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Abstract
We study the distribution of the length of longest increasing subsequences in random permutations of n integers as
n grows large and establish an asymptotic expansion in powers of 𝑛−1/3. Whilst the limit law was already shown by
Baik, Deift and Johansson to be the GUE Tracy–Widom distribution F, we find explicit analytic expressions of the
first few finite-size correction terms as linear combinations of higher order derivatives of F with rational polynomial
coefficients. Our proof replaces Johansson’s de-Poissonization, which is based on monotonicity as a Tauberian
condition, by analytic de-Poissonization of Jacquet and Szpankowski, which is based on growth conditions in
the complex plane; it is subject to a tameness hypothesis concerning complex zeros of the analytically continued
Poissonized length distribution. In a preparatory step an expansion of the hard-to-soft edge transition law of LUE is
studied, which is lifted to an expansion of the Poissonized length distribution for large intensities. Finally, expansions
of Stirling-type approximations and of the expected value and variance of the length distribution are given.
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1. Introduction

The length 𝐿𝑛 (𝜎) of longest increasing subsequences1 of permutations 𝜎 on {1, 2, . . . , 𝑛} becomes a
discrete random variable when the permutations are drawn randomly with uniform distribution. This
way, the problem of enumerating all permutations 𝜎 that satisfy 𝐿𝑛 (𝜎) � 𝑙 gets encoded in the discrete
probability distributionP(𝐿𝑛 � 𝑙). The present paper studies an asymptotic expansion of this distribution
when n grows large. As there are relations to KPZ growth models (directly so for the PNG model with
droplet initial condition, see [36, 68, 69] and [43, Chap. 10]), we expect our findings to have a bearing
there, too.

1.1. Prior work

We start by recalling some fundamental results and notions. More details and references can be found
in the outstanding surveys and monographs [3, 10, 71, 75].

1.1.1. Ulam’s problem
The study of the behavior as n grows large dates back to Ulam [80] in 1961, who mentioned that
Monte-Carlo computations of E. Neighbor would indicate E(𝐿𝑛) ≈ 1.7

√
𝑛. Ulam continued by stating,

‘Another question of interest would be to find the distribution of the length of the maximum monotone
subsequence around this average’.

Refined numerical experiments by Baer and Brock [5] in 1968 suggested that E(𝐿𝑛) ∼ 2
√
𝑛 might be

the precise leading order. In a 1970 lecture, Hammersley [50] presented a proof, based on subadditive
ergodic theory, that the limit 𝑐 = lim𝑛→∞ E(𝐿𝑛)/

√
𝑛 exists. Finally, in 1977, Vershik and Kerov [82] as

well as Logan and Shepp [59] succeeded in proving 𝑐 = 2.

1.1.2. Poissonization
A major tool used by Hammersley was a random process that is, basically, equivalent to the following
Poissonization of the random variable 𝐿𝑛: by drawing from the different permutation groups indepen-
dently and by taking 𝑁𝑟 ∈ {0, 1, 2, . . .} to be a further independent random variable with a Poisson
distribution of intensity 𝑟 > 0, the combined random variable 𝐿𝑁𝑟 is distributed according to

P(𝐿𝑁𝑟 � 𝑙) = 𝑒−𝑟
∞∑
𝑛=0
P(𝐿𝑛 � 𝑙) 𝑟

𝑛

𝑛!
=: 𝑃(𝑟; 𝑙).

1Defined as the maximum of all k for which there are 1 � 𝑖1 < 𝑖2 < · · · < 𝑖𝑘 � 𝑛 with 𝜎𝑖1 < 𝜎𝑖2 < · · · < 𝜎𝑖𝑘 .
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The entire function2 𝑃(𝑧; 𝑙) is the Poisson generating function of the sequence P(𝐿𝑛 � 𝑙) (𝑛 = 0, 1, . . .),
and 𝑓 (𝑧; 𝑙) := 𝑒𝑧𝑃(𝑧; 𝑙) is the corresponding exponential generating function. As it turns out, it is much
simpler to analyze the Poissonized distribution of 𝐿𝑁𝑟 as the intensity r grows large than the original
distribution of 𝐿𝑛 as n grows large.

