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Abstract. This paper presents the masses of young stars measured by
the rotation of their circumstellar disks (Simon, Dutrey, and Guilloteau
2000). Their precision is good enough to enable meaningful tests of theo-
retical models of pre-main sequence evolution. The tests are however lim-
ited by the imprecision with which the distances to the stars are known.
The astrometric instruments now being developed have the potential to
remove this limitation.

1. Introduction

The participants in this conference know well that mass is the most important
property of a star. Unfortunately, below a solar mass, our knowledge of accurate
stellar masses is still very limited. The result is that the inputs essential to
theories of star formation such as the ages of stars in a star forming region
(SFR), its star-forming history, the mass spectrum of the stars produced, and
the distribution of masses in binaries, are imprecisely known.

The mass and age of a pre-main sequence (PMS) star are usually estimated
from its location in the HR-diagram relative to theoretical models of its evolu-
tion. The uncertainties in measuring the luminosity and effective temperature
of a PMS star, and the uncertainties in the tracks, particularly below rv 1.0 Mev,
limit the reliability of the mass and age estimates..For example, for a typical
point in the HR diagram corresponding to a K7 star with L==1.0 L0' Table 1
shows that the tracks yield masses and ages discrepant by factors of 2 to 3.

Table 1. Theoretical Mass and Age Estimates for a K7, L==1.0 L0
PMS Star

Calculation M/M8 Age (Myr)
Swenson et al. (1994) 0.65 1.0
D'Antona and Mazzitelli(1997) 0.45 0.8
Baraffe et al. (1998) 0.80 1.0
Palla and Stahler (1999) 0.80 2.0
Siess et al. (2000) 0.78 3.0

In the absence of measurements of the mass or age of a star, astronomers
have applied other tests of the PMS tracks. Hartigan et al. (1994), Casey et
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al. (1998), Luhman (1999) and White et al. (1999) investigated whether the
tracks yield the same ages for stars thought to be coeval and found significant
differences in the extent to which the available tracks satisfied this requirement.

The situation is improving rapidly. We now know the masses of a few
(5-10), young (1-10 Myr) , low mass « IM0) stars to an internal precision of
a few per cent. Some of these results have been reported in posters at this
conference. These new measurements make it possible to test the accuracy
of the theoretical PMS tracks. Often the absolute precision of the measured
mass remains limited by the precision to which the distance is known. As the
Golden Age of Astrometry approaches, the prospects are excellent to increase
the numbers of stars with accurate masses, to enlarge the mass range over which
they are known, and to measure their distances with high precision.

2. Dynamical Methods of Mass Measurement

Methods based on motion under the influence of gravity provide the only reliable
determinations of mass. These include mapping the orbits of resolved binaries,
historically the visual binaries (VBs), determining the velocity VB. phase of spec-
troscopic binaries (SBs), several hybrid methods, and of particular applicability
to young stars, mapping the rotation of circumstellar disks by mm-wave inter-
ferometry. Table 2 summarizes the parameters derivable from .the VBs and SBs
(e.g. Heintz 1978).

Table 2. Binary Parameters Derivable When Distance Is Not Known

Visual Bin. Single-lined Double-lined Eclipsing Notes
(VB) Spec. Bin. (SBl) Spec. Bin. (SB2) (SB2)

p y y y y
a Y al sin i asini Y 1,2
e y Y Y Y
i Y N N Y
M N f(M) M1 sirr' i and M1 and 2, 3

M2 sin3 i M2

Parameters: P== period, a== semi-major axis, e== eccentricity, i== inclination,
and M == mass. Notes: 1) For VB in arc sec, for SBs in physical units. 2) If
motion of VB around barycenter is measured, then al and a2 are known and
hence M1 and M2 . 3)Mass function, f(M) == (M2sini)3j(M1 +M2 ) 2

Since masses of the VBs are derived from Kepler's 3rd Law they scale as
D 3 . Stellar masses measured using the rotation of the associated circumstellar
disks depend on the radial distance in the disk so scale directly with distance.
The uncertainties in the measured masses, ~MjM, resulting from the distance
uncertainty are therefore 3~D jD or ~D jD, depending on the approach. These
can be significant. The Taurus SFR, for example extends rv 15° on the sky. If
its depth is comparable to its width, the distance to a specific star can scatter by
±20 pc around the 140 pc average distance to the SFR (Kenyon et al. 1994), an
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uncertainty of ±14%. The techniques used to measure mass can achieve much
lower uncertainties so their over-all accuracy is compromised by the uncertainty
in the distance to a particular star. The precision, ~ 1 mas, and sensitivity, V
~ 9 mag, of HIPPARCOS were insufficient to remove this limitation.

