
Good reduction of K3 surfaces

Christian Liedtke and Yuya Matsumoto

Compositio Math. 154 (2018), 1–35.

doi:10.1112/S0010437X17007400

https://doi.org/10.1112/S0010437X17007400 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007400
https://doi.org/10.1112/S0010437X17007400


Compositio Math. 154 (2018) 1–35

doi:10.1112/S0010437X17007400

Good reduction of K3 surfaces

Christian Liedtke and Yuya Matsumoto

Abstract

Let K be the field of fractions of a local Henselian discrete valuation ring OK
of characteristic zero with perfect residue field k. Assuming potential semi-stable

reduction, we show that an unramified Galois action on the second `-adic cohomology

group of a K3 surface over K implies that the surface has good reduction after a finite

and unramified extension. We give examples where this unramified extension is really

needed. Moreover, we give applications to good reduction after tame extensions and

Kuga–Satake Abelian varieties. On our way, we settle existence and termination of

certain flops in mixed characteristic, and study group actions and their quotients on

models of varieties.

1. Introduction

Let OK be a local Henselian DVR (discrete valuation ring) of characteristic zero with field of

fractions K and perfect residue field k, whose characteristic is p > 0. For example, OK could be

C[[t]] or the ring of integers in a p-adic field. Given a variety X that is smooth and proper over

K, one can ask whether X has good reduction, that is, whether there exists an algebraic space

X → SpecOK

with generic fiber X that is smooth and proper over OK .

1.1 Good reduction and Galois representations

Let ` be a prime different from p, let GK := Gal(K/K) be the absolute Galois group of K, and

let IK be its inertia subgroup. Then the natural `-adic Galois representation

ρm,` : GK → Aut(Hm
ét (XK ,Q`))

is called unramified if it satisfies ρm,`(IK) = {id}. A necessary condition for X to have good

reduction is that for all m > 1 and all primes ` 6= p, the representation ρm,` is unramified.
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1.2 Curves and Abelian varieties
By a famous theorem of Serre and Tate [ST68], which generalizes results of Néron, Ogg,
and Shafarevich for elliptic curves to Abelian varieties, the GK-representation ρ1,` detects the
reduction type of Abelian varieties.

Theorem 1.1 (Serre–Tate). An Abelian variety X over K has good reduction if and only if the
GK-representation on H1

ét(XK ,Q`) is unramified.

On the other hand, it is not too difficult to give counterexamples to such a result for curves
of genus at least 2. Nevertheless, Oda [Oda95] showed that good reduction can be detected by
the outer GK-representation on the étale fundamental group. We refer the interested reader to
§ 2.4 for references, examples, and details.

1.3 Kulikov–Nakkajima–Persson–Pinkham models
Before coming to the results of this article, we have to make one crucial assumption.

Assumption (?). A K3 surface X over K satisfies Assumption (?) if there exists a finite field
extension L/K such that XL admits a model X → SpecOL that is a regular algebraic space with
trivial canonical sheaf ωX/OL , and whose geometric special fiber is a normal crossing divisor.

In equal characteristic zero, Assumption (?) always holds, and the special fibers of the
corresponding models have been classified by Kulikov [Kul77], Persson [Per77], and Persson
and Pinkham [PP81]. In mixed characteristic, the corresponding classification (assuming the
existence of such models) is due to Nakkajima [Nakk00]. If the expected results on resolution of
singularities and toroidalization of morphisms were known to hold in mixed characteristic, then
Assumption (?) would follow from Kawamata’s semi-stable minimal model program (MMP) in
mixed characteristic [Kaw94] and Artin’s results [Art74] on simultaneous resolutions of families
of surface singularities. We refer to Proposition 3.1 for details. Using work of Maulik [Mau14] and
some strengthenings due to the second named author [Mat15], we have at least the following.

Theorem 1.2. Let X be a K3 surface over K and assume that p = 0 or that X admits an ample
invertible sheaf L with p > L2 + 4. Then X satisfies Assumption (?).

1.4 K3 surfaces
In this article, we establish a Néron–Ogg–Shafarevich–Serre–Tate type result for K3 surfaces.
Important steps were already taken by the second named author in [Mat15]. Over the complex
numbers, similar results are classically known; see, for example, [KK98, ch. 5].

Before coming to the main result of this article, we define a K3 surface with at worst RDP
(rational double point) singularities to be a proper surface over a field, which, after base change to
an algebraically closed field, has at worst rational double point singularities, and whose minimal
resolution of singularities is a K3 surface.

Theorem 1.3. Let X be a K3 surface over K that satisfies Assumption (?). If the GK-
representation on H2

ét(XK ,Q`) is unramified for some ` 6= p, then the following hold.

(i) There exists a model of X that is a projective scheme over OK , whose special fiber is a K3
surface with at worst RDP singularities.

(ii) Moreover, there exists an integer N , independent of X and K, and a finite unramified
extension L/K of degree at most N , such that XL has good reduction over L.

2

https://doi.org/10.1112/S0010437X17007400 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007400


Good reduction of K3 surfaces

In [HT17, Theorem 35], a similar result is obtained for K3 surfaces over C((t)), but their
proof uses methods different from ours. As in the case of Abelian varieties in [ST68], we obtain
the following independence of `.

Corollary 1.4. Let X be a K3 surface over K that satisfies Assumption (?). Then the GK-
representation on H2

ét(XK ,Q`) is unramified for one ` 6= p if and only if it is unramified for all
` 6= p.

In [ST68], Serre and Tate showed that if an Abelian variety of dimension g over K with
p > 2g + 1 has potential good reduction, then good reduction can be achieved after a tame
extension. Here, we establish the following analog for K3 surfaces.

Corollary 1.5. Let X be a K3 surface over K with p > 23 and potential good reduction. Then
X has good reduction after a tame extension of K.

It is important to note that in part (2) of Theorem 1.3, we cannot avoid field extensions in
general. More precisely, we construct the following explicit examples.

Theorem 1.6. For every prime p > 5, there exists a K3 surface X = X(p) over Qp, such that:

(i) the GQp-representation on H2
ét(XQp

,Q`) is unramified for all ` 6= p;

(ii) X has good reduction over the unramified extension Qp2 ; but

(iii) X does not have good reduction over Qp.

1.5 Kuga–Satake Abelian varieties
Let us recall that Kuga and Satake [KS67] associated to a polarized K3 surface (X,L) over C a
polarized Abelian variety KS(X,L) of dimension 219 over C. Moreover, if (X,L) is defined over
an arbitrary field k, then Rizov [Riz10] and Madapusi Pera [Mad15], building on work of Deligne
[Del72] and André [And96], established the existence of KS(X,L) over some finite extension of
k. As an application of Theorem 1.3, we can compare the reduction behavior of a polarized K3
surface to that of its associated Kuga–Satake Abelian variety.

Theorem 1.7. Assume p 6= 2. Let (X,L) be a polarized K3 surface over K.

(i) If X has good reduction, then KS(X,L) can be defined over an unramified extension L/K,
and it has good reduction over L.

(ii) Assume that X satisfies Assumption (?). Let L/K be a field extension such that both
KS(X,L) and the Kuga–Satake correspondence can be defined over L. If KS(X,L) has
good reduction over L, then X has good reduction over an unramified extension of L.

1.6 Organization
This article is organized as follows.

In § 2, we recall a couple of general facts on models and unramified Galois representations on
`-adic cohomology. We also recall the classical Serre–Tate theorem for Abelian varieties and give
explicit examples of curves of genus at least 2, where the Galois representation does not detect
bad reduction.

In § 3, we review potential semi-stable reduction of K3 surfaces, Kawamata’s semi-stable
MMP, the Kulikov–Nakkajima–Pinkham–Persson classification list, and the second named

3
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author’s results on potential good reduction of K3 surfaces. We also briefly discuss potential

good and semi-stable reduction of Enriques surfaces.

In § 4, we establish existence and termination of certain flops, which we need later on to equip

our models with suitable invertible sheaves. Moreover, we show that any two smooth models of a

K3 surface X over K are related by a finite sequence of flopping contractions and their inverses.

Section 5 is the technical heart of this article: given a K3 surface X over K, a finite Galois

extension L/K with group G, and a model of XL over OL, we study extensions of the G-action

XL to this model. Then we study quotients of such models by G-actions, where the most difficult

case arises when p divides the order of G (wild action).

In § 6, we establish the main results of this article: a Néron–Ogg–Shafarevich type theorem

for K3 surfaces, good reduction over tame extensions, as well as the connection to Kuga–Satake

Abelian varieties.

Finally, in § 7, we give explicit examples of K3 surfaces over Qp with unramified Galois

representations on their `-adic cohomology groups that do not have good reduction over Qp.

Notation and conventions

Throughout the whole article, we fix the following notation:

OK a local Henselian DVR of characteristic zero;

K its field of fractions;

k the residue field, which we assume to be perfect;

p > 0 the characteristic of k;

` a prime different from p;

GK , Gk the absolute Galois groups Gal(K/K),Gal(k/k).

If L/K is a field extension, and X is a scheme over K, we abbreviate the base-change X ×SpecK

SpecL by XL.

2. Generalities

In this section, we recall a couple of general facts on models of varieties, unramified Galois

representations on `-adic cohomology groups, and Néron–Ogg–Shafarevich type theorems.

2.1 Models

We start with the definition of various types of models.

Definition 2.1. Let X be a smooth and proper variety over K.

(i) A model of X over OK is an algebraic space that is flat and proper over SpecOK and

whose generic fiber is isomorphic to X.

(ii) We say that X has good reduction if there exists a model of X that is smooth over OK .

(iii) We say that X has semi-stable reduction if there exists a regular model of X, whose

geometric special fiber is a reduced normal crossing divisor with smooth components.

(Sometimes, this notion is also called strictly semi-stable reduction.)

(iv) We say that X has potential good (respectively semi-stable) reduction if there exists a finite

field extension L/K such that XL has good (respectively semi-stable) reduction.
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Remark 2.2. Models of curves and Abelian varieties can be treated entirely within the category
of schemes; see, for example, [Liu02, ch. 10] and [BLR90]. However, if X is a K3 surface over
K with good reduction, then it may not be possible to find a smooth model in the category of
schemes, and we refer to [Mat15, § 5.2] for explicit examples. In particular, we are forced to work
with algebraic spaces when studying models of K3 surfaces.

2.2 Inertia and monodromy

The GK-action on K induces an action on OK and by reduction, an action on k. This gives rise
to a continuous and surjective homomorphism GK → Gk of profinite groups. Thus we obtain a
short exact sequence

1→ IK → GK → Gk → 1,

whose kernel IK is called the inertia group. In fact, IK is the absolute Galois group of the maximal
unramified extension of K. If p 6= 0, then the wild inertia group PK is the normal subgroup of
GK that is the absolute Galois group of the maximal tame extension of K. We note that PK is
the unique p-Sylow subgroup of IK .

Definition 2.3. Let X be a smooth and proper variety over K. Then the GK-representation
on Hm

ét (XK ,Q`) is called unramified if IK acts trivially. It is called tame if PK acts trivially.

For an Abelian variety X, it follows from results of Serre and Tate [ST68] that the GK-
representation on Hm

ét (XK ,Q`) is unramified for one ` 6= p, if and only if it is so for all ` 6= p. In
Corollary 6.4, we will show a similar result for K3 surfaces. In general, it is not known whether
being unramified depends on the choice of `, but it is expected not to.

A relation between good reduction and unramified Galois representations on `-adic
cohomology groups is given by the following well-known result, which follows from the proper
smooth base change theorem. For schemes, it is stated in [SGA4, Théorème XII.5.1], and in case
the model is an algebraic space, we refer to [LZ14, Theorem 0.1.1] or [Art73, ch. VII].

Theorem 2.4. If X has good reduction, then the GK-representation on Hm
ét (XK ,Q`) is

unramified for all m and for all ` 6= p.