There is, however, also a way back from 𝐿𝑁𝑟 to 𝐿𝑛 – namely, the expected value of the Poisson
distribution being E(𝑁𝑟 ) = 𝑟 , combined with some level of concentration, suggests

P(𝐿𝑛 � 𝑙) ≈ 𝑃(𝑛; 𝑙)

when 𝑛 → ∞ while l is kept near the mode of the distribution. Being a Tauberian result, such a de-
Poissonization is subject to additional conditions, which we will discuss in a moment.

Starting in the early 1990s, the Poisson generating function 𝑃(𝑧; 𝑙) (or the exponential one to the
same end) has been represented in terms of one of the following interrelated forms:

◦ a Toeplitz determinant in terms of modified Bessel functions [47],
◦ Fredholm determinants of various (discrete) integral operators [8, 9, 21, 22, 56],
◦ a unitary group integral [70].

A particular case of those representations plays a central role in our study – namely,3

𝑃(𝑟; 𝑙) = 𝐸hard
2 (4𝑟; 𝑙), (1.1)

where4 𝐸hard
2 (𝑠; 𝜈) denotes the probability that, in the hard-edge scaling limit, the scaled smallest

eigenvalue of the Laguerre unitary ensemble (LUE) with real parameter 𝜈 > 0 is bounded from below
by 𝑠 � 0. This probability is known to be given in terms of a Fredholm determinant (see [42]):

𝐸hard
2 (𝑠; 𝜈) = det(𝐼 − 𝐾Bessel

𝜈 )
��
𝐿2 (0,𝑠) , (1.2)

where 𝐾𝜈 denotes the Bessel kernel in 𝑥, 𝑦 � 0 (for the integral formula see [79, Eq. (2.2)]):

𝐾Bessel
𝜈 (𝑥, 𝑦) :=

𝐽𝜈 (
√
𝑥)√𝑦𝐽 ′𝜈 (

√
𝑦) − 𝐽𝜈 (

√
𝑦)
√
𝑥𝐽 ′𝜈 (

√
𝑥)

2(𝑥 − 𝑦) =
1
4

∫ 1

0
𝐽𝜈 (

√
𝜎𝑥)𝐽𝜈 (

√
𝜎𝑦) 𝑑𝜎. (1.3)

Obviously, the singularities at the diagonal 𝑥 = 𝑦 are removable.
The work of Tracy and Widom [79] establishes that the Fredholm determinant (1.2) can be expressed

in terms of Painlevé III. Recently, based on Okamoto’s Hamiltonian 𝜎-PIII′ framework, Forrester and
Mays [45] used that connection to compile a table of the exact rational values of P(𝐿𝑛 � 𝑙) for up
to 𝑛 = 700,5 whereas in our work [19], based on an equivalent representation in terms of a Chazy I
equation, we have compiled such a table6 for up to 𝑛 = 1000.

In their seminal 1999 work [7], by relating the representation of 𝑃(𝑧; 𝑙) in terms of the Toeplitz
determinant to the machinery of Riemann–Hilbert problems and studying the underlying double-scaling
limit by the Deift–Zhou method of steepest descent, Baik, Deift and Johansson answered Ulam’s question
and proved that, for t being any fixed real number,

lim
𝑟→∞
P

(
𝐿𝑁𝑟 − 2

√
𝑟

𝑟1/6 � 𝑡

)
= 𝐹 (𝑡), (1.4)

2Throughout the paper, we will use n as an integer 𝑛 � 0, r as a corresponding real variable 𝑟 > 0 (intensity) and z as its
continuation into the complex plane.