SBs do not provide the orbital inclination i. In the SB1s, the two masses
and i are inextricably linked in the mass function. In the SB2s, the mass ratio
is known but the determination of their values separately requires i. Various
"tricks" and hybrid methods are used to overcome this limitation. The best
known trick is that of the eclipsing double-lined spectroscopic binaries (ESB2s)
in which i ~ 90°. Combining the parameters of an SB with orbit measurement
can yield the masses since a VB yields i (e.g. Torres et al. 1997, Koresko et al.
1998, and Hummel 2000). The development of optical and infrared interferom-
etry over baselines of 10's of meters has enabled mass measurements of bright
binaries by this hybrid technique. Interferometers now under construction at
the Keck and VLT observatories, and those planned for space platforms, will
have the sensitivity to observe the nearby young stars.

3. Application to Young Visual Binaries and Spectroscopic Binaries

Mapping the orbits of VBs among the young stars is being pursued by ground-
based techniques (Ghez et al. 1995 and Thiebaut et al. 1995) andthe fine guid-
ance sensors (FGS) aboard the HST (Simon et al. 1996). The smallest separa-
tions resolvable with high precision are 10-20 milliarc sec (mas), corresponding
to 1.5 - 3 AU at the distance of the Taurus SFR. For binaries with total mass
~ 1 M8' this corresponds to orbital periods> a few years. With one exception
(see below), observations of VBs have not yet yielded masses because most of
the binaries being followed seem to have periods measured in decades.

Young SBls and SB2s have also been identified (e.g. Mathieu 1994) and
discoveries of several were announced at this conference (Reipurth et al. 2000,
Quast et al. 2000, and Torres et al. 2000). The ESB2s are rare, of course. Prior
to this conference, only two PMS ESB2s, TY CrA and RS Cha AB, both with
primary and secondary masses greater than 1.5 M8 were known (Casey et al.
1998 and Mamajek et al. 2000). At this conference, Covino et al. (2000) reported
the discovery of the ESB2 RXJ0529.4 + 0041 (period == 3.04d) with primary
and secondary masses 1.30 ± 0.03 and 0.95 ± 0.03 M8. Plotting the components
in an HR diagram, they find that the primary is reasonably consistent with
the tracks of D'Antona and Mazzitelli (1994), Palla and Stahler (1993), and
Swenson et al. (1994), but that the secondary is consistent only with those of
Swenson et al. The secondary is also inconsistent with the more recent tracks of
Baraffe et al. (1998, BCAH), Palla and Stahler (1999, PS), and Siess et al. (2000,
SDF). Since mass measurements of single stars in the mass range 1 - 0.5 M8
(§4), agree reasonably well with the BCAH, PS, and SDF tracks, one wonders
whether models of single stars are applicable to a pair as close and distorted as
the components of RXJ0529.4 + 0041 must be (see also Quast et al. 2000).

Steffen et al. (2000) combined an astrometric orbit measured by the FGS
of the HST with the spectroscopic solution for the SB2 NTTS 045251+3016 to
determine the primary and secondary masses, 1.43 ± 0.34 and 0.78 ± 0.20 M8'
respectively. This result involved a double hybrid technique; the NTTS was
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converted from a visible light SB1 to an SB2 by IR spectroscopy (Prato 1998,
Mazeh et al. 2000). The precision of the mass measurement is sufficient to
indicate that the BCAH tracks best fit the observations.

4. Masses of Stars with Circumstellar Disks

The resolvable disks of PMS stars offer another dynamical technique, that of
mapping their rotation and hence measuring the central mass (Dutrey et al.
1994, Mannings and Sargent 1997, Guilloteau and Dutrey 1998). The results
presented here are based on 12CO J=2-1 line observations at the IRAM Plateau
de Bure interferometer obtained with A. Dutrey and S. Guilloteau and described
more fully in our paper (Simon et al. 2000). Table 3 lists our results for PMS
stars in the Taurus SFR. We ignore the mass of the disk because it is usually
only a few per cent that of the star. Even in GG Tau A, which probably has the
most massive disk of the stars in our sample, the mass of the circumbinary disk is
r"oJ 10% that of the stars within it (Guilloteau et al. 1999). In the Table, ico is the
disk inclination measured from the CO line maps, V100 sini is the projected disk
velocity (km/s) at reference radius 100 AU, and v is the exponent of the rotation
velocity law, V(r) ex r-v ; v = 0.50 indicates Keplerian rotation. The internal
precision of the masses is limited mostly by the uncertainty in the inclination.
For disks with ico > 35°, the internal precision of the mass js better than 6%.
The absolute masses are, however, not as well known because of the uncertainty
in the actual distance.

