PHOTOMETRIC CLASSIFICATION OF B-TYPE STARS

D. L. CRAWFORD

Kitt Peak National Observatory, Tucson, Ariz., U.S.A.

Abstract. Several photometric techniques for classification of B-type stars exist. This note describes another one, now nearly ready for publication.

We have observed most of the stars with spectral types B5 and earlier, and brighter than $m_v = 6.5$ with the *uvby* and H β systems. In addition, we have data for the following clusters or associations: h and χ Per, NGC 6231, α Per, Pleiades, IC 2602, IC 2391, III Cep, and Sco-Cen. Good MK types exist for most of these stars, and *UBV* data is available for many of them.

Figures 1 and 2 show the relations between (b-y) and (B-V) and between (u-b) and (U-B) for the B, A, and F-type stars we use as standards. Table I gives the mean values of several MK spectral types. The unreddened values were determined as des-

Fig. 6.

TABLE I

MK type	<i>C</i> ₀	$(b-y)_0$	β (ZAMS) M_v		$(U - B)_0$
≤ O8	-0.15		2.575:	- 5.5	-1.15
09	-0.12	-0.13	2.590	- 4.6	-1.10
B0	- 0.07	-0.12	2.608	- 3.9	- 1.05
B1	0.02	-0.11	2.629	- 2.9	- 0.96
B2	0.15	0.10	2.658	- 1.9	- 0.84
B3	0.33	- 0.09	2.701	-1.0	-0.67:
B 4	0.37	-0.08	2.709	-0.8	-0.63:
B5	0.42	- 0.07	2.720	-0.6	- 0.59

Fig. 7.

cribed by Crawford *et al.* (1970). Figure 3 shows the relations between (u-b) and (b-y) for a number of O-type stars.

The relation between the reddening lines for (u-b)/(b-y) and the other indices are

$$E(c_1) = 0.2E(b - y)$$

$$E(m_1) = -0.3E(b - y)$$

$$E(b - y) = 0.7E(B - V)$$

$$E(u - b) = 1.7E(b - y).$$

Figure 4 shows the relation between c_1 and b-y for the bright B-type stars. The rather sharp left envelope can be taken as the preliminary intrinsic color relation: $(b-y)_0$ in terms of c_1 . Figure 5 shows the relation between β and c_1 for the bright B-type stars. The β parameter is primarily a measure of luminosity and the c_1 parameter a measure of temperature. The lower envelope is the zero age line; data for stars of the youngest clusters lie nearly along this envelope. Comparison of the location of the data points in this diagram with the star's MK type indicates a very good relation

between the two systems, though there are certainly some deviating stars. Effects due to emission of H β or V sin*i* effects apparently do not cause serious problems.

Time, nor the conference subject, do not permit a discussion of calibration problems here, but Figure 6 shows the relations between β and V_0 for the stars of the h and χ Per group. Similar relations exist for other groups, and a fitting of such individual relations leads to a calibration of M_v in terms of β (see Figure 7) – the second dimension for the photometric classification: the c_0 parameter being the first dimension.

Details of the classification and the calibrations will be published shortly in the *Astronomical Journal*.

Reference

Crawford, D. L., Glaspey, J. W., and Perry, C. L.: 1970, Astron. J. 75, 822.