3A derivation from the group integral is found in [21, §2] and from the Toeplitz determinant in [44, Eq. (3.33)].
4Throughout the paper, we will use l as an integer 𝑙 � 1 and 𝜈 as a corresponding real variable 𝜈 > 0, which is used whenever

an expression of l generalizes to non-integer arguments.
5Previously, by combinatorial means, Baer and Brock [5] had compiled a table for up to 𝑛 = 36, supplemented later by Odlyzko

and Rains [61, 62] with the cases 𝑛 = 60, 90, 120. The cases 𝑛 = 30, 60, 90 got printed in [60].
6Available for download at https://box-m3.ma.tum.de/f/7c4f8cb22f5d425f8cff/.
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where F is the GUE Tracy–Widom distribution – that is, the distribution which expresses, among
many other limit laws, the probability that in the soft-edge scaling limit of the Gaussian unitary
ensemble (GUE), the scaled largest eigenvalue is bounded from above by t. As for the Poissonized
length distribution itself, the Tracy–Widom distribution can be represented in terms of a Fredholm
determinant (see [42]) – namely,

𝐹 (𝑡) = det(𝐼 − 𝐾0) |𝐿2 (𝑡 ,∞) (1.5)

where 𝐾0 denotes the Airy kernel in 𝑥, 𝑦 ∈ R (for the integral formula see [78, Eq. (4.5)]):

𝐾0(𝑥, 𝑦) :=
Ai(𝑥) Ai′(𝑦) − Ai′(𝑥) Ai(𝑦)

𝑥 − 𝑦
=

∫ ∞

0
Ai(𝑥 + 𝜎) Ai(𝑦 + 𝜎) 𝑑𝜎. (1.6)

Obviously, also in this case, the singularities at the diagonal 𝑥 = 𝑦 are removable. Since the limit
distribution in (1.4) is continuous, by a standard Tauberian follow-up [81, Lemma 2.1] of the Portmanteau
theorem, the limit law holds uniformly in t.

In 2003, Borodin and Forrester gave an alternative proof of (1.4) which is based on studying the
hard-to-soft edge transition of LUE for 𝜈 → ∞ in form of the limit law [21, Thm. 1]

lim
𝜈→∞

𝐸hard
2

( (
𝜈 − 𝑡 (𝜈/2)1/3)2; 𝜈

)
= 𝐹 (𝑡) (1.7)

(see also [43, §10.8.4]), which will be the starting point of our study. Still, there are other proofs of (1.4)
based on representations in terms of Fredholm determinants of further (discrete) integral operators; for
expositions and references, see the monographs [10, 71].

1.1.3. De-Poissonization
In the literature, the de-Poissonization of the limit law (1.4) has so far been based exclusively on
variants of the following lemma (cf. [10, Cor. 2.5], originally stated as [55, Lemma 2.5]), which uses
monotonicity as the underlying Tauberian condition.
Lemma 1.1 (Johansson’s de-Poissonization lemma [55]). Suppose the sequence 𝑎𝑛 of probabilities
0 � 𝑎𝑛 � 1 satisfies the monotonicity condition 𝑎𝑛+1 � 𝑎𝑛 for all 𝑛 = 0, 1, 2, . . . and denote its Poisson
generating function by

𝑃(𝑧) = 𝑒−𝑧
∞∑
𝑛=0

𝑎𝑛
𝑧𝑛

𝑛!
. (1.8)

Then, for 𝑠 � 1 and 𝑛 � 2 ,7 𝑃
(
𝑛 + 2

√
𝑠𝑛 log 𝑛

)
− 𝑛−𝑠 � 𝑎𝑛 � 𝑃

(
𝑛 − 2

√
𝑠𝑛 log 𝑛

)
+ 𝑛−𝑠 .