Table 3. Dynamic Masses from Disk Rotation (D=140pc)

ico V100sin (i ) -v M*/M8
Singles:
MWC 480 +38± 1 -2.38 ± 0.02 0.50 ± 0.02 1.65 ± 0.07
LkCa15 +52± 1 -2.30 ± 0.02 0.56 ± 0.03 0.97 ± 0.03
DLTau +35±2 1.90 ± 0.06 0.55 ± 0.03 0.72 ± 0.11
GM Aur +56±2 2.30 ± 0.08 0.5 ± 0.1 0.84 ± 0.05
DMTau -32 ± 1 -1.17 ± 0.02 0.53 ± 0.01 0.55 ± 0.03
CYTau +30 ± 10 -1.10 ± 0.10 0.50 ± 0.08 0.55 ± 0.33
BP Tau +30+4 1.67 ± 0.06 0.54 ± 0.07 1 24°·25-2 . -0.32
Binaries:
GG Tau A +37± 1 2.05 ± 0.06 0.5 ± 0.1 1.28 ± 0.07
UZTau E -56±2 -2.83 ± 0.05 0.53 ± 0.03 1.31 ± 0.08

Comparison of these mass measurements with theoretical calculations of
PMS tracks in an HR diagram provides detailed examples of the differences
among the calculated tracks and illustrates the accuracy required for meaningful
tests of the tracks. We use spectral types, conversion of spectral type to Tejf
appropriate to the mainsequence and stellar luminosity, L*, evaluated at D=140
pc, as provided by Kenyon and Hartmann (1995). The HR diagram in Fig. 1a
shows excerpts from PMS tracks calculated by DM97, BCAH, PS99, and SDF.
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Figure 1. Top: An HR diagram showing theoretical evolutionary
tracks for stars of mass 0.2, 0.6, and 1.0 M8 calculated by DM97,
BCAH, PS99, and SDF between the ages 2 Myr (filled circles) and 10
Myr (open circles). Bottom: The same tracks as in upper panel plotted
as L/M2 vs Tell (see text).

The BCAH tracks for M/M8 < 0.7 are for mixing length parameter (mixing
length/pressure scale height)== 1.0 and 1.9 for M/M8 2:: 0.7 (BCAH and Baraffe,
priv. comm.). Differences among the theoretical calculations for a star of given
age and mass are obvious. For example, the DM97 tracks are hotter than those
of BCAH for M* rv 0.2 M8. SDF's models at 0.2 and 0.1 M8 appear to contract
more slowly than those of DM97, BCAH, and PS99. The differences among the
tracks arise in different treatments of stellar convection, the equation of state,
opacities, and stellar atmospheres. Each of these becomes important in specific
regions of the HR diagram, so comprehensive tests of the theoretical tracks will
require accurate data over as wide a range of mass and age as possible.

Since L* ex D 2 , and M* ex D for masses determined by disk rotation, the
distance uncertainty affects a star's location in the HR diagram. We therefore
use modified HR diagrams in which the distance-independent parameter L/M2

is plotted versus Tel I' Fig. 1b compares the tracks on this basis.
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Fig. 2 compares the masses of singles in Table 3 with PMS tracks calculated
by DM97, BCAH, PS99, and SDF. The uncertainties along the Tell axis are ±1
spectral type and along the vertical axis, the internal uncertainties in mass and
an assumed ±10% uncertainty in the luminosity. In this presentation, if a star
does not lie on the track corresponding to its measured mass, either its distance
is not the average value, 140 pc, or the theoretical track is wrong.

Figure 2. Upper Left: The results for the single T Tauri stars plotted
as L / M 2 vs TelI for theoretical evolutionary tracks for stars of mass
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 and 1.2 MG) calculated by
DM97. The filled dots are at ages 1, 2, 3, 5, 7, and 10 Myr. Upper
Right: Same, as but for tracks calculated by BCAH. Here the indicated
ages are 2, 3, 5, 7, and 10 Myr. Lower Left: Same for tracks calculated
by PS99 at masses 0.1,0.2,0.4,0.6,0.8, 1.0, and 1.2 Mev. The indicated
ages 1, 2, 3, 5, and 10 Myr.Lower Right: Same for tracks calculated by
SDF. The range of masses and indicated ages are same as for DM97.

