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Abstract

Theorems 1 and 2 are known results concerning Lp-Lq estimates for certain operators wherein the point
(l/p, \/q) lies on the line of duality 1/p + \/q = 1. In Theorems 1' and 2' we show that with mild
additional hypotheses it is possible to prove Lp-V estimates for indices (1/p, 1/q) off the line of duality.
Applications to Bochner-Riesz means of negative order and uniform Sobolev inequalities are given.

1991 Mathematics subject classification (Amer. Math. Soc): primary 46B70, secondary 42B15, 35B45.

1. Introduction

This paper is concerned with Lp-Lq estimates for certain operators on R". To explain
our work we begin by stating two well-known principles as Theorems 1 and 2:

THEOREM 1. With notation as in [14], suppose [Tz] is an analytic family of operators
of admissible growth on W satisfying the estimates

(i) Iirr/||2 < Cz||/| |2, Rez = 0,

(ii) IITi/lloo^

Here Cz is some non-negative function satisfying

logCz < Keklbaz\ Rez = 0, -A

for some K > 0 and k < TC. Then ifO < a < k and 1/p — 1/p' = a/k (where,
always, 1/p + 1/ p' = 1) there is C = C(a) such that | |r_a/||p, < C||/ | |p.
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[2] Lp-Lq Estimates off the Line of Duality 155

THEOREM 2. Suppose 0 < a < 1 and l/p — l/p' = u. Consider a one-parameter
family {U(t)} of operators on R." satisfying \\U(t)f\\p, < C\t\a-l\\f\\p and abounded
function a(t) onR. Under suitable measurability conditions on {U(t)} and a{t), the
operator S defined on Rn+l by

00

i,x)= I aSg(s, x) = / a(t)U(t)g(s - t, -)(x)dt, (s, x) € R x Rn =

satisfies the estimate ||Sg||p< < C2\\g\\p for functions g on Rn+1.

Theorem 1 is of course a special case of Stein's interpolation theorem [14]. It has
many applications in harmonic analysis. Perhaps the best known are to the problem
of obtaining Fourier transform restriction estimates of the form

1/2

where (i is a measure on a hypersurface £ in IR". The first of these is Stein's result
in the paper [18]. Another class of applications of Theorem 1 concerns estimates of
the form ||/A * f\\q < C| | / | | p where £i is as above. Two early examples of this are
in [9,15]. Of the several later ones we mention [3,10, 12].

Theorem 2 is a useful device introduced by Strichartz in the proof of [16, The-
orem 1]. The proof is based on convolution properties of the fractional integration
kernels |f I""1 on IR. Two later applications may be found in [8, 10].

A feature common to Theorems 1 and 2 is that their conclusions give Lp-Lq

estimates only when q = p',orwhen(l/p, 1 /q) lies on the line of duality \/p+\/q =
1. Our purpose is to show that with mild additional hypotheses it is possible to obtain
Lp-Lq estimates along a segment through (1/p, 1/ p') and perpendicular to the line
of duality. To this end we will prove Theorems 1' and 2' below.

THEOREM 1'. With notation as in Theorem 1, suppose [Tz] satisfies the additional
hypothesis

(iii) |rz*rz/| < Cz|r2Rez/ | (pointwise) if -ix<Rcz<0

for some positive fi with /x < X./2. Then ifO < a < X there is C = C(a, p) such that

\\T-af\\q < C\\f\\p

provided that \/p — \/q = a/k and either
k + a 1 * + 2a(A) -—- <-< -—- if 0 < a < ii, or

ZA p IX
X + a 1 X2 + a X 2 a / i

(B) - T T — < - < -^rrj: — if n<a <X.
2X p 2X(X — n)
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FIGURE 1

Thus r_a is a bounded operator from Lp to Lq if the point (l/p, \/q) lies (1) on the
line l/p — l/q — a and (2) inside the triangle bounded by the points P\ = (1/2, 1/2),
P2 = (1, 0), and P3 = (1/2 + fi/k, 1/2), excluding the segment P2P3; see Figure
1- If \\TJ\\q < C| | / | | p implies ||r2/||p. < CH/II,., then the ranges of l/p in (A)
and (B) become 1/2 < 1/p < (A. + 2a)/2k, and (A. - 2/x + a)/2(A - /i) <
(k2 +ak- 2aix)/[2k{k - /*)].