After establishing the Tauberian condition of monotonicity and applying a variant of Lemma 1.1 to
(1.4), Baik, Deift and Johansson [7, Thm. 1.1] got

lim
𝑛→∞
P

(
𝐿𝑛 − 2

√
𝑛

𝑛1/6 � 𝑡

)
= 𝐹 (𝑡), (1.9)

which holds uniformly in t for the same reasons as given above. (The simple calculations based on
Lemma 1.1 are given in [10, p. 239]; note that the uniformity of the limit law (1.4) is used there without
explicitly saying so.) Adding tail estimates to the picture, those authors were also able to lift the limit law
to the moments and got, expanding on Ulam’s problem, that the expected value satisfies [7, Thm. 1.2]

E(𝐿𝑛) = 2
√
𝑛 + 𝑀1𝑛

1/6 + 𝑜(𝑛1/6), 𝑀1 =
∫ ∞

−∞
𝑡𝐹 ′(𝑡) 𝑑𝑡 ≈ −1.7711. (1.10)

7Note the trade-off between sharper error terms ∓𝑛−𝑠 and less sharp perturbations of n by ±2
√
𝑠𝑛 log 𝑛.
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1.1.4. Expansions
To our knowledge, only for the Poissonized limit law (1.4) a finite-size correction term has been
rigorously established prior to the present paper8 – namely, as a by-product along the way of their study
of the limiting distribution of maximal crossings and nestings of Poissonized random matchings, Baik
and Jenkins [11, Thm. 1.3] obtained (using the machinery of Riemann–Hilbert problems and Painlevé
representations of the Tracy–Widom distribution), as 𝑟 → ∞ with t being any fixed real number,

P

(
𝐿𝑁𝑟 − 2

√
𝑟

𝑟1/6 � 𝑡

)
= 𝐹

(
𝑡 (𝑟 )

)
− 1

10

(
𝐹 ′′(𝑡) + 𝑡2

6
𝐹 ′(𝑡)

)
𝑟−1/3 +𝑂 (𝑟−1/2), (1.11a)

where (with 
·� denoting the Gauss bracket)

𝑡 (𝑟 ) :=

2
√
𝑟 + 𝑡𝑟1/6� − 2

√
𝑟

𝑟1/6 . (1.11b)

However, even if there is enough uniformity in this result and the option to Taylor expand the Poisson
generating function 𝑃(𝑟) at n with a uniform bound while l is kept near the mode of the distributions
(see Section 5.1 for details on this option), the sandwiching in Johansson’s de-Poissonization Lemma
1.1 does not allow us to obtain a result better than (cf. [11, §9])

P

(
𝐿𝑛 − 2

√
𝑛

𝑛1/6 � 𝑡

)
= 𝐹

(
𝑡 (𝑛)

)
+𝑂

(
𝑛−1/6√log 𝑛

)
. (1.12)

In their recent study of finite-size effects, Forrester and Mays [45, Prop. 1.1] gave a different proof of
(1.11) based on the Bessel kernel determinant (1.2). Moreover, suggested by exact data for 𝑛 = 700 and
a Monte-Carlo simulation for 𝑛 = 20 000, they were led to conjecture [45, Conj. 4.2]

P

(
𝐿𝑛 − 2

√
𝑛

𝑛1/6 � 𝑡

)
= 𝐹

(
𝑡 (𝑛)

)
+ 𝐹𝐷

1 (𝑡)𝑛−1/3 + · · · (1.13)

with the approximate graphical form of 𝐹𝐷
1 (𝑡) displayed in [45, Fig. 7].

The presence of the Gauss bracket in 𝑡 (𝑟 ) and 𝑡 (𝑛) , while keeping t at other places of the expansions
(1.11) and (1.13), causes undesirable effects in the error terms (see Remark 4.2 below for a detailed
discussion). Therefore, in our work [19] on a Stirling-type formula approximating the distribution
P(𝐿𝑛 � 𝑙), we suggested to use the integer l in the continuous expansion terms instead of introducing
the continuous variable t into the discrete distribution in the first place, with the latter variant turning
the discrete distribution into a piecewise constant function of t. By introducing the scaling

𝑡𝜈 (𝑟) :=
𝜈 − 2

√
𝑟

𝑟1/6 (𝑟 > 0),

we were led (based on numerical experiments using the Stirling-type approximation for n getting as
large as 1010) to conjecture the expansion