The L/M2 value for for LkCa 15, for example, lies near the 1.0 MG) tracks
calculated by BCAH, PS99, and SDF consistent with its mass 0.97±0.03 MG) at
140 pc distance. These tracks yield a consistent age estimate of 3-5 Myr. How-
ever, the L/M2 value lies on the 0.8 MG) track calculated by DM97. Agreement
with the DM97 track would require a distance of rv 115 pc but would not affect
the age estimate. Similarly, for GM Aur, the L/M2 value relative to the BCAH,

https://doi.org/10.1017/S0074180900225539 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900225539


460 Simon

PS99, and SDF tracks is consistent with its mass 0.84 ± 0.05 M0 at 140 pc.
The tracks provide an age estimate of r-..J 3 Myr. However, the L/M2 value lies
close to DM97's 0.6 M0 track which would require a distance of 103 pc to force
agreement with the dynamical mass. At the lower masses, the L /M 2 values of
DL Tau and DM Tau are consistent with the four sets of tracks.

BP Tau's L/M2 values lies between DM97's 0.6 and 0.8 M0 tracks, and
close to BCAH, PS99, and SDF's 0.8 M0 tracks, while our measured mass at
140 pc is in the range 0.92 to 1.49 M0. This suggests that the distance to BP
Tau may be closer than 140 pc but not as extreme as the HIPPARCOS value,
53~tI pc (Favata et al. 1998). The large uncertainty in the mass produces a
large spread in the age estimate, 2-10 Myr.

Fig. 3 compares the dynamical mass of the HAeBe star MWC480 with the
DM97, PS99, and SDF tracks. We calculated the stellar luminosity, 11.5 L0,
using the spectral energy distribution derived by Malfait et al. (1998) evaluated
at D==140 pc and plotted it at spectral type A4 estimated by Grady (1999) from
HST spectra. MWC480's L /M 2 value lies close to the 2.0 M0 tracks for the
three calculations at an age r-..J 7 Myr. The mass at 140 pc distance 1.65 ± 0.07
MG) suggests that MWC 480 lies at a somewhat greater distance. A distance of
170 pc would yield a dynamical mass of 2.0 M0 and would be within 2a of the
HIPPARCOS measurement of 131~i~ pc (van den Ancker et al. 1998).

5. Summary and Future Work

The present situation is that:
1) Measurements of PMS masses are becoming available with high enough

precision that direct tests of calculations of PMS evolution are possible.
2) The BCAH, PS99, and SDF models are in reasonable agreement with

the measured dynamical masses at the average distance to the Taurus SFR. To
force agreement between the DM97 models and mass measurements for stars
in the r-..J 0.7 to 1 M0 range (LkCa15, and GMAur) would require that these
stars lie at unacceptably near distances.

3) The position of the HAeBe star MWC 480 with respect to tracks suggests
it lies on the far side of the Taurus SFR at r-..J 170pc.

For masses measured by disk rotation, tests of the PMS tracks are limited
by our present ignorance of actual distances to individual stars. The examples in
the previous section show meaningful tests of tracks require absolute uncertainty
of the measured mass less than r-..J 5%. Since the internal precision of the mass
measurement better than this is attainable now, we should require that the
distance measurement not compromise the overall uncertainty. The astrometric
missions now planned or in construction (e.g. FAME, GAIA, and SIM) have the
potential to provide distances with sufficient precision. The proposed capabilities
of SIM (http://sim.jpl.nasa.gov) translate to parallaxes with better than 1%
precision for PMS stars in the Orion SFR.

So far, measurements by the CS disk technique pertain to stars with M >
0.5 M0 so we have been unable to test the models at the lowest end of the stel-
lar mass spectrum (but, see White et al. 1999). This is a serious limitation and
results, at least in part, from the range of masses of stars formed in the Taurus
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Figure 3. Top: L / M 2 vs TelI for the HAeBe star MWC480 plotted
with DM97 tracks for stars of mass 1.0, 1.2, 1.5, 2.0 and 2.5 Mev.
The dots indicate ages 1, 2, 3, 5, 7, and 10 Myr. For the 2.5 Mev
track, the isochrone dots stop at 7 Myr at this age the star is on the
main sequence.Middle: Same but for tracks calculated by PS99. The
indicated ages are 1, 2, 3, 5, and 10 Myr. The 2.5 Mev star is on the
main sequence at 5 Myr. Bottom: Same but for SDF tracks. The range
of masses and indicated ages are same as for DM97.
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SFR. We look forward to the capabilities of the ALMA mm-wave interferometric
array which will open the rich Orion SFR to investigation. Conversion of the
observationally derived parameter, spectral type, to that provided by the mod-
els, Tefl, is also a source of uncertainty, particularly at the lowest masses. Since
stars contracting to the main sequence represent a range of surface gravities,
the conversion may depend on age. Relief from this problem should become
available soon as the model calculations which include stellar atmospheres pro-
vide diagnostics such as color indices and model spectra, for closer comparison
with the observations. The prospects are excellent for rapid progress on these
problems in the next decade.
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