ξ2) < 0 (here, it is crucial that D has an upper bound which

only depends on (ild0)
2) and 2n− 2). Hence, the moduli point of (X,h) belongs to the

intersection of NL(d0) with a finite union of Noether-Lefschetz divisors in K il
e (2n), and
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none of them contains NL(d0) because if ρ(X) = 2, then [(X,h)] is not contained in any

of these Noether-Lefschetz divisors.

Proposition 5.11. Keep notation as above, and assume that

ild0 >
r4n−2
0 (r20 −1)(n+3)(e+1)

8
. (5.3.4)

Let [(X,h)]∈NL(d0) (the inequality in (5.3.4) implies that the inequality in (5.2.5) holds,

and hence, the Noether-Lefschetz divisor NL(d0) ⊂ K il
e (2n)good is defined). If E is a

vector bundle on X, such that the equalities in (1.2.6) hold, then h is a(E )-suitable (relative
to the associated Lagrangian fibration π : X → Pn).

Proof. If α ∈H2(X), we have∫
X

c2(X) ·α2n−2 = 6(n+3)(2n−3)!!qX(a)n−1,

(the equality above can be obtained from the known Hirzebruch-Huybrechts-Riemann-

Roch formula for HK manifolds of Type K3[n]) gives that d(EX) = r2n−2
0 (r20−1)(n+3)/2

(the definition of d(EX) is in [O’G22, (1.2.2)]), and hence

a(EX) =
r4n−2
0 (r20 −1)(n+3)

8
.

The inequality in (5.3.4) and Lemma 5.10 give that h is a(E )-suitable.

5.4. Proof of Proposition 5.1

Keep notation and assumptions as above, and assume, in addition, that d0 is coprime to
r0 and that the inequality in (5.3.4) holds (note that the set of such d0 is infinite).

Let [(X,h)] ∈ NL(d0)
∗, and let EX be a vector bundle on X as in Proposition 5.9.

By Proposition 5.11, the polarization h is a(EX)-suitable relative to the Lagrangian

fibration πX : X → Pn. By Proposition 5.9, the restriction of EX to a general fibre of
πX : X → Pn is slope-stable. Since h is a(EX)-suitable, the vector bundle EX is h slope-

stable by [O’G22, Proposition 3.6]. We have Hp(X,End0(EX)) = 0 for all p, and hence,

EX extends (uniquely) to all small deformations of (X, detEX) by Remark 3.8. Since
c1(EX) is a multiple of h, we get that EX extends to a vector bundle E ′ on a general

deformation (X ′,h′) of (X,h). By openness of slope stability, E ′ is slope-stable, and by

upper semicontinuity of cohomology dimension, Hp(X,End0(E ′)) = 0 for all p.

5.5. Tate-Shafarevich twists

A basic example of Lagrangian fibration is obtained as follows. Let (S,hS) be a polarized

K3 surface of genus n. Let J (S) be the moduli space of rank 0 pure OS(1) semistable

sheaves ξ with χ(ξ) = 1−n, that is sheaves with Mukai vector (0,hS,1−n). The generic
point of J (S) is represented by i∗L , where i : C ↪→ S is the inclusion of a smooth C ∈
OS(1), and L is a line bundle of degree 0. Suppose that all divisors in the complete linear

system |OS(1)| are irreducible and reduced. Then every semistable sheaf parametrized by
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J (S) is stable, and J (S) is an HK projective variety of Type K3[n]. Moreover, the
support map J (S)→ |OS(1)| ∼= Pn is a Lagrangian fibration. Let NL(d0)⊂ K il

e (2n)good

be the Noether-Lefschetz divisor of Definition 5.7, and let [(X,h)] ∈NL(d0) be a general

point. Then the associated Lagrangian fibration π : X → Pn is related to a (general)

moduli space J (S) via a Tate-Shafarevich twist. In order to be more precise, we recall a
result of Markman. First, if [(X,h)]∈NL(d0) is a general point, then there is an associated

polarized K3 surface (S,D) of genus n, and moreover, (S,D) is a general such polarized

surface (see [Mar14, Section 4.1]).

Proposition 5.12. Keep notation as above, and assume that the inequality in (5.2.5)

holds. Let [(X,h)] ∈ NL(d0) be a general point, let X → Pn be the associated Lagrangian
fibration and let (S,D) be the associated polarized K3 surface (which is a general polarized

K3 surface of genus n). Then X → Pn is isomorphic to a Tate-Shafarevich twist of

J (S)→ |D| via an identification Pn ∼−→ |D|.