In view of this theorem, it is natural to ask for the converse direction. Whenever such a
converse holds for some class of varieties over K, we obtain a purely representation-theoretic
criterion to determine whether such a variety admits a model over OK with good reduction.

2.3 Abelian varieties
A classical converse to Theorem 2.4 is the Néron–Ogg–Shafarevich criterion for elliptic curves.
Later, Serre and Tate generalized it to Abelian varieties of arbitrary dimension.

Theorem 2.5 (Serre–Tate [ST68]). An Abelian variety A over K has good reduction if and only
if the GK-representation on H1

ét(AK ,Q`) is unramified for one (respectively all) ` 6= p.

2.4 Higher genus curves, part 1
Now, the converse to Theorem 2.4 already fails for curves of higher genus. Let X be a smooth
and proper curve of genus g > 2 over K. Let Jac(X) be its Jacobian, which is an Abelian variety
of dimension g over K. Then the exact sequence of étale sheaves on X

1→ µn→ Gm
×n−→ Gm→ 1

5
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gives rise to GK-equivariant isomorphisms H1
ét(XK , µn) ∼= Pic(XK)[n] ∼= H1

ét(Jac(X)K , µn), from
which we obtain H1

ét(XK ,Q`) ∼= H1
ét(Jac(X)K ,Q`) by passing to the limit. Moreover, if X has a

K-rational point, then there is a natural embedding

j : X → Jac(X),

and the above isomorphism coincides with j∗ (which is independent of the choice of a
rational point). By the Serre–Tate theorem (Theorem 2.5), an unramified GK-representation on
H1

ét(XK ,Q`) is equivalent to good reduction of Jac(X). The following lemma gives a criterion
that ensures the latter.

Lemma 2.6. Let X be a smooth and proper curve over K that admits a semi-stable scheme
model X → SpecOK such that the dual graph associated to the components of its special fiber
X0 is a tree. Then Jac(X) has good reduction and the GK-representation on H1

ét(XK ,Q`) is
unramified.

Proof. By [BLR90, § 9.2, Example 8], Pic0
X0/k

is an Abelian variety, which implies that Jac(X)

has good reduction, and thus the GK-representation on H1
ét(XK ,Q`) is unramified. 2

Using this lemma, it is easy to produce counterexamples to Néron–Ogg–Shafarevich type
results for curves of higher genus.

Proposition 2.7. If p 6= 2, then there exists for infinitely many g > 2 a smooth and proper
curve X of genus g over K such that:

(i) the GK-representation on Hm
ét (XK ,Q`) is unramified for all m and all ` 6= p; and

(ii) X does not have good reduction over K nor over any finite extension.

Proof. We give examples for g 6≡ 1 mod p. Let X be a hyperelliptic curve of genus g over K
that is one of the examples of [Liu02, Example 10.1.30] with the extra assumptions of [Liu02,
Example 10.3.46] (here, we need the assumption g 6≡ 1 mod p). Then X has stable reduction
over K, as well as over every finite extension field L/K. In this example, the special fiber of the
stable model is the union of a curve of genus 1 and a curve of genus (g−1) meeting transversally
in one point. In particular, neither X nor any base-change XL have good reduction, but since
the assumptions of Lemma 2.6 are fulfilled, the GK-representation on Hm

ét (XK ,Q`) is unramified
for all m and all ` 6= p. 2

We stress that these results are well known to the experts, but since we were not able to find
explicit references and explicit examples, we decided to include them here.

2.5 Higher genus curves, part 2
If X is a smooth and proper curve of genus at least 2 over K, then one can also study the outer
GK-representation on its étale fundamental group, which turns out to detect good reduction.
More precisely, there exists a short exact sequence of étale fundamental groups

1→ πét
1 (XK)→ πét

1 (X)→ GK → 1.

For every prime `, this exact sequence gives rise to a well-defined homomorphism from GK to the
outer automorphism group of the pro-`-completion πét

1 (XK)` of the geometric étale fundamental
group

ρ` : GK −→ Out(πét
1 (XK)`).
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In analogy to Definition 2.3, we will say that this representation is unramified if ρ`(IK) = {1}.
We note that the GK-representation on H1

ét(XK ,Q`) arises from the residual action of ρ` on
the Abelianization of πét

1 (XK)`. After these preparations, we have the following Néron–Ogg–
Shafarevich type theorem for curves of higher genus, which is in terms of fundamental groups
rather than cohomology groups.

Theorem 2.8 (Oda [Oda95, Theorem 3.2]). Let X be a smooth and proper curve of genus at
least 2 over K. Then X has good reduction if and only if the outer Galois action ρ` is unramified
for one (respectively all) ` 6= p.

3. K3 surfaces and their models

In this section, we first introduce the crucial Assumption (?), which ensures the existence of
suitable models for K3 surfaces. These models have been studied by Kulikov, Nakkajima, Persson,
and Pinkham. Following ideas of Maulik, we show how Assumption (?) would follow from a
combination of potential semi-stable reduction (which is not known in mixed characteristic, but
expected) and the semi-stable minimal model program (MMP) in mixed characteristic. Then we
give some conditions under which Assumption (?) does hold. After that, we shortly review the
second named author’s results on potential good reduction of K3 surfaces. Finally, we show by
example that these results do not carry over to Enriques surfaces. Most of the results of this
section are probably known to the experts.

3.1 Kulikov–Nakkajima–Persson–Pinkham models
We first introduce the crucial assumption that we shall make from now on.

Assumption (?). A K3 surface X over K satisfies Assumption (?) if there exists a finite field
extension L/K such that XL admits a semi-stable model X → SpecOL (in the sense of Definition
2.1) such that ωX/OL is trivial.

Here, we equip X with its standard log structure X log and define the relative canonical sheaf
ωX/OL to be

∧2 Ω1
X log/Olog

L

using log differentials. Since X log is log smooth over OL, the sheaf

ωX/OL is invertible; see also the discussion in [Mat15, § 3].
The main reason why Assumption (?) is not known to hold is that potential semi-

stable reduction is not known: using resolution of singularities in mixed characteristic
(recently announced by Cossart and Piltant [CP14]) and embedded resolution of singularities
(Cossart et al. [CJS13]), we obtain a model X , whose special fiber X0 has simple normal crossing
support, but whose components may have multiplicities. At the moment, it is not clear how to
get rid of these multiplicities after base change, unless all of them are prime to p. In case the
residue characteristic is zero, these results are classically known to hold; see the discussion in
[KM98, § 7.2] for details.

The following result, which is inspired by Maulik’s approach and ideas from [Mau14, § 4],
shows that Assumption (?) essentially holds once we assume potential semi-stable reduction.
More precisely, we have the following.

Proposition 3.1. Assume p 6= 2, 3. Let X be a K3 surface over K and assume that there exists:

(i) a finite field extension L′/K; and

(ii) a smooth surface Y over L′ that is birationally equivalent to XL′ ; and

(iii) a scheme model Y → SpecOL′ of Y with semi-stable reduction.

Then X satisfies Assumption (?).

7
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Proof. Let Y → SpecOL′ be as in the statement. Since p 6= 2, 3, Kawamata’s semi-stable MMP
[Kaw94] (see also [KM98, § 7.1] for p = 0) produces a scheme Z → SpecOL′ with nef relative
canonical divisor KZ/OL′ that is a model of a smooth proper surface birationally equivalent
to XL′ , and such that Z is regular outside a finite set Σ of terminal singularities. We refer to
[Kaw94, § 1] for details and the definition of KZ/OL′ , which is a Weil divisor. We also note that
it coincides with the Weil divisor class associated to the relative canonical divisor ωZ/OL′ , see,
for example, [Mat15, § 3].

Since XL′ is a minimal surface and KZ/OL′ is nef, the generic fiber of Z is actually isomorphic
to XL′ , and it follows that KZ/OL′ is trivial. Outside Σ, this model is already a semi-stable model.
From the classification of terminal singularities in [Kaw94, Theorem 4.4] and the fact that KZ/OL′

is Cartier at points of Σ (since it is trivial), it follows that the geometric special fiber (Z0)k is
irreducible around points of Σ, and that it acquires RDP singularities in these points. Thus,
after some finite field extension L/L′, there exists a simultaneous resolution X → SpecOL of
these singularities by [Art74, Theorem 2]. This X may exist only as an algebraic space, and it
satisfies Assumption (?). 2

As already mentioned above, the assumptions are fulfilled if p = 0; see [KKMS73, ch. 2] or
the discussion in [KM98, § 7.2]. If p 6= 0, then they are fulfilled for K3 surfaces that admit a very
ample invertible sheaf L with p > L2 + 4 by a result of Maulik [Mau14, § 4]. With some extra
work, the condition ‘very ample’ can be weakened to ‘ample’ (see [Mat15, argument following
Lemma 3.1]) and Theorem 1.2 follows. Thus we have the following result.

Theorem 3.2 (= Theorem 1.2). Let X be a K3 surface over K and assume that p = 0 or that
X admits an ample invertible sheaf L with p > L2 + 4. Then X satisfies Assumption (?).

Over C, Kulikov [Kul77], Persson [Per77], and Pinkham and Persson [PP81] classified the
special fibers of the models asserted by Assumption (?). We refer to [Mor81, § 1] and [KK98, ch. 5]
for overview, and to Nakkajima’s extension [Nakk00] of these results to mixed characteristic.

3.2 Potential good reduction of K3 surfaces
Now, if X is a K3 surface over K that satisfies Assumption (?), then there exists a finite field
extension L/K and a model X → SpecOL of XL as asserted by Assumption (?). If the GK-
representation on H2

ét(XK ,Q`) is unramified, then the weight filtration on H2
ét(XK ,Q`) that

arises from the Steenbrink–Rapoport–Zink spectral sequence (see [Ste76], [RZ82, Satz 2.10],
and [Naka00, Proposition 1.9] for details) is trivial. Together with a result of Persson [Per77,
Proposition 3.3.6], this implies that the special fiber of X is smooth, that is, XL has good
reduction. Thus we obtain the following result of the second named author and we refer to
[Mat15] for details and a detailed proof.

Theorem 3.3 (Matsumoto). Let X be a K3 surface over K that satisfies Assumption (?). If
the GK-representation on H2

ét(XK ,Q`) is unramified for one ` 6= p, then X has potential good
reduction.

3.3 Enriques surfaces
The previous theorem does not generalize to other classes of surfaces with numerically trivial
canonical sheaves. For example, the GK-representation on `-adic cohomology of an Enriques
surface can neither exclude nor confirm any type in the Kulikov–Nakkajima–Persson–Pinkham
list for these surfaces. More precisely, we have the following.
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Lemma 3.4. Let Y be an Enriques surface over K. Then there exists a finite extension L/K
such that the GL-representation on Hm

ét (YK ,Q`) is unramified for all m and all ` 6= p.

Proof. We only have to show something for m = 2. But then the first Chern class induces a
GK-equivariant isomorphism

NS(YK)⊗Z Q`
c1−→ H2

ét(YK ,Q`)(1).

After passing to a finite extension L/K, we may assume that NS(YL) = NS(YK). But then
the GL-representation on NS(YL) is trivial; hence it is also trivial on H2

ét, and, in particular,
unramified. 2

Moreover, the next example shows that also the GK-representation on the `-adic cohomology
of the K3 double cover X of an Enriques surface Y does not detect potential good reduction
of Y . This phenomenon is related to flower pot degenerations of Enriques surfaces, see [Per77,
§ 3.3] and [Per77, Appendix 2].

Example 3.5. Fix a prime p > 5. Consider P5
Zp with coordinates xi, yi, i = 0, 1, 2, and inside it

the complete intersection of three quadrics

X :=


x2

1 −x2
2 +y2

0 −y2
2 = 0

x2
0 −x2

2 +y2
1 −y2

2 = 0

x2
0 −e2x2

1 +x2
2 −p2y2

2 = 0,

where e ∈ Z×p satisfies e2 6≡ 0, 1, 2 mod p (for example, we could take e = 2). Then ı : xi 7→ xi,
yi 7→ −yi defines an involution on P5

Zp , which induces an involution on X . We denote by X the

generic fiber of X , and by Y := X/ı the quotient by the involution.

