A NOTE ON d-SYMMETRIC OPERATORS

B.C. Gupta and P.B. Ramanujan

Abstract

An operator T on a complex Hilbert space is d-symmetric if $\overline{R\left(\delta_{T}\right)}=\bar{R}\left(\delta_{T^{*}}\right)$, where $\bar{R}\left(\delta_{T}\right)$ is the uniform closure of the range of the derivation operator $\delta_{T}(X)=T X-X T$. It is shown that if the commutator ideal of the inclusion algebra $I(T)=\left\{A: R\left(\delta_{A}\right) \subset \overline{R\left(\delta_{T}\right)}\right\}$ for a d-symmetric operator is the ideal of all compact operators then T has countable spectrum and T is a quasidiagonal operator. It is also shown that if for a d-symmetric operator $I(T)$ is the double commutant of T then T is diagonal.

Let T be an element of the Banach algebra $B(H)$ of all (bounded linear) operators on a complex Hilbert space H and δ_{T} the corresponding inner derivation defined by $\delta_{T}(X)=T X-X T$ on $B(H)$. Let $R\left(\delta_{T}\right)$ denote the range of δ_{T} and $\overline{R\left(\delta_{T}\right)}$ its uniform closure. An operator T in $B(H)$ is called d-symmetric if $\overline{R\left(\delta_{T}\right)}=\overline{R\left(\delta_{T^{*}}\right)}$. For a d-symmetric operator T the inclusion algebra

$$
I(T)=\left\{A \in B(H): R\left(\delta_{A}\right) \subset \overline{R\left(\delta_{T}\right)}\right\}
$$

and the multiplier algebra

$$
M(T)=\left\{A \in B(H): A R\left(\delta_{T}\right)+R\left(\delta_{T}\right) A \subset \overline{R\left(\delta_{T}\right)}\right\}
$$

are C^{*}-algebras. Then $I(T)$ contains the C^{*}-algebra $C^{*}(T)$ generated
Received 16 February 1981. The authors gratefully acknowledge the support of the University Grants Commission of India.
by T and the identity operator I and is contained in $M(T)$. Further,

$$
\mathcal{C}(T)=\left\{A \in B(H): A B(H)+B(H) A \subset \overline{R\left(\delta_{T}\right]}\right\}
$$

is the commutator ideal of $I(T)$.
In [1, Remark (c) of Corollary 5.5], it is observed that if T is an essentially normal d-symmetric operator with countable spectrum then $C(T) \subset K$, the ideal of all compact operators on H. We show, in this note, that the spectrum of a d-symmetric operator for which $\mathcal{C}(T)=K$ is necessarily countable and we deduce certain corollaries. It is also proved that if for a d-symmetric operator $I(T)=\{T\}^{\prime \prime}$, the double commutant of T then T is a diagonal operator.

In what follows the spectrum, the essential spectrum (the spectrum in the Calkin algebra), and the left essential spectrum of T are designated by $\sigma(T), \sigma_{e}(T)$ and $\sigma_{1} e^{(T)}$ respectively. The point spectrum and the set of all isolated eigenvalues of finite multiplicity of T are denoted by $\sigma_{p}(T)$ and $\pi_{00}(T)$ respectively.

For the basic theory of d-symmetric operators we refer to [1], [5]. Furthermore, d-symmetric operators T for which $C(T)=K$ enjoy the following properties which are immediate consequences of the results in [1], and we omit their proofs.

THEOREM 1. Let T be a d-symmetric operator with $C(T)=K$. Then
(a) T is essentially normal,
(b) T has no reducing eigenvalues,
(c) each projection in $\overline{R\left(\delta_{T}\right)}$ is finite dimensional,
(d) $M(T)=\{A \in B(H): A T-T A$ is compact $\}$,
(e) $I(T) / C(T)$ is a commutative C^{*}-subalgebra of the Calkin algebra $B(H) / K$,
(f) $I(T)=C^{*}(T)+K$.

We now prove our main result.
THEOREM 2. Let T be a d-symmetric operator for which $C(T)=K$. Then $\sigma(T)$ is countable.

Proof. In view of the inclusion relation [3, Theorem 3.3] $\partial \sigma(T) \subset \sigma_{1 e}(T) \cup \pi_{00}(T)$, where $\partial \sigma(T)$ is the boundary of $\sigma(T)$, it suffices to show that $\sigma_{e}(T)$ is countable.

Suppose that $\sigma_{e}(T)$ is uncountable. Then there exists a perfect subset F of $\sigma_{e}(T)$ and a continuous positive Borel measure μ with support $F[4, \mathrm{p} .176]$. Let M_{z} be the multiplication operator on $H_{\mu}=L^{2}(\mu)$ defined by $M_{z} f(z)=z f(z)$. Let E denote the resolution of identity of M_{z}. Since $\mu(\lambda)=0$, we have $E(\lambda)=0$ for every λ. Therefore $\sigma_{p}\left(M_{z}\right)=\emptyset$. Let M denote the direct sum of countable copies of M_{z}. Then M is a normal operator and $\sigma_{p}(M)=\varnothing$. Therefore $\sigma_{e}(M)=\sigma(M)=F \subset \sigma_{e}(T)$. Set $A=T \oplus M$. Since T is essentially normal, Corollary 2.3 of [2] yields a unitary operator U and a compact operator K such that $U A U^{-1}+K=T$. Therefore, for any operator X on $H \oplus \Sigma \oplus H_{\mu}$,

$$
U(A X-X A) U^{-1}=T\left(U X U^{-1}\right)-\left(U X U^{-1}\right) T+K\left(U X U^{-1}\right)-\left(U X U^{-1}\right) K
$$