Proof. Suppose first that ρ(X) = 2. Then, as shown in the proof of Proposition 5.6,

the ample cone of X is equal to the positive cone (because of the inequality in (5.2.5)),
and hence, every bimeromorphic map X ��� X ′, where X ′ is an HK, is actually an

isomorphism. It follows that X is isomorphic to a Tate-Shafarevich twist of J (S)→ |D|
by Theorem 7.13 in [Mar14]. The result follows from this because the locus in NL(d0)

parametrizing (X,h), such that ρ(X) = 2 is dense.

Let Pic0(X/Pn) be the relative Picard scheme of the Lagrangian fibration X → Pn

(notice that all fibres of X → Pn are irreducible by Proposition 5.12). Let U ⊂ Pn be the

open dense set of regular values of X → Pn. If t ∈ U , the fibre of Pic0(X/Pn)→ Pn over
t is an Abelian variety At (of dimension n) and the fundamental group π1(U,t) acts by

monodromy on the subgroup At,tors of torsion points.

Corollary 5.13. Keep hypotheses and notation as above, and suppose that V ⊂At[r
n
0 ] is a

coset (of a subgroup of At[r
n
0 ]) of cardinality r

2n
0 invariant under the action of monodromy.

Then V =At[r0].

Proof. Let (S,D) be the polarized K3 surface of genus n associated to X following

Markman. Let J (S)0 ⊂ J (S) be the open dense subset of smooth points (i.e. smooth

points of J (S) with surjective differential) of the map J (S) → |D|. By Proposition
5.12, Pic0(X/Pn) → Pn is isomorphic to J (S)0 → |D|, for a certain identification

Pn ∼−→ |D|. Under this identification, t ∈ Pn corresponds to a smooth curve C ∈ |D|, and
the corresponding Lagrangian fibre At is the Jacobian of C. Hence, we have a natural
isomorphism

H1(C;Q)/H1(C;Z)
∼−→At,tors, (5.5.1)

and the identification is compatible with the monodromy actions.

First, we prove the result under the assumption that V is a subgroupG. By the structure
theorem for finite Abelian groups, G ∼= Z/(d1)⊕ . . . ⊕Z/(dr), where r ≤ 2n (because

At[r
n
0 ]

∼= Z/(rn0 )
⊕2n) and di|rn0 for all i. The monodromy action on H1(C;Z) is transitive

on nonzero elements by [FMOS22, Proposition 4.4] (if n≥ 3, if n=2 transitivity is proved
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by hand). It follows from the isomorphism in (5.5.1) that r = 2n and d1 = . . . = dr. Thus,

di = r0 for all i∈{1, . . . ,2n} because |G|= r2n0 . This proves the result under the assumption

that V is a subgroup. Now let V be a translate of a group G. Then G= {a−b | a,b ∈ V },
and hence, G is also invariant for the monodromy action. Thus, G = At[r0] by what we

have just proved, and the coset V gives a point of the quotient At[r
2n
0 ]/At[r

n
0 ]

∼= At[r
n
0 ]

which is invariant for the monodromy action. There is a unique invariant element, namely
0, because of the isomorphism in (5.5.1) and the transitivity of the monodromy action on

nonzero elements of H1(C;Z). Hence, V =At[r0].

5.6. More properties of EX for [(X,h)] ∈NL(d0)
∗ a general point

The main result of the present subsection is the following improved version of Proposition
5.9.

Proposition 5.14. Keep notation as in Section 5.2, and assume that d0 is coprime to

r0, and that the inequality in (5.3.4) holds. There exist an open dense subset NL(d0)
∗∗ ⊂

NL(d0)
∗, and for each [(X,h)] ∈NL(d0)

∗∗, an h slope-stable vector bundle EX on X, such
that the following hold:

(1) The equalities in (5.2.8) hold.

(2) Hp(X,End0(EX)) = 0 for all p.

(3) There exists an open UX ⊂ Pn, whose complement has codimension at least 2, such

that for every t ∈ UX , the restriction of EX to the fibre Xt over t of the Lagrangian

fibration X → Pn is slope-stable for the restriction of h to Xt.

Before proving Proposition 5.14, we need to go through a couple of results. The result
below for Abelian surfaces is [O’G22, Proposition 4.4]. Part of the proof below is literally

taken from the proof of Proposition 4.4 in [O’G22], but there is a crucial extra input (not

needed in dimension 2), namely [Sim92, Theorem 2].

