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A REMARK CONCERNING THE 2-ADIC NUMBER FIELD

SUSUMU SHIRAI

1. Introduction

Let Q2 be the 2-adic number field, T/Q2 be a finite unramified ex-
tension, ζv be a primitive 2v-th root of unity, and let Kv = T(ζv). In a
previous paper [1, Theorem 11], we stated the following theorem with-
out its proof.

THEOREM A. Let R = T(ζv + ζ'1), and let σ be a generator of the
cyclic Galois group G(R/T). Assume v ^ 3. // NB/Tε = 1 for εeU^,
then

ee(NKv/RK?y-> ,

where Uf denotes the i-th unit group of R.

The aim of the present paper is to prove this theorem, which is a
detailed version of Hubert's theorem 90 in the 2-adic number field.

2. Preliminaries

Let θ = ζv + ζ~\ Since 1 — ζv is a prime element of Kv,

NKv/R(l - O = (1 - CXI - C1) = 2 - 0

is a prime element of R. Set π = 2 — θ and denote by vπ the normalized
exponential valuation of R. The Galois group G(KJT) is isomorphic
to the group of prime residue classes mod 2% and hence we can choose
the generator a of G(R/T) such that

θ° = (c + ζ Ύ = Cϊ + C 5 = 05 ~ 503 + 5Θ ,

without loss of generality. Then

( 1 ) π° = τr5 - IOTΓ4 + 35τr3 - 50ττ2 + 25ττ .

LEMMA 1. Notation being as above, if v ^ 3, then
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v£π° - TΓ) = 3 .

Proof. Immediate from (1).

LEMMA 2. If v^ 3, then

f= 2 when n is odd ,

: 4 when n is even .

Proof. By Lemma 1, we have

IΛTΓ-1 - 1) = 2 ,

and hence we can write

π°-
1 = 1 + αττ2 , (α, TΓ) = 1 .

Therefore, for n ^ 1,

We have ^((s")'" 1 - 1) = 2 if n is odd. Since ^(2) = 2W~2 ̂  2, we have

vπ{{πn)σ~ι — 1) ̂  4 if n is even. For n <̂  — 1, according as w is odd or

even, we obtain

O r " ) - 1 e i7^2) - E72> or e J7g> .

This completes the proof.

LEMMA 3. If v^ 3, ίfoew

i/.GS-1 - 1) ̂  4 for β e I7g> .

Proof. We may write

β = 1 + απ 2 , a e OR, the ring of integers of R.

Then

/3*"1 _ 1 = (α*(τr*)2 - aπ2)/β .

Since β/Γ is totally ramified, {1, π, , 7Γ2""2""1} is an integral basis for

Λ/Γ. Set

a = α0 + αχ7τ + α2π
2 + α3τr3 mod ττ4, »ί e OΓ .

Then

<r = α0 + axπ
σ + a2(πσ)2 + ^(TΓ*)3 mod ττ4 .

By (1) and 1̂ (50) = 2V'2 ^ 2, we have
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πσ = 35π3 + 25τr mod π4 .

Hence

aσ(πσ)2 - aπ2 = 624α0τr2

= 0 mod π4 .

Next, let [T: Q2] = /, and let £ be a primitive (2/ - l)st root of

unity. It is well-known that T = Q2(f) and {l,f, -j^"1} is an integral

basis for T/Q2, and moreover Ug/Ug & R = T is a module of type

(2, , 2), where 5 , Γ stand for the residue class fields of R and Γ,

respectively. As a complete system of representatives for Ug/Ug, we

can choose

{r = (1 + *)n o(l + fTΓ)*1 •••(! + ^-V)^- 1 nt = 0 or l , i = 0,1, . . , / - 1} .

LEMMA 4. Notation being as above, if v ^ 3 and γ Φ 1,

v.O'-1 - 1) - 3 .

Proof. Since

r = (1 + nQπ)(l + n,ξπ) (1 + %_1f
/"17r) ,

we have

f - γ = (πσ - π)(n0 + nλξ + . + nr_£'-1)

From Lemma 1, we obtain

„,(*• - π) = 3 , ^((τr')2 - 7r2) ̂  4 , . .

Thus it suffices to show that

^o + w>\ξ + "- + %-iί 7" 1 ^ 0 mod 7r .

Suppose = 0 mod TΓ. Then we have

n0 + nλξ + . . . + nf_λξ
f~1 = 0 mod πτ ,

τrΓ being a prime element of T. Since {ζί mod τrΓ i = 0,1, , / — 1}

is a basis of the residue class field extension T/Q2, we conclude all
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m = 0, a contradiction.

3. Proof oί Theorem A

We first note that

π = 2 - θ = ΛΓ^/ie(l - O e Λ^ / i 2Z* , f e #*„,*£* , tf g> c NKv/RK? ,

in which the second follows from that the order 2f — 1 of ξ is prime
to [Rx : NKv/EKf] = 2 and the third from that the 7r-exponent of the
conductor of KJR is two. Now, let ε be an element in U$ such that
NR/Tε = 1. Then we can write, by Hubert's theorem 90,

Since Rx = <τr> x <f> x J7g) (a direct product) and U$ 3 I7g>, we may
set

here γ is as in Lemma 4. By virtue of the above remark, it completes
the proof that we obtain γ = 1. Assume p Φ 1. Then we have

e =

in which Lemmas 3, 4 give iQ
σ"1 e Z7g} and f~γ e E7g) — ϋg, respectively.

If n is even, then we have, by Lemma 2, (πn)σ~ι e U{R\ a contradiction.

If n is odd, then we have, by Lemma 2, (π71)"-1 e U^ — Drg) from which

follows (πn)σ~ι-γ°-1 β 17$ — C/^, a contradiction, and the proof is complete.
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