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Abstract. We discuss the interplay of gravity and radiation in a static, spherically symmetric
spacetime. Because of the spacetime curvature, balance between radiation pressure from spher-
ical star and effective force of gravity may be established in a particular distance from the star
surface, on so-called Eddington capture sphere. This is in contrast with the Newtonian scenario,
for which Eddington luminosity of the radiation assures gravity-radiation balance at any radius.
We explore properties of this relativistic equilibrium and the dynamics of test particles under
radiation influence in the strong gravity regime.
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1. Introduction
A peculiar relativistic equilibrium of gravity and radiation was first indicated by Phin-

ney (1987). Abramowicz et al. (1990) gave analytic expression for the radiation stress-
energy tensor of static spherical central source, emitting radiation isotropically and ho-
mogeneously in its rest frame. Hence, their formulas apply to the case of Schwarzschild
spacetime and so do the results presented in this paper. In recent years several groups
pursued this subject in more details, investigating its aspects such as the drag forces
dynamical importance, Bini et al. (2009), Oh et al. (2011), Stahl et al. (2012), possible
astrophysical applications for bursts Stahl et al. (2013), Mishra & Kluzniak (2014) and
quasi-oscillatory behavior, Wielgus et al. (2012).

In this paper we recall the derivation of the equilibrium condition and investigate tra-
jectories of test particles under radiation influence in curved Schwarzschild
spacetime.

2. Analytic formulation
We begin with the Schwarzschild spacetime metric,

ds2 = −ξdt2 + ξ−1dr2 + r2dθ2 + r2 sin2 θdφ2 , (2.1)

and denote ξ = 1 − 2/r. We utilize geometric units G = c = 1 and also put M = 1,
since the equations scale with mass of the central object. Assuming that the central mass
(neutron star) is emitting radiation isotropically and homogeneously in its rest frame, the
stress-energy tensor components in the static observer’s orthonormal frame can be found
by integrating specific intensity over the observer’s local sky. The necessary calculations
were performed by Abramowicz et al. (1990), yielding

T (t)(t) = 2πI(r)(1 − cos α0) , (2.2)

T (t)(r) = πI(r) sin2 α0 , (2.3)
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T (r)(r) =
2
3
πI(r)(1 − cos3 α0) , (2.4)

T (θ)(θ) = T (φ)(φ) =
1
3
πI(r)(2 − 3 cos α0 + cos3 α0) . (2.5)

Static observer’s orthonormal frame is denoted by indices in brackets. In Schwarzschild
spacetime it is elementary to calculate coordinate frame components from orthonormal
frame components by simple rescaling. I(r) is a specific intensity, R denotes radius of
the star and α0(r) is the star viewing angle,

I(r) = I(R)
(

1 − 2/R

ξ

)2

, (2.6)

α0(r) = arcsin

[
R

r

(
ξ

1 − 2/R

)1/2
]

. (2.7)

Interestingly, similar analytic results were recently obtained assuming the observer lo-
cated inside the luminous sphere in Schwarzschild spacetime. This case was derived by
Wielgus & Abramowicz (2015) and discussed in details by Wielgus et al. (2014), in this
paper we focus on the more standard scenario of observer located outside of the luminous
sphere. Knowing the radiation stress-energy tensor, we may evaluate the radiation flux,
being

F i = −hi
jT

jkuk , (2.8)

where hi
j = δi

j + uiuj is the projection tensor and the corresponding four-force fi can
be compared to the four-acceleration ai , giving

fi

m
=

σ

m
F i = ai = uk∇kui =

d2xi

ds2 + Γi
jkujuk . (2.9)

Test particle effective cross section is denoted with σ and its mass is denoted with m (typ-
ically Thomson cross-section of electron and mass of a proton). Evaluating the Christoffel
symbols, we find the equations of motion as functions for the proper time τ

d2r

dτ 2 = (r − 3)
(

dφ

dτ

)2

− 1
r2 +

σ

m
ξT rtut − σ

m

(
ξ−1T rr + T ijuiuj

) dr

dτ
, (2.10)

d2φ

dτ 2 = −2
r

dr

dτ

dφ

dτ
− σ

m

(
r2Tφφ + T ikuiuk

) dφ

dτ
. (2.11)