P(𝐿𝑛 � 𝑙) = 𝐹 (𝑡) + 𝐹𝐷
1 (𝑡) 𝑛−1/3 + 𝐹𝐷

2 (𝑡) 𝑛−2/3 +𝑂 (𝑛−1)
���
𝑡=𝑡𝑙 (𝑛)

,

displaying the graphical form of the functions 𝐹𝐷
1 (𝑡), 𝐹𝐷

2 (𝑡) in the left panels of [19, Figs. 4/6].
Moreover, as a note added in proof (see [19, Eq. (11)]), we announced that inserting the Baik–Jenkins

8Expansions of probability distributions are sometimes called Edgeworth expansions in reference to the classical one for the
central limit theorem. In random matrix theory, quite a variety of such expansions, or at least some precise estimates of convergence
rates, have been studied (e.g., for the soft-edge scaling limits of the Gauss and Laguerre ensembles [24, 25, 33, 58] and of the
Jacobi ensembles [57], for the hard-edge scaling limit of the Laguerre ensembles [17, 32, 46, 67], for the bulk scaling limit of the
circular ensembles [20], and for various joint probability distributions [1, 11, 13, 36, 73, 84]).
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expansion (1.11) into the Stirling-type formula and using its (numerically observed) apparent order
𝑂 (𝑛−2/3) of approximation would yield the functional form of 𝐹𝐷

1 to be

𝐹𝐷
1 (𝑡) = − 1

10

(
6𝐹 ′′(𝑡) + 𝑡2

6
𝐹 ′(𝑡)

)
. (1.14)

The quest for a proof, and for a similar expression for 𝐹𝐷
2 , motivated our present work.

1.2. The new findings of the paper

In the analysis of algorithms in theoretical computer science, or the enumeration of combinatorial
structures to the same end, the original enumeration problem is often represented in form of recurrences
or functional/differential equations. For instance, this situation arises in a large class of algorithms
involving a splitting process, trees or hashing. Embedding such processes into a Poisson process9 often
leads to more tractable equations, so that sharp tools for a subsequent de-Poissonization were developed
in the 1990s; for references and details, see [53, 54, 77] and Appendix A.1. In particular, if the Poisson
generating function 𝑃(𝑧) of a sequence of real 𝑎𝑛 > 0, as defined in (1.8), is an entire function, an
application of the saddle point method to the Cauchy integral

𝑎𝑛 =
𝑛!

2𝜋𝑖

∮
𝑃(𝑧)𝑒𝑧 𝑑𝑧

𝑧𝑛+1

yields, under suitable growth conditions on 𝑃(𝑧) as 𝑧 → ∞ in the complex plane, the Jasz10 expansion

𝑎𝑛 ∼ 𝑃(𝑛) +
∞∑
𝑗=2

𝑏 𝑗 (𝑛)𝑃 ( 𝑗) (𝑛),

where the polynomial coefficients 𝑏 𝑗 (𝑛) are the diagonal Poisson–Charlier polynomials (that is, with
intensity 𝑟 = 𝑛). In Appendix A.1, we give a heuristic derivation of that expansion and recall, in the
detailed form of Theorem A.2, a specific analytic de-Poissonization result from the comprehensive
memoir [53] of Jacquet and Szpankowski – a result which applies to a family of Poisson generating
functions at once, providing uniform error bounds.

Now, the difficult part of applying Theorem A.2 is checking the Tauberian growth conditions in the
complex plane, which are required to hold uniformly for the family of Poisson generating functions
(recall that, in the case of the longest increasing subsequence problem, 𝑃(𝑧) = 𝑃(𝑧; 𝑙) depends on the
integer l near the mode of the length distribution). After observing a striking similarity of those growth
conditions with the notion of H-admissibility for the corresponding exponential generating function (as
introduced by Hayman in his memoir [51] on the generalization of Stirling’s formula), a closer look
at the proof of Hayman’s [51, Thm. XI] revealed the following result (see Theorem A.5 for a precise
quantitative statement):

The family of all entire functions of genus zero which have, for some 𝜖 > 0, no zeros in the sector
|arg 𝑧 | � 𝜋/2 + 𝜖 satisfies a universal bound that implies Tauberian growth conditions suitable for
analytic de-Poissonization.