Theorem 3.6. Let p > 5 and let X → Y be as in Example 3.5. Then Y is an Enriques surface
over Qp, such that:

(i) the K3 double cover X of Y has good reduction;

(ii) the GQp-action on H2
ét(XQp

,Q`) is unramified for all ` 6= p;

(iii) Y has semi-stable reduction of flower pot type; but

(iv) Y does not have potential good reduction.

Proof. A straightforward computation shows that X is smooth over Qp, and that ı acts without
fixed points on X. Thus X is a K3 surface and Y is an Enriques surface over Qp. The special
fiber of X is a non-smooth K3 surface with four RDP singularities of type A1 located at [0 :
0 : 0 : ±1 : ±1 : 1]. Then the blow-up X ′1 → X of the Weil divisor {x0 − ex1 = x2 − py2 = 0}
defines a simultaneous resolution of the singularities of X → SpecZp, and we obtain a smooth
model of X over Zp. In particular, X has good reduction over Qp and the GQp-representation
on H2

ét(XQp
,Q`) is unramified for all ` 6= p.

Next, let X ′2→ X be the blow-up of the four singular points of the special fiber. Then ı extends
to X ′2, and the special fiber is the union of four divisors Ei with the minimal desingularization
X ′p of the special fiber of X . The fixed locus of ı on X ′p is the union of the four (−2)-curves of the
resolution. Moreover, there exist isomorphisms Ei ∼= P1 × P1 such that ı acts by interchanging
the two factors. Thus the quotient X ′2/ı is a model of Y over Zp, whose special fiber is a rational
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surface X ′p/ı (a so-called Coble surface) meeting transversally four P2’s, that is, a semi-stable
degeneration of flower pot type (see, [Per77, § 3.3]).

Seeking a contradiction, we assume that Y has potential good reduction. Then there exists
a finite extension L/Qp and a smooth model Y → SpecOL of YL. Let X3 → Y → SpecOL be
its K3 double cover, which is a family of smooth K3 surfaces with generic fiber XL, whose fixed
point free involution specializes to a fixed point free involution in the special fiber of X3.

Now, X3 and the base-change of X ′1 to OL both are smooth models of XL. The isomorphism
of generic fibers extends to a birational map of special fibers. The involution on generic fibers
extends to rational involutions of the two special fibers, compatible with the just established
birational map. Since both special fibers are K3 surfaces, the birational maps and rational
involutions extend to isomorphisms and involutions. However, in one special fiber the involution
acts without fixed points, whereas it has four fixed curves in the other, which contradicts the
assumption. 2

4. Existence and termination of flops

Let X be a smooth and proper surface over K with numerically trivial canonical sheaf and
assume that we have a smooth model X → SpecOK . Now, if L is an ample invertible sheaf on
X, then its specialization L0 to the special fiber may not be ample, and not even be nef. In this
section, we show that there exists a finite sequence of birational modifications (flops) of X , such
that we eventually arrive at a smooth model X+

→ SpecOK of X, such that the restriction of
L to the special fiber of X+ is big and nef. We end this section by showing that any two smooth
models of X over OK are related by a finite sequence of flopping contractions and their inverses.

We start by adjusting [KM98, Definition 3.33] and [KM98, Definition 6.10] to our situation.

Definition 4.1. Let X be a smooth and proper surface over K with numerically trivial ωX/K
that admits a smooth model X → SpecOK . Then we have the following.

(i) A proper and birational morphism f : X → Y over OK is called a flopping contraction if Y
is normal and if the exceptional locus of f is of codimension at least two.

(ii) If D is a Cartier divisor on X , then a birational map X 99K X+ over OK is called a D-flop if
it decomposes into a flopping contraction f : X → Y followed by (the inverse of) a flopping
contraction f+ : X+

→ Y such that −D is f -ample and D+ is f+-ample, where D+ denotes
the strict transform of D on X+. If L is an invertible sheaf on X , we similarly define an
L-flop.

(iii) A morphism f+ as in (2) is also called a flop of f .

In general, one also has to assume that ωX/OK is numerically f -trivial in the definition of a
flopping contraction. However, in our situation this is automatic. Also, a flop of f , if it exists,
does not depend on the choice of D by [KM98, Corollary 6.4] and [KM98, Definition 6.10]. This
justifies talking about flops without referring to the divisor D.

4.1 Existence of flops
The following is an adaptation of Kollár’s proof [Kol89, Proposition 2.2] of the existence of 3-fold
flops over C to our situation, which deals with special flops in mixed characteristic.

Proposition 4.2 (Existence of flops). Let X be a smooth and proper surface over K with
numerically trivial ωX/K that has a smooth model X → SpecOK . If L is an ample invertible
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sheaf on X and C is an integral (but not necessarily geometrically integral) curve on the special
fiber X0 with L0 · C < 0, then there exists a flopping contraction f : X → X ′ and its L-flop
f+ : X+

→ X ′ with the following properties:

(i) f contracts C and no other curves;

(ii) X+
→ SpecOK is a smooth model of X;

(iii) f and f+ induce isomorphisms of generic fibers;

(iv) L+
0 · C+ > 0, where L+ denotes the extension of L on X+, and where C+ denotes the

flopped curve (that is, the exceptional locus of f+).

Proof. Since L is ample, L⊗n is effective for n � 0, and thus also its specialization L⊗n0 to the
special fiber X0 is effective. In particular, L0 has positive intersection with every ample divisor
on X0, that is, L0 is pseudo-effective. Thus there exists a Zariski–Fujita decomposition on (X0)k

(L0)k = P +N,

where P is nef, and where N is a sum of effective divisors, whose intersection matrix is
negative definite; see, for example, [Băd01, Theorem 14.14]. Since ωX0/k is numerically trivial,
the adjunction formula shows that every reduced and irreducible curve in N is a P1 with
self-intersection −2, that is, a (−2)-curve. Moreover, negative definiteness and the classification
of Cartan matrices implies that N is a disjoint union of ADE curves. Next, k is perfect and since
the Zariski–Fujita decomposition is unique, it is stable under Gk, and thus descends to X0.

After these preparations, let C be as in the statement, that is, L0 · C < 0. First, we want
to show that there exists a morphism f : X → X ′ of algebraic spaces that contracts C. Being
contained in the support of N , the base-change Ck ⊂ (X0)k is a disjoint union of ADE curves.
Since C2 < 0, Artin showed that there exists a morphism of projective surfaces over k

f0 : X0→ X ′0

that contracts C and nothing else (see [Băd01, Theorem 3.9], for example). Since Ck is a union
of ADE-curves, it follows that (X ′0)k has RDP singularities, which are rational and Gorenstein.
Thus also X ′0 has rational Gorenstein singularities.

For all n > 0, we define

Xn := X ×SpecOK Spec(OK/mn+1).

Since f0 is a contraction with R1f0∗OX0 = 0, there exists a blow-down fn : Xn→ X ′n that extends
f0, see [CvS09, Theorem 3.1]. Passing to limits, we obtain a contraction of formal schemes

f̂ : X̂ → X̂ ′.

By [Art70, Theorem 3.1], there exists a contraction of algebraic spaces

f : X → X ′,

whose completion along their special fibers coincides with f̂ . In particular, f is an isomorphism
outside C and contracts C to a singular point w ∈ X ′.

Let ŵ be the formal completion of X ′ along w, and let

Ẑ → ŵ
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be the formal fiber over f̂ . Then ŵ is a formal affine scheme, say Spf R, and let k′ be the residue
field, which is a finite extension of k. Let OK′ be the unramified extension of OK corresponding
to the field extension k ⊆ k′. Since k ⊆ k′ is separable, k′ arises by adjoining a root α of some
monic polynomial f with values k. After lifting f to a polynomial with values in OK , and using
that R is Henselian, we can lift α to R, which shows that OK′ is contained in R. In particular,
we can view R as a local OK′-algebra without residue field extension – we denote by R̃ the ring
R considered as OK′-algebra.

Then the special fiber of Spf R̃ is a rational singularity of multiplicity 2, and thus, by [Lip69,
Lemma 23.4], the completion of the local ring of the special fiber is of the form

k′[[x, y, z]]/(h′(x, y, z)). (1)

Using Hensel’s lemma, we may assume after a change of coordinates that the power series h′(x,
y, z) is of the form z2−h1(x, y)z−h0(x, y) for some polynomials h0(x, y), h1(x, y). Using Hensel’s
lemma again, the completion of R̃ is of the form

ÔK′ [[x, y, z]]/(z2 −H1(x, y)z −H0(x, y)) (2)

where Hi(x, y) is congruent to hi(x, y) modulo the maximal ideal of ÔK′ for i = 1, 2; see also
[Kaw94, Theorem 4.4]. (If p 6= 2, we may even assume h1 = 0 and H1 = 0.) We denote by
t′ : Spf R̃→ Spf R̃ the involution induced by z 7→ H1(x, y) − z. It is not difficult to see that t′

induces −id on local Picard groups, see, for example, [Kol89, Example 2.3]. Since R is equal to
R̃ considered as rings, we have established an involution t : ŵ → ŵ that induces −id on local
Picard groups. We denote by

Ẑ+
→ ŵ

the composition t ◦ f̂ . By [Kol89, Proposition 2.2], this gives the desired flop formally.
By [Art70, Theorem 3.2], there exists a dilatation f+ : X+

→ X ′ of algebraic spaces, such that
the formal completion of X+ along the exceptional locus of f+ is given by the just-constructed
Ẑ+
→ ŵ. Thus there exists a birational and rational map

ϕ : X 99K X+,

which is an isomorphism outside C. From the glueing construction it is clear that X+ is a smooth
model of X over OK . Finally, from the formal picture above, it is clear that the restriction of
L+ to X+

0 has positive intersection with the flopped curve C+. 2

4.2 Termination of flops
Having established the existence of certain flops in mixed characteristic, we now show that there
is no infinite sequence of them. To do so, one can adjust the proof of termination of flops from
[KM98, Theorem 6.17 and Corollary 6.19] over C to our situation. Instead, we give another
argument that was kindly suggested to us by the referee.

We keep the notation and assumptions of Proposition 4.2. Then there are two isomorphisms
between the `-adic cohomology groups of the special fibers X0 and X+

0 .

(i) The first is by composing the comparison isomorphisms relating the cohomology groups of
special and generic fibers of X and X+

α : H2
ét((X+

0 )k,Q`)(1) ∼= H2
ét(XK ,Q`)(1) ∼= H2

ét((X0)k,Q`)(1).
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(ii) Next, the composition ϕ := (f+)−1 ◦ f : X 99K X+ induces a birational and rational map
of special fibers ϕ0 : X0 99K X+

0 , which extends to an isomorphism, since X0 and X+
0 are

minimal surfaces of Kodaira dimension at least 0. Thus we obtain a second isomorphism
via pull-back

ϕ∗0 : H2
ét((X+

0 )k,Q`)(1) ∼= H2
ét((X0)k,Q`)(1).

We note that both isomorphisms respect the intersection product coming from Poincaré
duality, that is, they are isometries. For a (−2)-curve C ′ ⊂ (X0)k, we let [C ′] be the associated
cycle class in H2

ét((X0)k,Q`)(1) and we define the reflection in C ′ to be the isometry

rC′ : H2
ét((X0)k,Q`)(1)→ H2

ét((X0)k,Q`)(1)

x 7→ x+ (x · [C ′])[C ′].

The following lemma compares the isometries α and ϕ∗0 in terms of reflections in (−2)-curves.

Lemma 4.3. We keep the notation and assumptions as in Proposition 4.2 and denote by C1, . . . ,
Cm the connected components of Ck. Then

α ◦ (ϕ∗0)−1 = r1 · · · rm,

where either:

(i) the connected components Ci are disjoint (−2)-curves and ri = rCi ; or

(ii) each Ci is the union of two (−2)-curves Ci,1 and Ci,2 intersecting in one point and ri =
rCi,1rCi,2rCi,1 = rCi,2rCi,1rCi,2 .