THEOREM 2'. M ^ notation as in Theorem 2, suppose additionally that {U(t)} is
actually a one-parameter group of operators satisfying U(—t) = U(t)* and that

{a-l)'a< C\t\

Then there is C = C(p) such that \\Sg\\q < C\\g\\p for functions g on R"+1 provided
that

1 1 1 J_ 1 + a - a2

2 — a p 2 — a.= a
P Q

and

Theorems 1' and 2' are not, strictly speaking, new mathematics—their (somewhat
parallel) proofs are based on methods present in [5, 11], respectively. They seem,
however, to be useful tools which can be applied to produce, at the least, some
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interesting extensions of known results. For a slight and technical improvement of
Theorem 1', see the note after its proof in Section 2.

Our paper is organized as follows: Section 2 contains the proofs of Theorems 1'
and 2', Section 3 is an application of Theorem 1' to Bochner-Riesz means of negative
order, and Section 4 contains applications of Theorems 1' and 2' to obtain generaliza-
tions of the results in [7, 8] on uniform Sobolev inequalities.

2. Proofs of Theorems 1'and 2'

The proof of Theorem 1' is an easy consequence of complex interpolation and the
so-called method of T*T: it follows from Theorem 1 that

(1) \\T-af\\p. < C(a)\\f\\p if I = X + a ~
2k '

Holder's inequality and (iii) then imply

(TJ, TJ) = (f, T;TJ) < cz||/yi:r2Rez/iiP< < cz\\f\\
2

p

and so

(2) Iirz/||2 < Cz||/||p if - = A ~ 2
1

R C Z , - / x < R e z < 0 .
p 2k

(This is the method of T*T.) In particular,

1 k + 2a
(3) \\T-af\\2<C\\f\\p if - = , 0<a</x.

p 2k

By the Riesz-Thorin theorem, (1) and (3) yield (A). To obtain (B) apply analytic
interpolation to (ii) and (2) with Rez = —)8, 0 < y3 < \i. The result is \\T_J\\q

ak-2aP 1 1 a
and B < a < k.— = , = —,

p 2k(k-0) ' p q k'
This proves (B) since for fixed a > fi, l/p varies from (k + a)/(2A) to (A2 + ak —
2ctfj,)/[2k(k - fi)] as y3 varies from 0 to /x. Thus Theorem 1' is established.

NOTE. The conclusion of Theorem 1' is still true if (iii) holds only for a set of
Rez whose closure contains — fi. For then, by interpolation, (2) is still true. This
observation is actually useful in some of the applications.
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Let p and p' be as in Theorem 2 and put y = (1 - or)/a. The starting point for the
proof of Theorem 2' is an analog of the dual of (2), the inequality

(4) \j W\t\yil/2-l/pr)U(t)f\\idt/\t\\ <C\\f\\2

-oo

for functions / on W. This will be established, again by the method of T*T, at the
end of this section. Interpolating analytically, in the mixed norm setting, between (4)
and the hypothesis

sup | rni t / (0 / l loo<C| | / | | ,

of Theorem 2' shows that if

I L\- ( l (i-«)2\
V l) ~~ V2-a' 2 - a / '

then
00 .