Proposition 5.15. Let (A,θ) be a principally polarized Abelian variety of dimension n,

and let F be a slope semistable vector bundle on A, such that c1(F ) is a multiple of θ and

Δ(F ) · θn−2 = 0. Then there exist integers r0,m,b0 with r0,m ∈ N+ and gcd{r0,b0} = 1,

such that

r(F ) = rn0m, c1(F ) = rn−1
0 b0mθ. (5.6.1)

If F is not θ slope-stable, then we may assume that m> 1.

Proof. If F is slope-stable, then it is simple semihomogeneous by [O’G22, Proposition

A.2], and hence, we may write (5.6.1) with m= 1 by [O’G22, Proposition A.3].

Suppose that F is strictly θ slope-semistable, that is there exists a destabilizing exact
sequence of torsion-free sheaves

0−→ G −→ F −→ H −→ 0 (5.6.2)
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with G slope-stable. Arguing as in the proof of [O’G22, Proposition 4.4], one proves that

c1(G ) = aθ, c1(H ) = bθ, Δ(G ) ·θn−2 =Δ(H ) ·θn−2 = 0. (5.6.3)

Let us prove that G and H are locally free. Let r := r(F ), and let mr : A→ A be the

multiplication by r map. Let L be a line bundle on A, such that c1(L ) =−raθ, and let

E :=m∗
r(F )⊗L . Then E is slope-semistable (because F is) and

c1(E ) = 0, Δ(E ) ·θn−2 = 0.

By [Sim92, Theorem 2], it follows that every quotient of the (slope) Jordan-Hölder

filtration of E is locally free. Since m∗
r(G )⊗L is a polystable subsheaf of E , we get

that it is locally free. Thus, m∗
r(G ) is locally free, and hence, also G is locally free. By the

equalities in (5.6.3), we may iterate this argument to show that also H is locally free.

It follows that if

0 = G0 � G1 � . . . � Gm = F

is a (slope) Jordan-Hölder filtration of F , then each quotient Qi := Gi/Gi−1 is a slope-
stable locally free sheaf with

c1(Qi)

rk(Qi)
=

c1(F )

r(F )
, Δ(Qi) ·θn−2 = 0. (5.6.4)

Hence, each Qi is simple semihomogeneous by [O’G22, Proposition A.2], and therefore,
by [O’G22, Proposition A.3] (see also [Muk78, Remark 7.13]), there exist coprime integers

ri,bi, with ri > 0, such that r(Qi) = rni and c1(Qi) = rn−1
i biθ. Let i,j ∈ {1, . . . ,m}; since

the slopes of Qi and Qj are equal, we get that birj = bjri. It follows that ri = rj and
bi = bj because gcd{ri,bi} = gcd{rj,bj} = 1. Thus, r(F ) =mrn0 and c1(F ) =mrn−1

0 b0θ,

where r0 = ri and b0 = bi for all i ∈ {1, . . . ,m}. We have m≥ 2 because we assumed that

F is strictly slope-semistable.

Corollary 5.16. Let (A,θ) be a principally polarized Abelian variety of dimension n, and

let F be a θ slope-semistable vector bundle on A, such that Δ(F ) ·θn−2 = 0. If r(F ) = rn0
and c1(F ) = rn−1

0 b0θ, where r0,b0 are coprime integers, then F is θ slope-stable.

Proof. By contradiction, suppose that F is not θ slope-stable. By Proposition 5.15, we

may write r(F ) = sn0m, c1(F ) = sn−1
0 c0mθ, where s0,m,c0 are integers (with s0,m >

0), s0,c0 are coprime and m > 1. It follows that s0b0 = c0r0. Since gcd{r0,b0} = 1 and

gcd{s0,c0}= 1, we get that r0 = s0, and hence, m= 1. This is a contradiction.

Proof of Proposition 5.14. Let ϕ : X → B be as in Definition 5.4. Recall that X0 =

ϕ−1(0) ∼= S[n], where S is an elliptic K3 surface as in Claim 4.3. Let E0 := F [n]+ be

the vector bundle on X0 of Claim 4.3. If B is small enough, the vector bundle E0 on X0

deforms uniquely to a vector bundle Eb on Xb, hence, we get a vector bundle EX on X for

[(X,h)] in a dense open subset U ⊂NL(d0). Moreover, EX is h slope stable and Items (1)

and (2) of Proposition 5.14 hold (see the proof of Proposition 5.1). For [(X,h)]∈NL(d0)
∗,
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where NL(d0)
∗ ⊂ U is an open dense subset, the restriction of EX to a general smooth

fibre of the Lagrangian fibration X → Pn is slope-stable (see Proposition 5.1).