Proof. First, we consider the case, where C is geometrically integral. Let Z ⊂ X ×OK X+ be the
closure of the diagonal ∆(X) ⊂ X ×K X. Then it is not difficult to see that the isomorphism
α is given by x 7→ pr1,∗([Z0] · pr∗2(x)) (see also Lemma 5.6 below). We set U := X\C and
U+ := X+\C+. Then we have a commutative diagram with exact rows

0 // H2
C+((X+

0 )k,Q`)(1) //

α′

��

H2
ét((X

+
0 )k,Q`)(1) //

α

��

H2
ét((U

+
0 )k,Q`)(1) //

α′′

��

0

0 // H2
C((X0)k,Q`)(1) // H2

ét((X0)k,Q`)(1) // H2
ét((U0)k,Q`)(1) // 0

where α′′ is also defined by x 7→ pr1,∗([Z0] · pr∗2(x)) and where α′ is the map induced by α. By
purity, the left terms are one-dimensional and generated by the classes [C] and [C+], respectively.
Moreover, the right terms are canonically isomorphic to the orthogonal complements of the left
terms. Since Z|U×U+ is the graph of the isomorphism ϕ|U : U → U+, it follows that α′′ coincides
with the pull-back by the isomorphism ϕ0|U0 = ϕ|U0 : U0 → U+

0 . Since α is an isometry, so
is α′, and it maps [C+] either to [C] or to −[C]. From α(L+

0 ) · α(C+) = L+
0 · C+ > 0 and

α(L+
0 ) · C = L0 · C < 0, we conclude α([C+]) = −[C]. Putting these observations together, we

find α ◦ (ϕ∗0)−1 = rC .
Now, we consider the general case. Since the absolute Galois group Gk acts transitively on

the m connected components, they are mutually isomorphic. Since the flops in the disjoint Ci
commute, we may assume m = 1. As shown in the proof of Proposition 4.2, C1 = Ck is an ADE
configuration of (−2)-curves. Since Gk acts on the irreducible components of Ci transitively,
it is not difficult to see from the classification of Dynkin diagrams that only configurations of
type A1 and A2 can occur. We already treated the A1 case above and thus we may assume an
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A2-configuration, that is, Ck = C1 = C1,1 ∪ C1,2. Passing to a finite unramified extension K ′/K
corresponding to an extension k′/k over which C splits, we consider the following diagram of
flops and models over OK′ :

X ϕ1 //

ϕ2   

X 1 ϕ2 // X 12 ϕ1 // X 121

X 2 ϕ1 // X 21 ϕ2 // X 212

where ϕj denotes the flop at C1,j or at the corresponding curve on other models (note that
our flops induce isomorphisms between the special fibers). A straightforward computation
shows that rC1,1rC1,2rC1,1 and rC1,2rC1,1rC1,2 both act as −id on the one-dimensional subspace
spanned by [C1,1] + [C1,2] inside H2

ét((X0)k,Q`)(1) and as id on its orthogonal complement.
Thus ϕ1ϕ2ϕ1 : X 99K X 121 and ϕ2ϕ1ϕ2 : X 99K X 212 both satisfy the conditions of the flop of
the contraction f . Hence, they coincide by the uniqueness of flops, and we set ϕ := ϕ1ϕ2ϕ1 =
ϕ2ϕ1ϕ2 : X 99K X+. Clearly, ϕ descends to OK and coincides with the flop in C established in
Proposition 4.2. 2

We define a generalized (−2)-curve on a smooth and proper surface X over a perfect field
k to be an integral (but not necessarily geometrically integral) curve C ⊂ X such that Ck =
C1 ∪ · · · ∪Cm is a disjoint union of ADE curves of type A1 or A2. We note that C2 = −2m, that
is, such curves are not necessarily of self-intersection −2. Moreover, we define the reflection rC
in NS(X) or H2

ét(Xk,Q`)(1) to be equal to r1 · · · rm as in Lemma 4.3, which is equal to the map
x 7→ x+

∑m
i=1(x · [Ci])[Ci]. The following lemma is essentially [Huy16, Remark 8.2.13].

Lemma 4.4. Let X be a smooth and projective surface over a perfect field with numerically
trivial canonical sheaf, and let x ∈ NS(X) be a nonzero effective class with x2 > 0.

(i) If x is not nef, then there exists a generalized (−2)-curve C with C · x < 0 and then rC(x)
is non-zero and effective.

(ii) We define a sequence in NS(X) by setting x0 := x and if xi is not nef, then we choose a
generalized (−2)-curve Ci with Ci · xi < 0 and set xi+1 := rCi(xi). Then {xi} is a finite
sequence of non-zero and effective classes in NS(X) and the last class is nef.

Proof. Using the Zariski–Fujita decomposition of x (see the proof of Proposition 4.2) and Lemma
4.3, we see that if x is not nef, then a generalized (−2)-curve C with C ·x < 0 indeed exists. Since
Abelian and bielliptic surfaces do not admit smooth rational curves, we may assume that X is
a K3 surface or an Enriques surface. Since rC(x)2 = x2 > 0, it follows from the Riemann–Roch
theorem that either rC(x) or −rC(x) is effective. Let C1, . . . , Cm be the connected components
of Ck. Then we find x · rC(x) = x2 +

∑
i(x · Ci)2 > 0, from which it follows that x and rC(x)

belong to the same component of the cone {y ∈ NS(X)R : y2 > 0}, and thus rC(x) is effective.
This establishes assertion (i).

To show assertion (ii), we fix an ample class H of X and let C1, . . . , Cm be the connected
components of Ck. Since Gk acts transitively on these components, we find x · Ci = (1/m)x · C
and H · Ci = (1/m)H · C, from which we conclude

rC(x) ·H =

(
x+

m∑
i=1

(x · Ci)Ci
)
·H = x ·H +

1

m
(x · C)(H · C) < x ·H,
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since x ·C < 0 by assumption and H ·C > 0 by ampleness of H. Therefore, if {xi} ∈ NS(X) is as
in assertion (ii), then {xi ·H} is a strictly decreasing sequence of positive integers. In particular,
it must be of finite length, and its last class must be nef. 2

After these preparations, we obtain the following.

Proposition 4.5 (Termination of flops). Let (X,L) and X → SpecOK be as in Proposition 4.2.
Then every sequence of flops as in Proposition 4.2 is finite. In particular, after a finite sequence

(X ,L) 99K (X+,L+) 99K (X+2,L+2) 99K · · · 99K (X+N ,L+N )

of flops we arrive at a smooth model (X+N ,L+N ) of X over OK such that the specialization
L+N

0 is big and nef.

Proof. Let · · · 99K (X+i,L+i) 99K · · · be a sequence of flops in generalized (−2)-curves Ci ⊂
(X+i)0 as asserted by Proposition 4.2 and Lemma 4.3. Moreover, we have [L+(i+1)

0 ] = [rCi(L+i
0 )]

by Lemma 4.3. By Lemma 4.4, this sequence is finite and L+N
0 is nef. 2

4.3 Morphism to a projective scheme
In the situation of Proposition 4.5, we obtain a birational morphism to a projective scheme as
follows.

Proposition 4.6. Let X be a smooth and proper surface over K with numerically trivial ωX/K
that admits a smooth model X → SpecOK . Let L be an ample invertible sheaf on X and assume
that L0 is big and nef. Then the natural and a priori rational map

π : X → X ′ := Proj
⊕
n>0

H0(X ,L⊗n)

is a morphism over SpecOK to a projective scheme. More precisely:

(i) π is a flopping contraction and induces an isomorphism of generic fibers;

(ii) the induced morphism on special fibers π0 : X0 → X ′0 is birational and contracts precisely
those curves that have zero-intersection with L0. In particular, (X ′0)k is a proper surface
with at worst RDP singularities and π0 is the minimal resolution of singularities.

Proof. Note that also ωX0/k is numerically trivial. Since L0 is big and nef, we obtain a proper
and birational morphism

$ : X0→W := Proj
⊕
n>0

H0(X0,L⊗n0 ).

Base-changing to (X0)k, the induced morphism $k contracts an integral curve C if and only if
it has zero-intersection with L0. Since the intersection matrix formed by contracted curves is
negative definite, and since an integral curve with negative self-intersection on a surface with
numerically trivial canonical sheaf over an algebraically closed field is a (−2)-curve, it follows
from the classification of Cartan matrices, that Wk has at worst RDP singularities.

Now, L⊗n0 is of degree 0 on contracted curves for all n, and over k, these curves are ADE
curves. Thus we find R1$∗L⊗n0 = 0 for all n > 0, which implies H1(X0,L⊗n0 ) = H1(W,OW (n)) for
all n > 0, and note that the latter term is zero for n� 0 by Serre vanishing. Replacing L by some
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sufficiently high tensor power will not change $, and then we may assume that H1(X0,L⊗n0 ) = 0

for all n > 1. If f : X → SpecOK denotes the structure morphism, then semi-continuity and the

previous vanishing result imply R1f∗L⊗n = 0 for all n > 1. Thus global sections of L⊗n0 extend

to L⊗n, and since the former is globally generated for n� 0 so is the latter. Thus we obtain a

morphism of algebraic spaces over SpecOK

π : X → X ′ := Proj
⊕
n>0

H0(X ,L⊗n).

Since L is ample on X, π induces an isomorphism of generic fibers. Moreover, we can identify

the induced map π0 on special fibers with $ : X0→W from above. 2

4.4 Birational relations among smooth models

As an application of existence and termination of flops, Kollár [Kol89, Theorem 4.9] showed that

any two birational complex threefolds with Q-factorial terminal singularities and nef canonical

classes are connected by a finite sequence of flops.

We have the following analog in our situation, but since we are dealing with algebraic spaces

rather than projective schemes (which is analogous to the case of analytic threefolds in [Kol89]),

the flops as defined above do not suffice. We only show that two smooth models are connected

by flopping contractions and their inverses.

Proposition 4.7. Let X be a smooth and proper surface over K with numerically trivial ωX/K
that has good reduction. If Xi→ SpecOK are two smooth models of X, then:

(i) the special fibers of X1 and X2 are isomorphic; and

(ii) X1 and X2 are connected by a sequence of birational rational maps that are compositions

of flopping contractions and their inverses.

Proof. The special fibers of X1 and X2 are birational by the Matsusaka–Mumford theorem

[MM64, Theorem 2], and since they are minimal surfaces of Kodaira dimension at least 0, they

are isomorphic. (Note that this statement also follows from the much more detailed analysis

below.)

Now, choose an ample invertible sheaf L on X. By Proposition 4.5, there exist finite sequences

of flops Xi 99K · · · 99K Yi, i = 1, 2, such that L restricts to big and nef invertible sheaves on the

special fibers of Yi.
Applying Proposition 4.6 to our models Yi, we obtain flopping contractions

Yi→ Y ′i := Proj
⊕
n>0

H0(Yi,L⊗n).

Now, L is ample on Y ′i. Moreover, the Y ′i are normal projective schemes and birational outside a

finite number of curves in their special fibers. In fact, there exists a birational and rational map

between them that is compatible with L. Thus, by [Kov09, Theorem 5.14], this birational map

extends to an isomorphism, and then we obtain a birational map Y1 99K Y2 with decomposition

Y1→ Y ′1 ∼= Y ′2← Y2 of the required form.

Putting all these birational modifications together, we have connected X1 and X2 by a

sequence of birational maps of the required form. 2
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5. Group actions on models

In this section, we study group actions on models. More precisely, we are given a smooth and
proper surface X over K with numerically trivial ωX/K , a finite field extension L/K, which is
Galois with group G, and a smooth proper model X → SpecOL of XL. Then we study the
following questions.

(i) Does the G-action on XL extend to X ?

(ii) If so, is the special fiber (X/G)0 of the quotient equal to the quotient X0/G of the special
fiber?