\J\\\t\r«"-l'»U(t)f\\t,dt/\t\\ <C\\f\\r.
—oo

Interpolating this with the hypothesis ofTheorem 2 shows that i f l /p — \/q = <x and
1/(2 - a) < \/p < (1 + or)/2, then there is b e (q, oo) such that

(5) [ J ( I / 1 / ) j l

Now suppose g and h are functions on R"+1 and p, q are as above. Then

\(Sg,h)\ = a(t)U(t)g(s - t, -)(x)h(s, x) dx ds dt
—oo —oo

00 OO

-II \(U(t)g(s-t,.),h(s,-))\ds\a(t)\dt

—00 -OO

oo oo

< M f I \(U(t)g(s, -),h(s+t, -))\dsdt

—oo —oo

if M is a bound for \a(t)\. Thus

oo

\(Sg, h)\<M I \\U{t)g{s, .)\\q\\h(s + t,
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oo oo

= M J jwr
—00 —OO

oo oo

—oo — oo

oo

•[/'
—oo

oo

< CM j ||S(J,

">-"«>l/«)S(s. •

OO
/ /*

)\\q\\h(s + t,-)\\

bdty/b

' Ul 1

t.-)ii^i*r'"'(I/'

l?,|r|-)'»/p-i/«)+I _ ds

- . I /* '

1/6'
'— l/q)+b'— 1 j , | J_

(XI 1 U J

by (5) with f(x) = g(s, x). Therefore Holder's inequality yields

oo

(6) \{Sg,h)\<CAf(J \\g(s, -)\\p
pds\

' Ib' \l '
/q)+b'~l dtJ ds) " •

—oo

oo oo

[
- o o —oo

Now if h e Lq\W+l), then, as a function of s, \\h(s, -)\\b
q, e L9'/6'(K),and97fe' > 1

since b > q. Since y = (1 — a) /a implies

the Lq'/b'-Lp'/b' estimates for one-dimensional fractional integration combine with (6)
to give \{Sg,h)\ < CM||g||p||A||,., with the norms taken over R"+1. This yields
the conclusion of Theorem 2' for 1/(2 - or) < \/p < (1 + a)/2. The hypotheses
of Theorem 2' assure that the same is true for the adjoint of S, and so the proof of
Theorem 2' will be complete when (4) is established.

To this end, define an operator T taking functions / on W into functions on E"+1 by
the rule Tf(s, x) = U(s)f(x). Since y(l/2 - 1/ /?') p' = 1, (4) is just the statement
that T is bounded from L2(W) to Lp'(W+l). Thus, as in the proof of Theorem 1', it
suffices to show that TT* is bounded from Lp(Rn+1) to LP'(R"+1). A computation
shows that, for g on IRn+1,

00

"*g(x) = J U*(t)g(t, -)(x)dt.
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TT*g(s,x) = U(s)T*g(x) = J' U(s- t)g(t, -){x)dt.
—oo

Therefore, basically repeating the proof of Theorem 2,

\\TT*g\\p. < /
\\U(s-t)g(t,-)\\p.,xdt <c

p'.s

-t\a~l\\g(t,-)\\p^dt
p'.s

Here the last inequality follows from the hypothesis of Theorem 2. By one-dimension-
al fractional integration, since l/p + (1 — a) = 1/ p' + 1, the last term is dominated
by

This establishes (4).

3. Bochner-Riesz means of negative order

The Bochner-Riesz operators Ta are defined on W, n > 2, for — (n + l)/2 < a < 0
by

or, equivalently, by Taf = Ka * f where

Their Lp-Lq boundedness has been studied in [1, 13, 2]. Necessary conditions for
Ta: L

p —>• Lq, given in [1], are
n — I —2a 1 1 « + 1 4- 2a —2a 1 1

n + 1 ~~ p q(7)
2n p q 2n

We will summarize the sufficient conditions of [1, 13, 2] as Theorem 3 below. To
facilitate the statement of this result, we label some points in [0, 1] x [0, 1] (see
Figure 2): let

n + l + 2 a \ ., / n - l - 2 a

B _/« + l + 2a 2a n + l+2a\ /n
~\ 2n n+T' 2n J' ~ \

-l-2a n-\-2a 2a
+2n

C =

2n

Tn
_ (n-\-2a n - \ \
~\ Tn '2n + 2j'

D =
- 2 a n 2a
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FIGURE 2

LetZV = N(a,n) denote the set of points (l/p, l/<?)in[0, l]x[O, 1] which satisfy
the necessary conditions (7).