However, in our work [19, Thm. 2.2] on Stirling-type formulae for the problem of longest increasing
subsequences, when proving the H-admissibility of the exponential generating functions 𝑓 (𝑧; 𝑙) =
𝑒𝑧𝑃(𝑧; 𝑙) (for each l), we had established, based on the representation [70] of 𝑃(𝑧; 𝑙) as a group integral,
the following:

9As a heuristic principle in probability and combinatorics, Poissonization was popularized by Aldous’ book [2].
10Dubbed so in [38, §VIII.18] to compliment the seminal work of Jacquet and Szpankowski [53].

https://doi.org/10.1017/fms.2024.13 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.13


Forum of Mathematics, Sigma 7

For any integer 𝑙 � 0 and any 𝛿 > 0, the exponential generating function 𝑓 (𝑧; 𝑙) is an entire function
of genus zero having at most finitely many zeros in the sector |arg 𝑧 | � 𝜋 − 𝛿, none of them being real.

Under the reasonable assumption (supported by numerical experiments) that those finitely many
complex zeros do not come too close to the real axis and do not grow too fast as 𝑛 → ∞ while l
stays near the mode of the length distribution, the uniformity of the Tauberian growth conditions can be
preserved (see Corollary A.7 for the technical details). We call this assumption the tameness hypothesis11

concerning the zeros of the family of 𝑃(𝑧; 𝑙).
Subject to the tameness hypothesis, the main result of the present paper, Theorem 5.1, gives the

asymptotic expansion

P(𝐿𝑛 � 𝑙) = 𝐹 (𝑡) +
𝑚∑
𝑗=1

𝐹𝐷
𝑗 (𝑡) 𝑛− 𝑗/3 +𝑂

(
𝑛−(𝑚+1)/3) ����

𝑡=𝑡𝑙 (𝑛)
,

which is uniformly valid when 𝑛, 𝑙 → ∞ while 𝑡𝑙 (𝑛) stays bounded12 and the 𝐹𝐷
𝑗 are certain smooth

functions.
Finally, now without any detour via the Stirling-type formula, Theorem 5.1 confirms that the expansion

term 𝐹𝐷
1 is given by (1.14), indeed, and yields the striking formula

𝐹𝐷
2 (𝑡) =

(
− 139

350
+ 2𝑡3

1575

)
𝐹 ′(𝑡) +

(
− 43𝑡

350
+ 𝑡4

7200

)
𝐹 ′′(𝑡) + 𝑡2

100
𝐹 ′′′(𝑡) + 9

50
𝐹 (4) (𝑡);

see (3.4) for a display of a similarly structured expression for 𝐹𝐷
3 (𝑡).

Put to the extreme, with the help of a CAS such as Mathematica, the methods of the present paper can
be used to calculate the concrete functional form of the expansion terms for up to 𝑚 = 10 and larger.13
In all cases inspected, we observe that the expansion terms take the form of a linear combination of
higher order derivatives of the limit law (that is, the Tracy–Widom distribution F) with certain rational
polynomials as coefficients; we conjecture that this is generally true for the problem at hand.

1.3. Generalization: involutions, orthogonal and symplectic ensembles

In our subsequent work [18], we present a similar structure for the expansion terms relating to longest
monotone subsequences in (fixed-point free) random involutions, F then being one of the Tracy–Widom
distributions for 𝛽 = 1 or 𝛽 = 4. The limit laws were first obtained by Baik and Rains [12], using the
machinery of Riemann–Hilbert problems, and later reclaimed by Borodin and Forrester [21] through
establishing hard-to-soft edge transition laws for LOE and LSE similar to (1.7). In [18], we derive the
asymptotic expansions by using determinantal formulae [29, 37] of the hard and soft edge limits for
𝛽 = 1, 4 while taking advantage of their algebraic interrelations with the 𝛽 = 2 case studied in the present
paper (basically, the expansions of the hard-to-soft edge limit laws for 𝛽 = 1, 4 turn out to correspond to
a certain factorization of the 𝛽 = 2 case). This is then followed by applying analytic de-Poissonization,
once again subject to a tameness hypothesis.