It turns out, that the answer to question (i) is ‘yes’, when allowing certain birational
modifications of the model, and in question (ii), it turns out that the case where p 6= 0 and
p divides the order of G (wild group actions) is subtle.

5.1 Extending group actions to a possibly singular model
Given a smooth and proper surface X over K with numerically trivial ωX/K that admits a model
X with good reduction after a finite Galois extension L/K with group G, we first show that the
G-action extends to a (mild) birational modification of X .

Proposition 5.1. Let X be a smooth and proper surface over K with numerically trivial ωX/K .
Assume that there exist:

(i) a finite Galois extension L/K with Galois group G; as well as

(ii) a smooth model X → SpecOL of XL; and

(iii) an ample invertible sheaf L on X, whose pull-back to XL restricts to an invertible sheaf on
the special fiber X0 that is big and nef.

Then there exists a proper birational morphism π

X

��

π // X ′

xx
SpecOL

of algebraic spaces over OL, such that the following hold.

(i) The natural G-action on XL extends to X ′ and is compatible with the G-action on OL.

(ii) The algebraic space X ′ is a projective scheme over SpecOL.

(iii) The generic fibers of X and X ′ are isomorphic via π, whereas the induced morphism on
special fibers π0 : X0 → X ′0 is birational and projective, such that the geometric special
fiber (X ′0)k has at worst RDP singularities.

Moreover, if π is not an isomorphism, then X ′ is not regular.

Proof. Since X is regular, the pull-back of L to XL extends to an invertible sheaf on X . By
abuse of notation, we shall denote the pull-back to XL and its extension to X again by L.
By assumption, the restriction L0 of L to the special fiber X0 is big and nef. Note that ωX0/k is
numerically trivial. Let

π : X → X ′ := Proj
⊕
n>0

H0(X ,L⊗n)
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be the morphism of algebraic spaces over OL given by Proposition 4.6. Then π has all the
properties asserted in claim (iii) of the proposition. Clearly, X ′ is a projective scheme over
SpecOL, and if π is not an isomorphism, then the exceptional locus is non-empty and of
codimension 2, which implies that X ′ cannot be regular by van der Waerden purity; see, for
example, [Liu02, Theorem 7.2.22].

It remains to establish the G-action on X ′. Since L is a G-invariant invertible sheaf on XL,
we have an induced G-action on H0(XL,L⊗n) for all n > 0. We will show that this extends
to an action on H0(X ,L⊗n). First, we show that there exists a closed subspace Z ⊂ X of
codimension at least 2 that is contained in X0, such that the G-action on XL extends to an
action on U := X\Z. Since every birational rational map between two normal algebraic spaces
is an isomorphism outside a closed subspace of codimension at least 2, there exists for every
g ∈ G a closed subspace Zg ⊂ X of codimension at least 2 that is contained in X0 and such
that g : XL → XL extends to g : X\Zg → X . Since X0 is a minimal surface, the restriction
g|X0\Zg : X0\Zg→ X0 to the special fiber extends to an automorphism g : X0→ X0. This defines
a G-action on X0. Let Z ′ :=

⋃
g∈GZg and Z :=

⋃
g∈G g(Z ′), where g(Z ′) is the image by the

action just defined. Since G is a finite group, Z is closed. This Z satisfies the above condition,
for otherwise there exists a g ∈ G, such that the image of g : X\Z → X is not contained in X\Z,
or, equivalently g−1(Z) 6⊂ Z. However, since Z is G-stable, this cannot happen. Thus we obtain
a G-action on U = X\Z.

If s is a global section of L⊗n over X and σ ∈ G, then σ(s|U ) is a well-defined global section
of L⊗n over U = X\Z. Since L⊗n is a reflexive sheaf on a regular algebraic space, σ(s|U ) extends
uniquely to a global section of L⊗n over X . Thus we obtain a G-action on H0(X ,L⊗n), which
gives rise to a G-action on X ′ that is compatible with the G-action on OL, as well as with the
natural G-action on XL. 2

Remark 5.2. If all assumptions of Proposition 5.1 except assumption (iii) are satisfied, then
Proposition 4.5 shows that there exists another smooth model of X over SpecOL for which all
assumptions including assumption (iii) hold, and to which we can apply Proposition 5.1.

5.2 Examples where the action does not extend
In general, it is too much to ask for an extension of the G-action from XL to X (notation as in
Proposition 5.1). The following example is typical.

Example 5.3 (Arithmetic 3-fold flop). Consider Qp with p 6= 2 and set L := Qp($), where
$2 = p. Then L/Qp is Galois with group G = Z/2Z and the non-trivial element of G acts
as $ 7→ −$. We equip

X ′ := SpecOL[[x, y, z]]/(xy + z2 −$2)→ SpecOL
with the G-action that is the Galois action on OL, and that is trivial on x, y, z. It is easy to
see that the induced G-action on the special fiber X ′0 is trivial. Next, we consider the two ideal
sheaves I± := (x, y, z ±$) of OX ′ and their blow-ups

π± : X± −→ X ′.
Then X± are regular schemes, X ′ is singular at the closed point (x, y, z,$), π± are both
resolutions of singularities, and the exceptional locus is a P1 in both cases. The ideals I± are
not G-invariant and the G-action on X ′ does not extend to that on X+ nor on X−. (Instead, the
non-trivial element of G induces an isomorphism X+→ X−.) In fact, X ′ is an arithmetic version
of a 3-fold ordinary double point, and the rational map X+ 99K X− is an arithmetic version of
the classical Atiyah flop.
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Even worse, the following example (which is a modification of Example 7.1 below, and rests

on examples from [Mat15, § 5.3] and [vanL07, § 3]) shows that if we have a G-action on a singular

model X ′ as in Proposition 5.1, then there may exist resolutions of singularities to which the

G-action extends, as well as resolutions to which the G-action does not extend. Moreover,

our examples are models of K3 surfaces, that is, such phenomena are highly relevant for our

discussion.

Example 5.4. Before giving explicit examples, let us explain the strategy, again, for K = Qp and

k = Fp in this example.

Assume p 6= 2, let k′/k be the unique extension of degree 2, let K ′/K be the corresponding

unramified extension, and let G = {1, σ} be the Galois group of both extensions. Next, let

X ′ → SpecOK be a proper scheme such that the geometric special fiber (X ′0)k has only RDP

singularities and at least two of them. Set S := SingX ′0, and assume that all points of S are

k′-rational but not all k-rational. Then G acts non-trivially on S(k′) = S(k). Let us finally

assume that there exist two different resolutions of singularities ψ± : X± → X ′, both of which

are isomorphisms outside S, and both of which are obtained by blowing up ideal sheaves I±
defined over OK . From this setup, we can produce the announced counterexamples.

(i) The Galois action on (X ′)OK′ extends to (X+)OK′ , as well as to (X−)OK′ . Thus there do

exist resolutions of singularities to which the G-action extends.

(ii) On the other hand, for each decomposition S(k′) = S1 t S2, we define ψS1,S2 : XS1,S2 →

(X ′)OK′ to be the morphism that is equal to ψ+ (respectively ψ−) on (X ′)OK′\S2

(respectively on (X ′)OK′\S1). We note that ψS1,S2 is also a resolution of singularities. But

now, if S1 and S2 are not G-stable, then the G-action on (X ′)OK′ does not extend to XS1,S2 ,

but induces an isomorphism from XS1,S2 to Xσ(S1),σ(S2), where σ ∈ G is the non-trivial

element.

We now give explicit examples for p > 5 and K = Qp. Fix a prime p > 5 and choose an
integer d such that d is not a quadratic residue modulo p, and such that d6 6≡ −2−4 · 3−3 mod p
(one easily checks that such d exists). We define the polynomial

φ := x3 − x2y − x2z + x2w − xy2 − xyz + 2xyw + xz2 + 2xzw

+ y3 + y2z − y2w + yz2 + yzw − yw2 + z2w + zw2 + 2w3.

Then we choose a homogeneous polynomial f ∈ Z[x, y, z, w] of degree 3, such that the following
congruences hold:

f ≡ φ mod 2,

f ≡ z(x2 − z2) + w3 mod p.

Next, we choose homogeneous quadratic polynomials 2g, 2h ∈ Z[x, y, z, w], such that the following
congruences hold:

g2 − p2h2 ≡ (z2 + xy + yz)(z2 + xy) mod 2,

g2 − p2h2 ≡ (y2 − dx2)2 mod p.

Finally, we define the quartic hypersurface

X ′ := X ′(p) := {wf + g2 − p2h2 = 0} ⊂ P3
Zp ,
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and denote by X =X(p) its generic fiber. Then X is a smooth K3 surface over Qp. The subscheme
S = SingX ′0 is given by

S = {w = y2 − dx2 = z(x2 − z2) = 0} ⊂ P3
Fp .

Thus we find six RDP singularities on (X ′0)Fp , all of which are defined over Fp2 = Fp[
√
d], and

G = Gal(Fp2/Fp) acts non-trivially on S(k′), since
√
d 6∈ Fp. Finally, the blow-ups ψ± : X±→ X ′

of the ideals I± := (w = g ± ph = 0) are both resolutions of singularities. As explained in the
strategy above, this setup yields the desired examples. (We refer to Remark 7.3 for the reason
why we use this φ.)

5.3 Extending the inertia action to the smooth model
Despite all these discouraging examples, there are situations, in which the G-action on XL does
extend to X , and not merely to a singular model X ′ (notation as in Proposition 5.1). More
precisely, we have the following result.

Proposition 5.5. We keep the notation and assumptions of Proposition 5.1.

(i) If X is an Abelian surface or a hyperelliptic surface, then the G-action on XL extends to
X .

(ii) Let H ⊆ G be a subgroup, whose action on H2
ét(XL,Q`) is trivial (for example, this is the

case if H2
ét(XL,Q`) is unramified and H ⊆ IG). Then the H-action on XL extends to X .

We first introduce cycle class maps in the context of algebraic spaces.

Lemma 5.6. Let X be a proper and smooth algebraic space over the spectrum S = SpecOK of
a strictly Henselian DVR OK , and let Z ⊂ X be a closed subspace of codimension c that is flat
over S. Then the natural isomorphism

H2c
ét ((X0)k,Z/nZ(c))→ H2c

ét (XK ,Z/nZ(c))

maps [Z0] to [ZK ].

Proof. This is immediate if we define a cycle class [Z] in H2c
ét (X ,Z/nZ(c)) in such a way, that it

is compatible with base change S′→ S of base schemes (and thus, in particular, compatible with
restrictions to generic and special fibers). If X is a scheme, this is defined and shown in [SGA41

2 ,

Cycle, Numéro 2.3], and thus it remains to treat the case where X is an algebraic space.
First, let us recall cohomological descent. Let V → Y be an étale covering of schemes. Such a

morphism is of cohomological descent by [SGA4, Proposition Vbis.4.3.3], and we have a spectral
sequence [SGA4, Proposition Vbis.2.5.5]

Ep,q1 := Hq
ét(Vp, a

∗
pF )⇒ Hp+q

ét (Y, F ),

where, for each p > 0, Vp is the (p+1)-fold fibered product of V over Y, and where ap : Vp→ Y is
the structure map. Next, we consider the more general case, where V → Y is an étale covering of
an algebraic space by a scheme. (Note that, then, the Vp are schemes.) We observe that V → Y
is still of cohomological descent (proved in the same way) and we obtain the same spectral
sequence.

After these preliminary remarks, let U → X be an étale covering by a scheme U . Applying
the previous paragraph to the covering U ×X Z → Z and the sheaf R2ci!Z/nZ(c) on Z (where
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i : Z → X is the closed immersion), and using the isomorphism H2c
Z (X ,Z/nZ(c)) ∼= H0(Z,

R2ci!Z/nZ(c)) (this isomorphism is also proved by reducing to the scheme case), we obtain an
isomorphism

Ker(H2c
Z0

(U0,Z/nZ(c))→ H2c
Z1

(U1,Z/nZ(c))) ∼= H2c
Z (X ,Z/nZ(c)),

where Zp = Up ×X Z (note that this is a scheme). We define [Z] ∈ H2c
Z (X ,Z/nZ(c)) to be

[Z0] ∈ H2c
Z0

(U0,Z/nZ(c)) (this class lies indeed in the kernel). Since the cycle map (for schemes)
is étale local, this construction does not depend on the choice of the étale covering U → X .