THEOREM 3. If (l/p, l/q) e N, then there exists a constant C = C(p, q, a, n)
such that \\Taf\\q < C| |/ | |p provided that one of the following holds:

(1)
(2)
(3)
(4)

(5)

n = 2 and a = — 1 ;
« = 2, -3/2 < a < 0, and l/p - \/q > -2a/(n + 1);
n > 3, -(« + l)/2 < a < -1/2, and l/p - l/q > -2a/(n + 1);
n > 3, -1 /2 < a < O,and
C and D to C;

lies strictly below the lines joining D to

Parts (l)-(3) are proved in [1] and [13], and (4) is in [2]. Part (5) is a well-known
consequence of Theorem 1. But Theorem 1' is as easily applicable and gives the
following stronger result.

THEOREM 4. Fix n>2. There is C = C(p, q, a, n) such that \\Taf\\q < C\\f\\p

provided that (l/p, l/q) is on the open segment BB' and either

(A) < a < 0
2

1 1 n + 1 - 4 a
and - < — < —— —,

2 ~ p ~ 2n + 2 or
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162 J.-G. Bak, D. McMichael and D. Oberlin [9]

PROOF. Define [Tz] by

Clearly | |rz/ | |2 < Cz| |/ | |2 if Rez = 0. Well-known asymptotic estimates for Bessel
functions give WTJW^ < Cz||/||i if Rez = - (« + l)/2. Since

2Rez) 1
+ z)P r2Rez lf - 2 < R e z < 0 '

Theorem 1' applies with A. = (n + l)/2 and ft = 1/2 and yields (A) and (B).

Here are two additional observations:

(1) If n > 3 and —1/2 < a < 0, boundedness at some additional interior points of
N can be obtained by interpolating (4) of Theorem 3 and (A) of Theorem 4.

(2) Let Rf = f |s»-i denote the restriction of the Fourier transform of / to the unit
sphere. Then R*R is a multiple of T-\. Thus taking a = — 1 in Theorem 4 gives
a 'restriction' estimate which complements a result of [13]:

COROLLARY 5. / / \/p - \/q = 2/(« + 1) and (« + l)/2« < \/p < («2 - 1 +

4n)/[2n(n + 1)], tfien f/iere is C = C(p, n) such that

/

This is (1) of Theorem 3 when n = 2, where it follows from the two-dimensional
restriction theorem

l | / ? / I U s ' ) < C | | / W ) i f ? = P ' /3 and 1 < p < 4/3

of [4, 19]. Similarly, Corollary 5 would follow from the n-dimensional restriction
conjecture

II*/IIL.(S->) < C||/| |i, (r) if q = (« - D P 7 ( « + D and 1 < p < 2n/(n + l).

4. Uniform Sobolev inequalities

We begin by recalling some of the principal results from [7,8]. Here is the requisite
notation: g(§) will denote the form on K", n > 3, given for some j = 1 , . . . , n - 1
by
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[10] Lp-L" Estimates off the Line of Duality 163

A = Yl"j=i d2/dxf is the Laplacian on R", id/dt + A is the Schrodinger operator on
R"+1, and L(D) = (a, v*) + b is an arbitrary first order operator on R" with constant
complex coefficients.