Let V0 ⊂ Pn be the set of t, such that the restriction of E0 to the fibre over t of the
Lagrangian fibration S[n] → Pn is simple. By Item (b) of Proposition 4.6, V0 is an open

subset whose complement has codimension (in Pn) at least 2. It follows that there exists an

open dense subset NL(d0)
∗
s ⊂ NL(d0)

∗ with the following property: if [(X,h)] ∈ NL(d0)
∗
s,

the subset VX ⊂ Pn has parametrizing fibres Xt of the Lagrangian fibration X → Pn, such

that the restriction of EX to Xt is simple and has complement of codimension (in Pn) at

least 2.
Let [(X,h)] ∈ NL(d0)

∗
s. We claim that if t ∈ VX and Xt is smooth, then the restriction

EX|Xt
is slope-stable. In order to prove this, we start by noting that for any Lagrangian

(scheme-theoretic) fibre Xt, we have∫
[Xt]

Δ(EX|Xt
) ·
(
h|Xt

)n−2
= 0. (5.6.5)

In fact, the above equality is an easy consequence of the modularity of EX (see [O’G22,

Lemma 2.5]). Let Xt be a general smooth Lagrangian fibre. By Proposition 5.9, the

restriction of EX to Xt is slope-stable, hence, EX|Xt
is semihomogeneous because of the

equality in (5.6.5) (see [O’G22, Lemma 2.5]). It follows that if t0 ∈ VX and Xt0 is smooth,

then EX|Xt0
is (simple) semihomogeneous. To prove this, we introduce some notation. For

t ∈ Pn, such that Xt is smooth, let

Φ0(EX|Xt
) := {(x,[ξ]) ∈Xt× X̂t | ∃ T ∗

x (EX|Xt
)

∼−→ (EX|Xt
)⊗ ξ},

Ψ0(EX|Xt
) := {(x,[ξ]) ∈Xt× X̂t |Hom(T ∗

x (EX|Xt
),(EX|Xt

)⊗ ξ) �= 0},

where Tx : Xt → Xt is translated by x ∈ Xt (locally, in t, we may assume that Xt is a

family of Abelian varieties rather than torsors over Abelian varieties). Recall that EX|Xt

is semihomogeneous if and only if Φ0(EX|Xt
) has dimension at least n, and that if that

is the case, then the group Φ0(EX|Xt
) has pure dimension n. Let Xt be a general smooth

Lagrangian fibre, so that EX|Xt
is slope-stable and semihomogeneous. Then Φ0(EX|Xt

) has

pure dimension n, and moreover, (by slope stability) Φ0(EX|Xt
) = Ψ0(EX|Xt

). By upper
semicontinuity of cohomology dimension, it follows that every irreducible component of

Ψ0(EX|Xt0
) has dimension at least n. Now, (0,[OXt0

]) ∈Ψ0(EX|Xt0
) and, since EX|Xt0

is

simple, every nonzero homomorphism EX|Xt0
→ EX|Xt0

is an isomorphism. It follows that

Φ0(EX|Xt0
) has dimension at least n, and hence, EX|Xt0

is semihomogeneous. By [Muk78,
Proposition 6.13], we get that EX|Xt0

is slope-semistable (actually, it is Gieseker stable,

see Proposition 6.16 loc.cit.). Lastly, we prove that EX|Xt0
is slope-stable. Let θt0 be the

principal polarization of Xt0 (see Remark 4.9). Since qXt0
(h,f) = ild0 (see (5.2.7)), we

have h|Xt0
= ild0θt0 . Hence

r(EX|Xt0
) = rn0 , c1(EX|Xt0

) = rn−1
0 gld0θt0 . (5.6.6)

By hypothesis g, l and d0 are coprime to r0. By Corollary 5.16, we get that EX|Xt0
is

slope-stable.
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We finish the proof by showing that if [(X,h)] ∈NL(d0)
∗
s is general, then the restriction

of EX to a general singular Lagrangian fibre is slope-stable. Since [(X,h)] ∈ NL(d0)
∗
s

is general, the discriminant divisor DX ⊂ Pn parametrizing singular Lagrangian fibres
of X → Pn is the dual of an embedded K3 surface S ⊂ (Pn)∨. In fact, this holds by

Proposition 5.12. Hence, DX is an irreducible divisor. Thus, it suffices to prove that there

exist t ∈ DX , such that EX|Xt
is slope-stable (for the restriction of h to Xt). This follows

from Remark 4.8 and openness of slope stability.