Compatibility with change of base schemes reduces to the scheme case. 2

Proof of Proposition 5.5. (i) It follows from the assumptions that X0 is a smooth and proper
surface with numerically trivial ωX0/k, and that it has the same `-adic Betti numbers as X.
Thus, by the classification of surfaces (see, for example, [BM77, Theorem 6 and the following
Proposition]), also X0 is Abelian and (quasi-)hyperelliptic, respectively. As seen in the proof of
Proposition 5.1, the (geometric) exceptional locus of π is a union of P1’s with self-intersection
number (−2). Now, there are no rational curves on Abelian varieties. Also, it follows from the
explicit classification and description of (quasi-)hyperelliptic surfaces in [BM77, Proposition 5]
that they do not contain any smooth rational curves. In particular, π must be an isomorphism,
which implies that the G-action extends to X .

(ii) After replacing K by an intermediate extension, we may assume H = G. To show that
the G-action extends, it suffices to show that the σ-action extends for every σ ∈ G. Thus let
σ ∈ G, and after replacing G by the cyclic subgroup generated by σ, we may assume that G is
cyclic, say G = Gal(L/K) ∼= Z/nZ, and generated by σ.

Let U ⊂ X be the maximal open subspace to which the G-action on XL extends. Then, as in
the proof of Proposition 5.1, U contains the generic fiber XL, as well as an open dense subscheme
of the special fiber X0. Let Γ ⊂ X n be the closure of the set {(x, σ(x), . . . , σn−1(x)) | x ∈ U}
in X n. The group G = Z/nZ acts on X n by permutation of the factors, and this action restricted
to ΓL coincides with the natural G-action on XL via pr1 : ΓL

∼
→ XL.

Consider the diagram of G-representations

H2(X n
0

)

·[Γ0]

��

H2(Xn
L

)
∼=oo

((
·[ΓL]

��

H2(ΓL) ∼= H2(XL)

vv
H4n−2(X n

0
) H4n−2(Xn

L
)

∼=oo

(3)

where we omit the coefficients (Tate twists of Q`) of the `-adic cohomology groups from the
notation, and we write Γ0 := (Γ0)k and so on. The triangle on the right is clearly commutative.
The commutativity of the square on the left follows from the fact that the classes [Γ0] and [ΓL]
correspond via the isomorphism H4n−4(X n

0
) ∼= H4n−4(Xn

L
), as proved in Lemma 5.6. Note that

all irreducible components of Γ0 are of dimension 2 (by, for example, [Liu02, Proposition 4.4.16]).
Let π : X → X ′ be as in Proposition 5.1. Let E ⊂ X0 be the exceptional locus of π0 : X0→ X ′0

and Eα be the irreducible components of Ek. Each irreducible component Eα is isomorphic to
P1. Since π0 is a resolution of singularities, the intersection matrix (Eα · Eβ)α,β is negative
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definite (by Hodge index theorem), hence invertible. In particular, if we are given cα ∈ Q` for
α = 1, . . . ,m, such that

∑m
α=1 cαE

α · Eβ = 0 for all β, then cα = 0 for all α = 1, . . . ,m.
Consider the irreducible components of Γ0. First, there is the ‘diagonal’ component, that

is, the closure of the set {(x, σ(x), . . . , σn−1(x)) | x ∈ U0}. If Z is a non-diagonal component
(assuming there is one), then Z is contained in Eα1 × · · · × Eαn for some α1, . . . , αn. From the
Künneth formula and the fact that H∗(P1,Q`) ∼= Q`[P1]⊕Q`[pt], it follows that the cycle class
[Z] ∈ H4n−4(X n

0
) is a non-zero Z>0-combination of [Eγi × Eδj × ptn−2] with i 6= j, where

Eγi × E
δ
j × ptn−2 := · · · × Eγ × · · · × Eδ × · · ·

(the ith component is equal to Eγ , the jth component is equal to Eδ, and the remaining
components are equal to a point). Hence, if we set [Γ0]nondiag := [Γ0] − [diag], then there exist
ci,j,γ,δ ∈ Z>0 such that

[Γ0]nondiag =
∑
i,j,γ,δ

ci,j,γ,δ[E
γ
i × E

δ
j × ptn−2] ∈ H4n−4(X n

0
). (4)

We have ci,i,γ,δ = 0 for all i, γ, δ.
We want to show [Γ0]nondiag = 0. For this, we will use the assumption that the G-action on

H2(XL) is trivial. Using the commutative diagram (3), we see that the map · [Γ0] : H2(X n
0

)→

H4n−2(X n
0

) factors through H2(XL), and thus every element in its image is G-invariant. In

particular, for all α and i, the cycle [Eαi ×X
n−1
0

] · [Γ0] ∈ H4n−2(X n
0

) is G-invariant, where

Eαi ×X n−1
0

:= · · · × Eα × · · ·

(the ith component is equal to Eα and the remaining components are equal to X0). Now, G acts

by σ : [Eβj ×X
n−1
0

] 7→ [Eβj+1 ×X
n−1
0

], which implies that for all β, the cycle [Eαi ×X
n−1
0

] · [Γ0] ·
[Eβj × X

n−1
0

] ∈ H4n(X n
0

) ∼= Q` is independent of j. Since [Eαi × X
n−1
0

] · [diag] · [Eβj × X
n−1
0

] is

equal to Eα · Eβ, it is also independent of j, and thus [Eαi × X
n−1
0

] · [Γ0]nondiag · [Eβj × X
n−1
0

] is
independent of j for all β. In order to compute its value, we use (4) and find

[Eαi ×X n−1
0

] · [Γ0]nondiag · [Eβj ×X
n−1
0

] =
∑
γ,δ

(ci,j,γ,δ + cj,i,δ,γ)(Eγ · Eα)(Eδ · Eβ).

Since ci,i,γ,δ = 0 for all i, this sum is zero for i = j. Since it is independent of j, this sum is zero
for all i, j. Using invertibility of the matrix (Eα ·Eβ) twice, we obtain ci,j,γ,δ + cj,i,δ,γ = 0 for all
i, j, γ, δ. Thus [Γ0]nondiag = 0.

Now, pri : Γ → X is a proper birational morphism for all i, where X is regular, and Γ is
integral. Thus, by van der Waerden purity (see, [Liu02, Theorem 7.2.22], for example, and note
that this result can easily be extended to algebraic spaces), the exceptional locus of pri is either
empty or a divisor. If it was a divisor, it would give rise to a non-diagonal component of Γ0,
which does not exist by the previous computations. Thus pri is an isomorphism for all i, and
since the Gal(L/K)-action extends to Γ, this shows that the Gal(L/K)-action extends to X , as
desired. 2

Remark 5.7. We stress that the reason for the extension of the G-action to X rather than X ′ in
the case of Abelian and hyperelliptic surfaces is their ‘simple’ geometry: they contain no smooth
rational curves.
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5.4 The action on the special fiber

In the situation of Proposition 5.5, we now want to understand whether the induced G-action

on the special fiber X0 is trivial. Quite generally, if Y is a smooth and proper variety over some

field k, then the natural representation

ρm : Aut(Y ) −→ Aut(Hm
ét (Yk,Q`))

is usually neither injective nor surjective. We have the following exceptions.

(i) If Y is an Abelian variety, then ρ1 is injective. (Here, Aut(Y ) denotes the automorphism

group as an Abelian variety – translations may act trivially on cohomology.)

(ii) If Y is a K3 surface, then ρ2 is injective.

Using these results (for references, see below), we have the following.

Proposition 5.8. We keep the notation and assumptions of Proposition 5.1. Moreover, assume

that either:

(i) X is an Abelian surface and the G-action on H1
ét(XL,Q`) is unramified; or

(ii) X is a K3 surface and the G-action on H2
ét(XL,Q`) is unramified.

Then the IG-action on XL extends to X , and the induced IG-action on the special fiber X0

is trivial.

Proof. We have already shown the extension of the IG-action to X in Proposition 5.5. Moreover,

the IG-action on X0 is k-linear. By assumption, the IG-action on Hm
ét ((X0)k,Q`) is trivial for

m = 1, 2, respectively.

If X is an Abelian surface, then the IG-action on (X0)k is trivial by the injectivity of ρ1 in

arbitrary characteristic; see, for example, [Mum70, Theorem 3 in § 19]. If X is a K3 surface, then

the IG-action on (X0)k is trivial by the injectivity of ρ2 in arbitrary characteristic; see [Ogu79,

Corollary 2.5] and [Keu16, Theorem 1.4] (in the case of complex and possibly non-algebraic

K3 surfaces, see [Bea85, Proposition IX.6] and [Huy16, Proposition 15.2.1]). In both cases, the

IG-action on (X0)k is trivial, and thus also the original action on X0 is trivial. 2

5.5 Tame quotients

Now, in the situation of Proposition 5.5, it is natural to study the quotient X/H and its special

fiber, where H is a subgroup of G. We start with the following easy result.

Proposition 5.9. Let X be a smooth and proper variety over K. Let L/K be a finite Galois

extension with group G, such that XL admits a smooth model X → SpecOL. Moreover, assume

that the natural G-action on XL extends to X . Let H be a subgroup of G such that:

(i) H is contained in the inertia subgroup of G;

(ii) H is of order prime to p; and

(iii) H acts trivially on the special fiber X0.

Then:

(i) the quotient X/H is smooth over SpecOHL ;

(ii) the special fiber of X/H is isomorphic to X0.

23

https://doi.org/10.1112/S0010437X17007400 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007400


C. Liedtke and Y. Matsumoto

Proof. First of all, the quotient X/H exists in the category of algebraic spaces [Knu71, ch. IV.1].
Next, let X̂0 be the formal completion of X along the special fiber X0, which is a formal scheme.
If x ∈ X0 is a closed point, then OX̂0,x

is étale over the localization A := ÔL〈y1, y2〉m of the
restricted power series ring

ÔL〈y1, y2〉 :=

{ ∑
i1,i2>0

ai1,i2y
i1
1 y

i2
2 ∈ ÔL[[y1, y2]]

∣∣∣∣ ordπ(ai1,i2)→∞
as i1 + i2→∞

}
at the maximal ideal m = (π, y1, y2). The induced H-action on the residue ring A/(π)∼= κ(OL)[y1,
y2]m is trivial. Thus replacing yi by (1/|H|)

∑
σ∈H σ(yi) for i = 1, 2 (here, we use that the order of

H is prime to p) is simply a change of coordinates of A. But then the H-action on A= ÔL〈y1, y2〉m
is trivial on y1 and y2, and hence Ô(X/H)0,x

∼= OHX̂0,x
is étale over AH ∼= ÔLH 〈y1, y2〉m. From this

local and formal description, the smoothness of X/H follows immediately, and we see that the
quotient map X → X/H induces an isomorphism of special fibers. 2

5.6 Wild quotients
Unfortunately, Proposition 5.9 is no longer true if p 6= 0 and H is a subgroup of the inertia
subgroup, whose order is divisible by p. Let us illustrate this with a very instructive example.
We refer the interested reader to Wewers’ article [Wew10] for a more thorough treatment of wild
actions and their quotients.