We identify four terms on the right hand side of Eq. 2.10 as, respectively: centrifugal
acceleration, gravitational acceleration, radiation pressure, radial radiation drag. We also
identify two terms on the right hand side of Eq. 2.11 as Coriolis acceleration and radiation
azimuthal drag (Poynting-Robertson drag).
Putting all velocities to zero, we find the following critical point condition

1
r2 =

σ

m
ξ1/2T rt . (2.12)

Utilizing Eq. 2.3 and the classic Newtonian definition of the Eddington luminosity,
LEdd = 4πm/σ, we find the critical point radial location

r = REdd =
2

1 − β2 , (2.13)
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Figure 1. Left: trajectories of particles. Right: angular momentum uφ variation along the
trajectories.

where β = L∞/LEdd and luminosity L∞ is

L∞ = lim
r→∞

4πr2T tr . (2.14)

Clearly, the ECS exists above the star surface for the range of β parameter between
(1−2/R)1/2 and β = 1. The equilibrium of the Eddington Capture Sphere, at r = REdd is
of a stable kind, net force always pointing towards the equilibrium. Radial and azimuthal
drags work as efficient damping forces.

3. Numerically calculated trajectories
We give two numerical illustrations of the ECS related behavior of the test particles. To

find the related trajectories, one needs to numerically integrate Eqs. 2.10-2.11. Following
Stahl et al. (2012) we consider a stream of particles moving towards the luminous star
(Hoyle-Lyttleton accretion). We observe that the typical behavior of the particles is to
become captured by the ECS in a static equilibrium state, after drag forces remove most
of the angular momentum. In the considered example, Fig. 1, we have REdd = 15M and
particles’ velocity at infinity is equal to 0.05 c, 6 trajectories of different impact parame-
ter (10M, 25M, 50M, 75M, 100M, 125M) are shown. The right panel of Fig. 1 indicates,
for the corresponding left panel trajectories, how effective is the angular momentum re-
moving effect of drag forces in the strong radiation field. Because of the strong radiation
and ECS presence, particles for significantly wider range of impact parameter can be
captured. On the other hand, they remain levitating on the ECS rather than falling onto
the star surface. This may result in cutting off the accretion-fueled radiation emission
and hence destruction of the ECS, from which particles may infall and power up emission
of radiation again. Such an oscillatory behavior was investigated by Wielgus et al. (2012).

The second numerical illustration concerns the stability of the static equilibrium on the
ECS. We consider ECS located at REdd = 10M and test particles initially static on the
ECS. Then we perturb the radial velocity, Fig. 2 left panel, or the azimuthal velocity, Fig.
2 right panel. The specific values of the perturbed velocities are 0.01c, 0.05c, 0.1c, 0.2c for
the radial velocities and 0.01c, 0.05c, 0.1c, 0.2c, 0.3c for the azimuthal velocities. Clearly,
a very large initial velocity is necessary for the particle to escape the ECS and for all
considered values the particle returned to the ECS.
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Figure 2. Left: particle radial location as function of proper time for perturbed radial velocity.
Right: particle radial location as function of proper time for perturbed azimuthal velocity.

4. Implications
Spacetime around luminous relativistic star is divided into two regions, separated

by the Eddington capture sphere. In the inner region radiation is effectively super-
Eddingtonian, while outside of the ECS it is effectively sub-Eddingtonian. The radiation-
gravity balance is only achieved on the ECS. The ECS is an effect derived from the very
first principles, and almost certainly (i.e., if general theory of relativity is correct) ap-
pears in Nature. More relevant question is whether there is some astrophysical relevance
of this mechanism. It seems that at least in two contexts answer to this question should
be positive. First is the quasioscillatory behavior related to the subsequent creation and
disintegration of the ECS, Wielgus et al. (2012). The other is related to the dynamics of
matter ejection from inner region of the superluminous system. Here the presence of the
ECS and related radiation drag forces alter the ejected matter motion, e.g., Stahl et al.
(2013).
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