5.7. Proof of Proposition 5.2

The key result is the following.

Proposition 5.17. Keep notation as in Section 5.2. Assume, in addition, that d0 is

coprime to r0, and that the inequality in (5.3.4) holds. Let [(X,h)]∈NL(d0)
∗∗ be a general

point. Then (up to isomorphism) there exists one and only one h slope-stable vector bundle
E on X, such that the equalities in (1.2.6) hold.

Proof. Let EX be a vector bundle on X as in Proposition 5.14, and let E be an h slope-
stable vector bundle on X, such that the equalities in (1.2.6) hold. We prove that EX and

E are isomorphic.

Let π : X → Pn be the associated Lagrangian fibration. By Proposition 5.11, the
polarization h is a(E )-suitable, and hence, the restriction of E to a general Lagrangian

fibre is slope-semistable. We claim that if Xt is a smooth Lagrangian fibre and E|Xt
is

slope-semistable, then it is actually slope-stable. In fact, this follows from Corollary 5.16

— the computations showing that the hypotheses of Corollary 5.16 are satisfied have
already been done (see (5.6.6)). The upshot is that there exists a dense open subset

U 0
X ⊂ Pn, contained in the set of regular values of the Lagrangian fibration, with the

property that for all t∈U 0
X , the restrictions EX|Xt

and E|Xt
are simple semihomogeneous

vector bundles (since they are slope-stable vector bundles and Δ(EX|Xt
) ·θn−2

t =Δ(E|Xt
) ·

θn−2
t = 0, they are semihomogeneous by [O’G22, Proposition A.2]).

We claim that if t ∈ U 0
X , then EX|Xt

and E|Xt
are isomorphic. First, note that, since

they are simple semihomogenous vector bundles with same rank and c1, the set

Vt := {[ξ] ∈X∨
t | EX|Xt

∼= (E|Xt
)⊗ ξ}

is not empty by [Muk78, Theorem 7.11], and it has cardinality r2n0 by Proposition 7.1

op. cit. Note that Vt ⊂ Xt[r
n
0 ] because EX|Xt

and E|Xt
have rank rn0 and isomorphic

determinants. Next, we claim that Vt is invariant under the monodromy action of

π1(U 0
X,t). In fact, let

V :=
⋃

t∈U 0
X

Vt. (5.7.1)

We show that the forgetful map

V → U 0
X (5.7.2)
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is a topological covering. Let t1 ∈ U 0
X , and let ξt1 ∈ Vt1 . Let B ⊂ U 0

X be an open (in

the classical topology) neighbourhood of t1 which is contractible. For each t ∈ B, let
ξt ⊂Xt[r

n
0 ] be obtained from ξt1 by parallel transport. We claim that

EX|Xt
∼=
(
E|Xt

)
⊗ ξt ∀t ∈B. (5.7.3)

In fact, the traceless endomorphism bundles of the right and left sides of (5.7.3) have
vanishing cohomologies (see Theorem 5.8 in [Muk78]). Since their determinants remain

of type (1,1) on Xt for all t ∈ B (actually, for all t ∈ U 0
X), it follows that each of them

extends uniquely to all Xt′ for t′ ∈ B close enough to t. Since they are isomorphic for
t= t1, we get that they are isomorphic for all t ∈ B. This shows that the map in (5.7.2)

is a topological covering. The proof shows also that monodromy takes Vt to itself.

Since Vt is invariant under the monodromy action of π1(U 0
X,t), it follows from Corollary

5.13 that Vt =A[r0]. Thus, 0 ∈ Vt, and therefore, EX|Xt
∼= E|Xt

.
Now, we use the hypothesis that [(X,h)] ∈ NL(d0)

∗∗ is a general point. Then the

polarized K3 surface (S,D) is a general surface of genus n (see Section 5.5), and by

Proposition 5.12, the Lagrangian fibration π : X → Pn is a Tate-Shafarevich twist of the
relative Jacobian J (S)→|D|. It follows that the discriminant curve B⊂Pn is isomorphic

to the dual of S ⊂ |D|∨, and hence is reduced. Let U †
X := UX \ singB, where UX is

as in Proposition 5.14. Note that U †
X is an open subset of Pn whose complement has

codimension at least 2. One proves that

EX|Xt
∼= E|Xt

∀t ∈ U †
X (5.7.4)

proceeding as in the proof of [O’G22, Proposition 7.4]. More precisely, there exists a

smooth projective curve T ⊂ U †
X containing t and transverse to B (recall that the

complement of U †
X in Pn has codimension at least 2). Then Y := π−1(T ) is a smooth

projective (integral) variety of dimension n+1 and the sheaves F := EX|Y and G := E|Y
satisfy the hypotheses of [O’G22, Lemma 7.5], and hence, the isomorphism in (5.7.4)

holds by the quoted lemma.