Example 5.10. Consider K := Qp[ζp], where ζp is a primitive pth root of unity. Then π := 1− ζp
is a uniformizer in OK , and the residue field is Fp; see [Was82, Lemma 1.4], for example. Let L be
the finite extension K[$], where $ := p

√
π. Then $ is a uniformizer in OL, and the residue field

is Fp, that is, L/K is totally ramified. By Kummer theory, L/K is Galois with group H ∼= Z/pZ.
More precisely, there exists a generator σ ∈ H such that σ($) = ζp ·$. We set

R := OL[x]

and extend the H-action to R by requiring that σ(x) = ζp−1
p · x. Then we have R/($) ∼= Fp[x],

and the induced H-action on the quotient is trivial. On the other hand, we find that

RH ∼= OK [xp, x ·$] ∼= OK [u, z]/(zp − πu)

is normal, but not regular – this is an arithmetic version of the RDP singularity of type Ap−1.
We also find that the special fiber

RH/(π) ∼= Fp[u, z]/(zp)

is not reduced. In particular, Proposition 5.9 does not extend to wild actions without extra
assumptions. However, let us make two observations, whose significance will become clear in the
proof of Proposition 5.11.

(i) The H-action on the special fiber R/($) only seems to be trivial, but in fact, it has become
infinitesimal. More precisely, if r ∈ R and r denotes its residue class in R/($), then the
H-action gives rise to a well-defined and non-trivial derivation

θ : R/($)→ R/($)

r 7→
(
σ(r)− r

π

)
mod $.
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(ii) The augmentation ideal, that is, the ideal of R generated by all elements of the form σ(r)−r,
is not principal. In fact, it can be generated by the two elements $px and $p+1.

Despite this example, we have the following analog of Proposition 5.9 in the wildly ramified
case. The main ideas of its proof are due to Király and Lütkebohmert [KL13, Theorem 2] and
Wewers [Wew10, Proposition 3.2].

Proposition 5.11. Let X be a smooth and proper variety over K. Let L/K be a finite Galois
extension with group G, such that XL admits a smooth model X → SpecOL. Moreover, assume
that the natural G-action on XL extends to X . Let H be a subgroup of G such that:

(i) H is contained in the inertia subgroup of G;

(ii) H is cyclic of order p > 2; and

(iii) H acts trivially on the special fiber X0.

Then the H-action induces a global and non-trivial derivation on X0 or else both of the
following two statements hold true:

(i) the quotient X/H is smooth over OHL ;

(ii) the special fiber of X/H is isomorphic to X0.

Proof. First of all, the quotient X/H exists in the category of algebraic spaces [Knu71, ch. IV.1].
Next, we fix once and for all a generator σ ∈ H and a uniformizer π ∈ OL. We use these to define
the following:

N(OL) := max{k | πk divides σ(x)− x for all x ∈ OL},
JH(OL) := ideal of OL generated by σ(x)− x for all x ∈ OL.

Since OL is a DVR, the ideal JH(OL) is principal. More precisely, this ideal is generated by
y := σ(π) − π, and it is also generated by πN(OL). In [KL13], ideals generated by elements of
the form σ(x)− x are called augmentation ideals. Also, it is not difficult to see that they do not
depend on the choice of generator σ, which justifies the subscript H rather than σ.

Next, let X̂0 be the formal completion of X along the special fiber X0, which is a formal
scheme. For every point x ∈ X0, we define

N(OX̂0,x
) := max{k | πk divides σ(r)− r for all r ∈ OX̂0,x

},
JH(OX̂0,x

) := ideal of OX̂0,x
generated by σ(r)− r for all r ∈ OX̂0,x

.

If η ∈ X0 denotes the generic point, then we have the following:

1 6 N(OX̂0,η
) 6 N(OX̂0,x

) 6 N(OL), (5)

where the leftmost inequality follows from the triviality of the H-action on X0. We distinguish
two cases.

Case (I): N(OX̂0,η
) < N(OL).

Let x ∈ X0 be an arbitrary point and set R := OX̂0,x
and Nη := N(OX̂0,η

). Then we define a
map

θ : R→ R/πR

x 7→
(
σ(x)− x
πNη

)
mod π,
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which is easily seen to be a derivation. Since we have Nη < N(OL), we compute θ(π) = 0, and
thus θ induces a derivation θ : R/πR→ R/πR. This globalizes and gives rise to a derivation on
the special fiber X0. It follows from the definition of Nη that this derivation is non-zero at the
generic point η ∈ X0, whence non-trivial.

Case (II): N(OX̂0,η
) = N(OL).

Let x ∈ X0 be an arbitrary point and set R := OX̂0,x
. Then the two inequalities at the center

and the right of (5) are equalities, which implies that all inclusions in

πN(OL) ·R = JH(OL) ·R ⊆ JH(R) ⊆ πN(R) ·R

are equalities. In particular, JH(R) is a principal ideal, generated by πN(OL). But then [KL13,
Proposition 5] implies that there is an isomorphism of RH - (respectively OHL -) modules

R ∼= RH ⊕RHπ ⊕ · · · ⊕RHπp−1,

OL ∼= OHL ⊕OHL π ⊕ · · · ⊕ OHL πp−1.

From this description, we conclude that the natural map

RH ⊗OHL OL→ R

is an isomorphism. Moreover, if πH is a uniformizer of OHL , then the previous isomorphism
induces an isomorphism

RH/πHRH ∼= R/πR.

This local computation at completions shows that X/H ×OHL OL is isomorphic to X , and that

the special fiber X0 of X is isomorphic to the special fiber of X/H. Since X is smooth over OL,
X0 is smooth over the residue field of OL, which implies that also the special fiber of X/H is
smooth over the residue field of OHL . But this implies that X/H is smooth over OHL . 2

Combining Propositions 5.9 and 5.11, we obtain the following result.

Corollary 5.12. Let X be a smooth and proper variety over K. Let L/K be a finite Galois
extension with group G, such that XL admits a smooth model X → SpecOL. Assume that the
natural G-action on XL extends to X , and that the inertia subgroup IG of G acts trivially on
the special fiber X0. Assume also that the special fiber X0 admits no non-trivial global vector
fields. Then:

(i) the quotient X/IG is smooth over OIGL ;

(ii) the special fiber of X/IG is isomorphic to X0.

Proof. We have a short exact sequence

1→ P → IG→ T → 1,

where P is the unique p-Sylow subgroup of IG, and where T is cyclic of order prime to p. By
definition, P is the wild inertia, and T is the tame inertia.

Being a p-group, P can be written as a successive extension of cyclic groups of order p. Thus,
applying Proposition 5.11 inductively, we obtain a smooth algebraic space

X/P → SpecOPL

with special fiber X0, which is a model of XLP .
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Finally, applying Proposition 5.9 to the residual T -action on X/P , we obtain a smooth
algebraic space

X/IG→ SpecOIGL
with special fiber X0, which is a model of XLIG . 2

Remark 5.13. If X is a K3 surface, then the special fiber X0 is also a K3 surface and thus admits
no non-zero vector fields by a theorem of Rudakov and Shafarevich [RS76].

6. The Néron–Ogg–Shafarevich criterion

We now come to the main result of this article, which is a criterion for good reduction of
K3 surfaces, similar to the classical Néron–Ogg–Shafarevich criterion for elliptic curves and
its generalization to Abelian varieties by Serre and Tate. Then we give a couple of corollaries
concerning potential good reduction, and good reduction after a tame extension. Finally, we
relate the reduction behavior of a polarized K3 surface to that of its associated Kuga–Satake
Abelian variety.

6.1 The criterion
Let us remind the reader of § 3.1, where we introduced Assumption (?) and established it in
several cases.

Theorem 6.1. Let X be a K3 surface over K that satisfies Assumption (?). If the GK-
representation on H2

ét(XK ,Q`) is unramified for some ` 6= p, then we have the following.

(i) There exists a model of X that is a projective scheme over OK , whose special fiber is a K3
surface with at worst RDP singularities.

(ii) There exists an integer N , independent of X and K, and a finite unramified extension L/K
of degree at most N such that XL has good reduction over L.

Proof. By Theorem 3.3, there exists a finite Galois extension M/K, say, with group G and
possibly ramified, such that there exists a smooth model of XM

X → SpecOM .

Choose an ample invertible sheaf L on X. Then, by Proposition 4.5, we can replace X by another
smooth model of X such that the pull-back of L to XM restricts to an invertible sheaf on X0

that is big and nef.
Let IG be the inertia subgroup of G. By Proposition 5.5, the IG-action extends to X and by

Proposition 5.8, the induced IG-action on the special fiber X0 is trivial. Thus, by Corollary 5.12
and Remark 5.13, the quotient

X/IG→ SpecOL,

where L := M IG , is a model of XL. Since L is a finite and unramified extension of K, this
establishes claim (ii) except for the universal bound N .

The pull-back of L to X/IG is still ample on the generic fiber and big and nef when restricted
to the special fiber. By Proposition 5.1, there exists a birational morphism over SpecOL

π′ : X/IG→ Y,
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that is an isomorphism on generic fibers, such that the geometric special fiber Y0 is a K3 surface

with at worst RDP singularities, and such that the H := Gal(L/K)-action on XL extends to Y.

Since L/K is unramified, the morphism SpecOL→ SpecOK is étale, from which it follows that

the quotient Y → Y/H is étale. Thus Y/H is a projective scheme over OK , whose generic fiber

is X and whose geometric special fiber is a K3 surface with at worst RDP singularities. This

establishes claim (i).

It remains to prove the existence of a universal bound N in claim (ii). Since the Picard rank

of a K3 surface is bounded above by 22, there is only a finite list L of Dynkin diagrams that

is independent of the characteristic and whose associated root lattices can be embedded in the

Néron–Severi lattice of a K3 surface. Therefore, a K3 surface over an algebraically closed field

has at most 21 RDP singularities, and all of them are from the list L. By [Art77], there exist

only finitely many analytic isomorphism types of RDP singularities with fixed dual resolution

graph over algebraically closed fields. For every k′-rational singularity over some perfect field k′

that becomes analytically isomorphic to a RDP singularity over k
′
, we have a versal deformation

space Def over k′ or W (k′) (if char(k′) = 0 or > 0, respectively) and a simultaneous resolution

algebraic space Res, which is finite over Def by [Art74, Theorem 3]. Since deformation and

resolution spaces solve universal problems, the degree of Res→ Def depends only on the analytic

isomorphism type of the singularity over k
′
. In particular, there exists an integer N ′ such that

every deformation of a k′-rational singularity over k′ that becomes a RDP singularity over k
′

from the list L can be resolved after an extension of degree at most N ′. For each Dynkin diagram

in L and for almost every characteristic (in fact, it suffices to exclude 2 6 p 6 19), there is only

one analytic isomorphism type of RDP singularities and the corresponding degree of Res→ Def

is independent of the characteristic. Therefore, the bound N ′ can be taken to be independent of

the characteristic.

Now, let Y0 be the special fiber of Y. Since (Y0)k has at most 21 non-smooth points, all

non-smooth points of Y0 become k′-rational after some finite extension k′ of k of degree 6 21!.

Let K ′/K be the corresponding unramified extension of K. From the previous discussion, it

follows that after a (possibly ramified) extension L/K ′ of degree at most N ′21, the surface XL

has good reduction. By the above arguments, we can descend a smooth model of XL over OL to

the maximal unramified subextension M of L/K ′. Thus XM has good reduction, and M/K is

an unramified extension of degree at most N := 21! ·N ′21. This establishes the bound claimed

in (ii). 2

Remark 6.2. In the statement (ii) of Theorem 6.1, we cannot avoid field extensions in general:

in the next section, we will give examples of K3 surfaces X over Qp with unramified GQp-

representations on H2
ét(XQp

,Q`) that do not admit smooth models over Zp.

Remark 6.3. Unlike curves and Abelian varieties, even if a K3 surface has good reduction over L,

then a smooth model of XL over OL need not be unique. However, by Proposition 4.7, the special

fibers of all smooth models are isomorphic and the models are connected by finite sequences of

flopping contractions and their inverses (similar to the classical Atiyah flop).

If a smooth variety over K has good reduction over an unramified extension, then the GK-

representations on Hm
ét (XK ,Q`) are unramified for all m and for all ` 6= p by Theorem 2.4. Thus,

as in the case of Abelian varieties in [ST68, Corollary 1 of Theorem 1], we obtain the following

independence of the auxiliary prime `.
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Corollary 6.4. Let X be a K3 surface over K that satisfies Assumption (?). Then the GK-
representation on H2

ét(XK ,Q`) is unramified for one ` 6= p if and only if it is unramified for all
` 6= p.