THEOREM 6. ([7, Theorem 2.1]) Suppose n > 3 and \/p - 1/ p' = 2/n. There is
a constant C — C(n) such that whenever P(D) is a constant coefficient operator on
R" with complex coefficients and principal part Q(D), then

\\u\\p,<C\\P(DKu)

for all u

THEOREM 7. ([7, Theorem 2.2]) Suppose n > 3, l/p - l/q = 2/n, and
(n + l)/2n < l/p < (n + 3)/2«. There exists C = C(p, n) such that whenever
P(D) is a constant coefficient operator on W with complex coefficients and principal
part A, then

THEOREM 8. ([8, Theorem 1]) Ifn > 1 and l/p - 1/ p' = 2/(n + 2), then there is
C = C(n) which does not depend on L(D) such that

u €

Comparison of Theorem 7 with Theorems 6 and 8 raises an obvious question which
we answer with Theorems 6' and 8':

THEOREM 6'. Suppose n > 3, l/p - l/q = 2/n and n/(2n - 2) < l/p <
(n2 + 2n- 4)/(2n2 - 2n). There is a constant C = C(p, n) such that

Hull, < C\\P(D)(u)\\p,

for all P(D) as in Theorem 6.

THEOREM 8'. Suppose n > 1, l/p - l/q = 2/(n + 2) and (n + 2)/(2/i + 2) <
l/p < (n2 + 6n + 4)/(2n2 + 6n + 4). There is a constant C = C(p, n) which does
not depend on L(D) such that

II, < u € y(Rn+l).
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Taking P(D) in Theorem 6' to be the wave operator on R" gives an estimate
already obtained in [5, 11]. Examples in [5] therefore show that the hypotheses on p
and q in Theorem 6' cannot be weakened. Analogous examples show the same for
Theorem 8', even when L(D) — 0. As will be clear to the reader familiar with the
paper [7], several other results there, including the estimates for the Klein-Gordon
operator and the unique continuation theorems, have analogs 'off the line of duality'.

To explain the proofs of Theorems 6' and 8' we recall the proofs of Theorems 6
and 8, which are broadly similar. Let a = 2/n for Theorem 6 and a = 2/(n + 2) for
Theorem 8. After some reductions there is a clever argument based on Littlewood-
Paley theory which yields, so long as l/p — l/q = a, Lp-Lq Sobolev inequalities as
consequences of certain other Lp-Lq estimates. These estimates, [7, Lemma 2.1] and
[8, Lemmas 1 and 2], are established when q = p', that is, when (l/p, l/q) is on the
line of duality. Our only contribution is to note that they actually hold for the ranges
of p and q given in Theorems 6' and 8'. The next three paragraphs contain sketches
of the arguments.

After some Fourier transform estimates, [7, Lemma 2.1] is simply an application
of Theorem 1, quite analogous to that which established (5) of Theorem 3. Again,
the additional hypotheses of Theorem 1' are easily verified and the result is that [7,
Lemma 2.1] holds with (l/p, 1/ p') replaced by (l/p, l/q) as in Theorem 6'.

We will consider in detail only [8, Lemma 2]. The operator 5 in question can be
written

oo

Sg(s, x)= I a(t)U(t)g(s-t,-)(x)dt, (s,x)eW+\

where U(t) is the Fourier multiplier operator on R" with symbol e"l?|2. Recalling that
a = 2/(n + 2), [8, (8)] is the hypothesis

llf/CO/llp'^Ckr' l l / l lp, / o n R", l/p - l/p' = a

of Theorem 2, and [8, Lemma 2] follows. But since (a — I)/a = —n/2, the additional
hypothesis

of Theorem 2' results from a homogeneity argument and the fact that em2 is an L'-L0

multiplier on R". Theorem 2' then gives the estimate

for p and q in Theorem 8'.
The result [8, Lemma 1] is a restriction result of [17] (as is [7, Lemma 2.1(a)]). It

can be appropriately generalized either by reasoning analogous to that immediately
above or, presumably, by another application of Theorem 1'.
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A concluding remark: it seems likely that an argument similar to our generaliz-
ation of Theorem 8 may yield an extension of the results of [6] on time-dependent
Schrodinger operators.
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