Since EX|Xt
and E|Xt

are simple for all t∈U †
X , and since c1(EX) = c1(E ), it follows that

the restrictions of EX and E to π−1(U †
X) are isomorphic (see the proof of Proposition 7.4

in [O’G22], in particular, the beginning of the proof of Lemma 7.5). The complement of
π−1(U †

X) in X has codimension at least 2 because π is equidimensional, and hence, the

isomorphism EX|π−1(U †
X)

∼−→ E|π−1(U †
X) extends to an isomorphism EX

∼−→ E .

We are ready to prove Proposition 5.2. Let n,r0,g,l,e be as in Theorem 1.1. Since

the result is trivially true for r0 = 1, we assume that r0 ≥ 2. Let X → T il
e (2n) be a

complete family of polarized HK varieties of Type K3[n] parametrized by K il
e (2n)good.

Since K il
e (2n)good is irreducible, we may, and will, assume that T il

e (2n) is irreducible.

For t ∈ T il
e (2n), we let (Xt,ht) be the corresponding polarized HK of Type K3[n]. Let

m : T il
e (2n)→ K il

e (2n)good be the moduli map sending t to [(Xt,ht)].
By Gieseker and Maruyama, there exists a relative moduli space

M (r0,g)
f−→ T il

e (2n), (5.7.5)
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such that for every t ∈ T il
e (2n), the (scheme theoretic) fibre f−1(t) is isomorphic to the

(coarse) moduli space of ht slope-stable vector bundles E on Xt, such that (1.2.6) holds.

Moreover, the morphism f is of finite type by Maruyama [Mar81], and hence, f(M (r0,g))

is a constructible subset of T il
e (2n).

Let d(r0,e,l) be the right-hand side of the inequality in (5.3.4). For t in a dense subset
of

⋃
d>d(r0,e,l)

m−1(NL(d)good), the preimage f−1(t) is a singleton by Proposition 5.17.

Since
⋃

d>d(r0,e,l)

m−1(NL(d)good) is Zariski dense in T il
e (2n) (it is the union of an infinite

collection of pairwise distinct divisors), and since f(M (r0,g)) is a constructible subset of

T il
e (2n), it follows that for general t ∈ T il

e (2n), the fibre f−1(t) is a singleton.

Let [E ] be the unique point of f−1(t) for t a generic point of m−1(NL(d)good), where
d > d(r0,e,l). Then Hp(Xt,End0(E )) = 0 by Proposition 5.14. Hence, the last sentence of

Theorem 1.1 follows from upper semicontinuity of cohomology.

5.8. Proof of Proposition 1.2

Since the natural morphism Def(X,F )→Def(X,h) is surjective, for d0 � 0, there exist

extensions of F to polarized HK varieties (Y ,h) of type K3[n] with a Lagrangian fibration

π : Y → Pn, such that

qY (h,f) = d0 ·div(h) (5.8.1)

(as usual, f := c1(π
∗OPn(1))). Let Xt be a smooth (Lagrangian) fibre of π, and let θt be

the principal polarization of Xt induced by the Lagrangian fibration (see Remark 4.10).

We claim that

h|Yt
= d0 ·div(h)θt. (5.8.2)

In fact, the above equality follows from the equalities∫
Yt

(h|Yt
)n =

∫
X

hn ·fn = n!qX(h,f)n = n! (d0 ·div(h))n.

By the equality in (5.8.2), we get that

c1(E |Yt) = a ·d0 ·div(h)θt.

By Proposition 5.15, we may write

r(E ) = rn0m, a ·d0 ·div(h) = rn−1
0 b0m, (5.8.3)

where r0,m,b0 are integers, r0,m ∈ N+ and gcd{r0,b0} = 1. Choose d0 coprime to r(E ):
then d0 divides b0, and the equation in (1.3.3) holds with b′0 = b0/d0.
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