Since $C(T)=K$, we have $K \subset \overline{R\left(\delta_{T}\right)}$ and so $U \overline{R\left(\delta_{A}\right)} U^{-1} \subset \overline{R\left(\delta_{T}\right)}$. As M_{z} is a d-symmetric operator with no eigenvalues $\overline{R\left(\delta_{M_{z}}\right)}$ contains all compact operators on H_{μ}. If now P_{0} is non-zero finite rank projection in $\overline{R\left(\delta_{M_{z}}\right)}$, then there exists a sequence $\left(X_{n}\right)$ of operators on H_{μ} such that $\left\|\delta_{M_{z}}\left(X_{n}\right)-P_{0}\right\| \rightarrow 0$. Let \tilde{X}_{n} denote the direct sum of countably many copies of X_{n} and $Y_{n}=I_{H} \oplus \tilde{X}_{n}$ and let P denote the direct sum of 0 and countably many copies of P_{0}. Then P is an infinite dimensional projection and

$$
\left\|\delta_{A}\left(Y_{n}\right)-P\right\|=\left\|\Sigma \oplus\left(\delta_{M_{z}}\left(X_{n}\right)-P_{0}\right)\right\|=\left\|\delta_{M_{z}}\left(X_{n}\right)-P_{0}\right\| \rightarrow 0
$$

Thus $P \in \bar{R}\left(\delta_{A}\right)$. So $U P U^{-1}$ is an infinite dimensional projection in
$\bar{R}\left(\delta_{T}\right)$ contradicting Theorem $1(c)$. This completes the proof. //
COROLLARY 1. If T is d-symmetric and $C(T)=K$ then
$\sigma(T)=\sigma_{e}(T)$.
Proof. Since $\sigma(T)$ is countable,

$$
\sigma(T)=\partial \sigma(T) \subset \sigma_{1 e}(T) \cup \pi_{00}(T)
$$

If $\lambda \in \pi_{00}(T)$ and if $(T-\lambda I)$ is Fredholm then by [5, Lerma 8] λ is a reducing eigenvalue of T. By Theorem $l(b)$ no such λ exists. Therefore $\pi_{00}(T) \subset \sigma_{e}(T)$ and we have $\sigma(T) \subset \sigma_{e}(T)$. The result follows.

COROLLARY 2. If T is d-symmetric and $C(T)=K$ then T is biquasitriangular.

Proof. Since $\sigma(T)=\sigma_{e}(T)$, the index of $(T-\lambda I)$ is 0 for any λ for which ($T-\lambda I$) is Fredholm. Therefore the result follows from Theorem 11.10 of [2].

COROLLARY 3. If T is d-symmetric and $C(T)=K$ then T is quasidiagonal.

Proof. The proof follows from Corollary 2 and Theorem 11.11 of [2].
COROLLARY 4. If T is d-symmetric and $C(T)=K$ then I is compact if and only if T is quasinilpotent.

Proof. Suppose T is quasinilpotent. Then by Corollary 1 , $\sigma_{e}(T)=\sigma(T)=\{0\}$. Therefore T is compact. Conversely, if T is compact then $\sigma(T)=\sigma_{e}(T)=\{0\}$. Thus T is quasinilpotent.

THEOREM 3. If T is d-symmetric and $I(T)=\{T\}$ ", the double commutant of T, then T is a diagonal operator.

Proof. Suppose $I(T)=\{T\}^{\prime \prime}$. Since $I(T)$ is a C^{*}-algebra, we have $T^{*} \in\{T\}^{\prime \prime}$. Therefore T is normal and so $I(T)$ is the von Neumann algebra generated by T and the identity I. Thus $I(T)$ is commutative and it follows from Proposition 5.1 of [1] that T is diagonal.

REMARK. If T is a diagonal operator then $I(T)$ need not be equal
to $\{T\}^{\prime \prime}$. For example, if $T=\sum_{n=1}^{\infty} \frac{1}{n} E_{n}$, where E_{n} is a sequence of one dimensional orthogonal projections such that $\sum E_{n}=I$ then $I(T)=C^{*}(T)$ [1, Remark (b) of Corollary 5.5] but $C^{\star}(T) \neq\{T\}^{\prime \prime}$ as the characteristic function $X_{\{0\}} \in\{T\}^{\prime \prime}$ and is not continuous at zero.

References

[1] Joel Anderson, John W. Bunce, James A. Deddens, and J.P. Williams, "C*-algebras and derivation ranges", Acta Sci. Math. (Szeged) 40 (1978), 211-227.
[2] L.G. Brown, R.G. Douglas and P.A. Fillmore, "Unitary equivalence modulo the compact operators and extensions of C^{*}-algebras", Proceedings of Conference on Operator Theory, Halifax, Nova Scotia, 1973, 58-128 (Lecture Notes in Mathematics, 345. Springer-Verlag, Berlin, Heidelberg, New York, 1973).
[3] P.A. Fillmore, J.G. Stampfli, and J.P. Williams, "On the essential numerical range, the essential spectrum, and a problem of Halmos", Acta Sci. Math. (Szeged) 33 (1972), 179-192.
[4] Walter Rudin, Real and complex analysis (McGraw Hill, New York, London, Sydney, 1966).
[5] Joseph G. Stampfli, "On self-adjoint derivation ranges", Pacific J. Math. 82 (1979), 257-277.

Department of Mathematics,
Sardar Patel University,
Vallabh Vidyanagar 388120,
Gujarat,
India;

Department of Mathematics, Saurashtra University, Rajkot 360 005, Gujarat, India.