We remark that this independence of ` can be also derived from the weaker criterion of
[Mat15] (Theorem 3.3), combined with Ochiai’s independence of traces [Och99, Theorem B].

We leave the following easy consequence of Theorem 6.1 to the reader (this also can be
derived from the criterion of [Mat15]).

Corollary 6.5. Let X be a K3 surface over K such that the image of inertia

ρ` : IK → GL(H2
ét(XK ,Q`))

is finite. If X satisfies Assumption (?), then X has potential good reduction. 2

If a g-dimensional Abelian variety over K with p > 2g+1 has potential good reduction, then
good reduction can be achieved over a tame extension of K by [ST68, Corollary 2 of Theorem 2].
We have the following analog for K3 surfaces.

Corollary 6.6. Let X be a K3 surface over K with potential good reduction. If p > 23, then
good reduction can be achieved after a tame extension.

Proof. The idea of proof is the same as for Abelian varieties in [ST68], we only adjust the
arguments to our situation: since X is projective, there exists an ample invertible sheaf L defined
over K, and then its Chern class c1(L) gives rise to a GK-invariant class in H2

ét(XK ,Z`)(1). Let
T 2
` be the orthogonal complement of c1(L) with respect to the Poincaré duality pairing. For
` 6= p, we let

ρ` : GK → GL(T 2
` )

be the induced `-adic Galois representation, and denote by

red` : GL(T 2
` )→ GL(T 2

` /`T
2
` )

its reduction modulo `. As usual, we denote by IK (respectively, PK) the inertia (respectively,
wild inertia) subgroup of GK . Since X has potential good reduction, ρ`(IK) is a finite group.
Moreover, if ` is odd, since ker red` has no non-trivial element of finite order (as can be seen by
taking the logarithm), ρ`(IK) is isomorphic to red` ◦ ρ`(IK) via red`.

Now, suppose that ρ`(PK) is non-trivial. Then the order of red` ◦ρ`(IK) is divisible by p for
all odd `. In particular, if we set n := rankT 2

` = 21, then p divides the order

|GLn(F`)| = `n(n−1)/2
n∏
s=1

(`s − 1)

for all odd `. By Dirichlet’s theorem on arithmetic progressions, there exist infinitely many
primes ` such that the residue class of ` modulo p generates the group F×p , which is of order
p − 1. Choosing such an `, we obtain the estimate p − 1 6 n = 21. (When working directly
with H2(XK ,Z`)(1) instead of the primitive cohomology group T 2

` , we only get the estimate
p− 1 6 22, which includes the prime p = 23.)

Thus if p > 23, then ρ`(PK) is trivial. But then also the PK-action on H2
ét(XK ,Z`)(1) is

trivial. Thus there exists a tame extension L/K such that the GL-action on H2
ét(XL,Q`)(1)

is unramified. By Theorem 6.1, there exists an unramified extension of L′/L such that XL′ has
good reduction. In particular, X has good reduction after a tame extension of K. 2
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6.2 Kuga–Satake varieties
Given a polarized K3 surface (X,L) over C, Kuga and Satake [KS67] associated to it a polarized
Abelian variety, the Kuga–Satake Abelian variety A := KS(X,L), which is of dimension 219.
Although their construction is transcendental, it is shown in work of Rizov [Riz10] and Madapusi
Pera [Mad15], building on previous results of Deligne [Del72] and André [And96], that the
Kuga–Satake construction exists over arbitrary fields: namely, if (X,L) is a polarized K3 surface
over some field k, then KS(X,L) exists over some finite extension of k. Then we have the following
relation between good reduction of (X,L) and KS(X,L).

Theorem 6.7. Assume p 6= 2. Let (X,L) be a polarized K3 surface over K.

(i) If X has good reduction, then KS(X,L) can be defined over an unramified extension L/K,
and it has good reduction over L.

(ii) Assume that X satisfies Assumption (?). Let L/K be a field extension such that both
KS(X,L) and the Kuga–Satake correspondence (described below) can be defined over L.
If KS(X,L) has good reduction over L, then X has good reduction over an unramified
extension of L.

Proof. We will use the notation and definitions of [Mad15].
(i) The pair (X,L) gives rise to a morphism SpecK → M◦2d, where M◦2d denotes the moduli

space of primitively polarized K3 surfaces of degree 2d := L2. By assumption, there exists a
smooth model of X over OK , and by Proposition 4.5, there even exists a smooth model X of X
over OK , such that the restriction of L to the special fiber is big and nef. Thus the morphism
SpecK → M◦2d extends to a morphism SpecOK → M2d, where M2d denotes the moduli space
of primitively quasi-polarized K3 surfaces of degree 2d. Passing to an unramified extension
L/K of degree 6 2 if necessary, the previous classifying morphism extends to a morphism

SpecOL → M̃2d, see [Mad15, § 5]. Composing with the morphism M̃2d → S(Λd) from [Mad15,
Proposition 5.7], we obtain a morphism SpecOL→ S(Λd). We recall from [Mad15, § 4] that there
exists a finite and étale cover S̃(Λd)→ S(Λd), such that the Kuga–Satake Abelian scheme is a
relative Abelian scheme over S̃(Λd). Thus, after replacing L by a finite and unramified extension
if necessary, we can lift the latter morphism to a morphism SpecOL → S̃(Λd). Thus we obtain
a Kuga–Satake Abelian variety KS(X,L) over L that has good reduction, and where L is an
unramified extension of K.

(ii) By assumption, KS(X,L) is defined over L and has good reduction over L. Thus the
GL-action on H1

ét(KS(X,L)L,Q`) is unramified. By the usual properties of the Kuga–Satake
construction, there exists an embedding

P 2
ét(XK ,Q`)(1)→ End(H1

ét(KS(X,L)L,Q`)),

where P 2
ét(XK ,Q`)(1) denotes the orthogonal complement of c1(L) inside H2

ét(XK ,Q`)(1), and
this embedding is GL-equivariant by assumption. This implies that also the GL-action on
P 2

ét(XK ,Q`)(1) is unramified. Since L is defined over K, the GL-action on the Q`-subvector space
generated by c1(L) inside H2

ét(XK ,Q`)(1) is trivial. From this, we conclude that the GL-action
on H2

ét(XK ,Q`)(1) is unramified. By Theorem 6.1, X has good reduction over an unramified
extension of L. 2

Remark 6.8. Let us make two comments.
(i) If (X,L) is a polarized K3 surface with good reduction, then the previous theorem asserts

that KS(X,L) can be defined over an unramified extension L of K. Thus if KS(X,L) can be
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descended to some field K ′ with K ⊆K ′ ⊆ L (so far, not much is known about fields of definition
of Kuga–Satake Abelian varieties), then, since L/K ′ is unramified and since KS(X,L) has good
reduction over L by the previous theorem, the descended Abelian variety will have good reduction
over K ′ by [ST68].

(ii) We can almost remove the p 6= 2 hypothesis in Theorem 6.7: by [KM16, Proposition
A.12] (see also the proof of [KM16, Theorem A.1]), there exists a Kuga–Satake morphism with
the properties needed to make the proof of Theorem 6.7 work also in residue characteristic 2,
but so far only outside the locus of superspecial K3 surfaces.

7. Counterexamples

In this final section we give examples of K3 surfaces X over Qp for all p > 5 with unramified
GQp-representation on H2

ét(XQp
,Q`) that do not have good reduction over Qp. In particular, the

unramified extension from Theorem 6.1 needed to obtain good reduction may be non-trivial. The
examples in question already appeared in [Mat15, § 5.3] and rest on examples due to van Luijk
[vanL07, § 3].

Example 7.1. Fix a prime p > 5. We choose integers a, c such that a 6≡ 0, 27
16 mod p, such that

c ≡ 1 mod 8, and such that c is not a quadratic residue modulo p. Then we choose a homogeneous
polynomial f ∈ Z[x, y, z, w] of degree 3, such that the following congruences hold:

f ≡ φ mod 2,

f ≡ x3 + y3 + z3 + aw3 mod p,

where φ is as in Example 5.4. Finally, we define the quartic hypersurface

X := X (p) :=

{
wf +

(
pz2 + xy +

p

2
yz

)2

− cp2

4
y2z2 = 0

}
⊂ P3

Zp ,

and denote by X = X(p) its generic fiber.

Theorem 7.2. Let p > 5 and let X and X be as in Example 7.1. Then X is a smooth K3 surface
over Qp, such that:

(i) the GQp-representation on H2
ét(XQp

,Q`) is unramified for all ` 6= p;

(ii) X is a projective model of X over Zp, whose geometric special fiber is a K3 surface with
RDP singularities of type A1;

(iii) X has good reduction over the unramified extension Qp[
√
c].

(iv) X does not have good reduction over Qp.

Proof. Smoothness of X follows from considering the equations over Z, reducing modulo 2 and
checking smoothness there. Claims (ii) and (iii) are straightforward computations (for claim (iii),
blow up the ideal I+ or I− defined below), and, since X has good reduction after an unramified
extension, also claim (i) follows. We refer to [Mat15, § 5.3] for computations and details.

To show claim (iv), we argue by contradiction, and assume that there exists a smooth and
proper algebraic space Z → SpecZp with generic fiber X. Since the generic fibers of X and Z
are isomorphic, such an isomorphism extends to a birational, but possibly rational, map

α : Z 99K X .
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Next, let L be an ample invertible sheaf on X , for example, the restriction of O(1) from the
ambient P3

Zp . Restricting L to the generic fiber Xη, and pulling it back via α, we obtain an

ample invertible sheaf α∗η(Lη) on Zη. Since Z is smooth over SpecOK , this invertible sheaf on
Zη extends uniquely to an invertible sheaf on Z that we denote by M.

By Proposition 4.5, there exists a rational and birational map

ϕ : Z 99K Z+,

where Z+ is another model of X with good reduction, and such that the transform M+ of
M on Z+ is ample on the generic fiber, and big and nef on the special fiber. We denote by
α+ : Z+ 99K X the composition α ◦ ϕ−1. Then

Z+
→ (Z+)′ := Proj

⊕
n>0

H0(Z+, (M+)⊗n)

is a birational morphism that contracts precisely those curves on the special fiber Z+
0 that have

zero-intersection withM+
0 , and nothing else. By construction, we have (α+

η )∗L ∼=M+ and thus,

by [Kov09, Theorem 5.14], there exists an isomorphism (Z+)′
∼
→ X over SpecZp.

Thus we have shown that the model X admits a simultaneous resolution α+ : Z+
→ X of

singularities over Zp. But then let x ∈ X0 be an Fp-rational singular point: for example, the point
x = w = y + z = 0. Then let OX ,x be the strict local ring, and denote by Cl(OX ,x) its Picard
group. Then α+ induces a GQp-equivariant surjection (R1α+

∗ O∗Z+)x̄ → Cl(OX ,x). However, this
is impossible for the following reasons.

(i) The group (R1α+
∗ O∗Z+)x̄ is generated by the class of the exceptional curve, which is Fp-

rational, and thus the GQp-action on it is trivial.

(ii) The GQp-action on Cl(OX ,x) is non-trivial. More precisely, if we define the following ideals
of OX ,x

I± :=

(
w,

(
pz2 + xy +

p

2
yz

)
±
√
c

2
pyz

)
,

then their classes in Cl(OX ,x) satisfy [I+] = −[I−] 6= [I−], and since GQp acts on Qp[
√
c] as√

c 7→ −
√
c, the GQp-action on Cl(OX ,x) is non-trivial.

This contradiction shows that X does not have good reduction over Qp, and establishes
claim (iv). 2

Remark 7.3. This example is the one the second named author gave in [Mat15, § 5.3]. There, the
choice of φ ensured that X was a smooth K3 surface, as well as of Picard number one. In the
present paper, we only need smoothness, and therefore, could have used a simpler polynomial.
The same remark holds for Example 5.4.
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