1.4. Organization of the paper

The paper splits into two parts: a first one, where all results and proofs are unconditional, addressing
asymptotic expansions of Fredholm determinants, of the hard-to-soft edge transition law and the Pois-
sonized length distribution; and a second one, where we restrict ourselves to assuming the tameness
hypothesis when addressing analytic de-Poissonization and its various consequences.

11Proving it seems to be rather difficult, though – at least we were lacking the methodology to do so.
12This is meant, in fact, when we say that l stays near the mode of the length distribution.
13A supplementary Mathematica notebook displaying the results up to 𝑚 = 10 comes with the source files at arxiv:2301.02022.
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Part I: Unconditional results. In Section 2, we start with a careful discussion of expansions of per-
turbed Airy kernel determinants. We stress the importance of such kernel expansions to be differentiable
(i.e., one can differentiate into the error term) to easily lift the error bounds to trace norms. The subtle,
but fundamental difficulty of such a lift seems to have been missed, more often than not, in the existing
literature on convergence rates and expansions of limit laws in random matrix theory (notable exceptions
are, for example, [33, 57, 58]).

In the rather lengthy Section 3, we study the asymptotic expansion of the Borodin–Forrester hard-
to-soft edge transition law (1.7). It is based on a uniform version of Olver’s asymptotic expansion of
Bessel functions of large order in the transition region, which we discuss in Appendix A.3. In Section
3, we lay the foundational work for the concrete functional form of all subsequent finite-size correction
terms. We reduce the complexity of computing these terms by using a coordinate transform on the level
of kernels to simplify the kernel expansion – a coordinate transform which gets subsequently reversed
on the level of the distributions.14 As yet another application of that technique, we simplify in Section
3.4 the finite-size correction terms of Choup [24] to the soft-edge limit law of GUE and LUE.

In Section 4, we expand the Poissonized length distribution, thereby generalizing the result (1.12)
of Baik and Jenkins. In Section 4, we also discuss the potentially detrimental effect of using Gauss
brackets, as in (1.12), alongside with the continuous variable t in the expansion terms.

Part II: Results based on the tameness hypothesis. In Section 5, we state and prove the main result
of the paper: the expansion of the Baik–Deift–Johansson limit law (1.9) of the length distribution. Here
we use the Jasz expansion of analytic de-Poissonization (as detailed in Appendix A.1). The universal
bounds for entire functions of genus zero, which are used to prove the Tauberian growth conditions in
the complex plane, and their relation to the theory of H-admissibility are prepared for in Appendix A.2.
Additionally, in Section 5, we discuss the modifications that apply to the discrete density P(𝐿𝑛 = 𝑙)
(that is, to the PDF of the length distribution).

In Section 6, we apply our findings to the asymptotic expansion of the Stirling-type formula which
we introduced in [19] as an accurate tool for the numerical approximation of the length distribution.
Subject to the tameness hypothesis, we prove the observation [19, Eq. (8b)] about a leading 𝑂 (𝑛−2/3)
error of that formula.

Finally, in Section 7, we study the asymptotic expansion of the expected value and variance. Based
on a reasonable hypothesis about some uniformity in the tail bounds, we add several more concrete
expansion terms to the Baik–Deift–Johansson solution (1.10) of Ulam’s problem.

Part I: Unconditional results

2. Expansions of perturbed Airy kernel determinants

In Section 3, we will get, with m being some non-negative integer and 𝑡0 some real number, kernel
expansions of the form

𝐾 (ℎ) (𝑥, 𝑦) = 𝐾0(𝑥, 𝑦) +
𝑚∑
𝑗=1

ℎ 𝑗𝐾 𝑗 (𝑥, 𝑦) + ℎ𝑚+1𝑂
(
𝑒−(𝑥+𝑦)

)
, (2.1)

which are
◦ uniformly valid for 𝑡0 � 𝑥, 𝑦 < 𝑐ℎ−1 as ℎ → 0+, where 𝑐 > 0 is some constant;
◦ repeatedly differentiable w.r.t. x, y as uniform expansions under the same conditions.

Here, 𝐾 (ℎ) is a family of smooth kernels, 𝐾0 denotes the Airy kernel (1.6) and the 𝐾 𝑗 (𝑥, 𝑦) are finite
sums of rank one kernels 𝑢(𝑥)𝑣(𝑦), with factors 𝑢(𝜉), 𝑣(𝜉) of the functional form

𝑝(𝜉) Ai(𝜉) or 𝑝(𝜉) Ai′(𝜉), (2.2)

14In [17], we applied a similar transformation ‘trick’ to the expansion of the hard-edge limit law of LUE.
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where 𝑝(𝜉) is a polynomial in 𝜉. Since the existing literature tends to neglect the issue of estimating
trace norms in terms of kernel bounds, this section aims at establishing a relatively easy framework for
lifting such an expansion to one of the Fredholm determinant.

2.1. Bounds on the kernels and induced trace norms

Bounds on the kernels 𝐾 𝑗 , and on the trace norms of the induced integral operators, can be deduced
from the estimates,15 with p being any polynomial,

|𝑝(𝜉) | · max
(
| Ai(𝜉) |, | Ai′(𝜉) |

)
� 𝑎𝑝𝑒

−𝜉 (𝜉 ∈ R),

where the constant 𝑎𝑝 does only depend on p (note that we can take 𝑎𝑝 = 1 when 𝑝(𝜉) ≡ 1). This way,
we get from (1.6)

|𝐾0 (𝑥, 𝑦) | �
∫ ∞

0
| Ai(𝑥 + 𝜎) Ai(𝑦 + 𝜎) | 𝑑𝜎 � 𝑒−(𝑥+𝑦)

∫ ∞

0
𝑒−2𝜎 𝑑𝜎 = 1

2 𝑒
−(𝑥+𝑦) (𝑥, 𝑦 ∈ R)

and, for 1 � 𝑗 � 𝑚, constants 𝑐 𝑗 such that

|𝐾 𝑗 (𝑥, 𝑦) | � 𝑐 𝑗𝑒
−(𝑥+𝑦) (𝑥, 𝑦 ∈ R).

For a given continuous kernel 𝐾 (𝑥, 𝑦), we denote the induced integral operator on 𝐿2 (𝑡, 𝑐ℎ−1) by K̄
and the one on 𝐿2 (𝑡,∞), if defined, by K (suppressing the dependence on t in both cases). The spaces
of trace class and Hilbert–Schmidt operators acting on 𝐿2 (𝑡, 𝑠) are written as J 𝑝 (𝑡, 𝑠) with 𝑝 = 1 and
𝑝 = 2. By using the orthogonal projection of 𝐿2 (𝑡,∞) onto the subspace 𝐿2 (𝑡, 𝑐ℎ−1), we see that

‖K̄‖J 1 (𝑡 ,𝑐ℎ−1) � ‖K‖J 1 (𝑡 ,∞) . (2.3)

The Airy operator K0 (being by (1.6) the square of the Hilbert–Schmidt operator A𝑡 with kernel
Ai(𝑥 + 𝑦 − 𝑡)) and the expansion operators K 𝑗 ( 𝑗 � 1) (being finite rank operators) are trace class on
the space 𝐿2 (𝑡,∞). Their trace norms are bounded by

‖K0‖J 1 (𝑡 ,∞) � ‖A𝑡 ‖2
J 2 (𝑡 ,∞) =

∫ ∞

𝑡

∫ ∞

𝑡
| Ai(𝑥 + 𝑦 − 𝑡) |2 𝑑𝑥 𝑑𝑦

=
∫ ∞

0

∫ ∞

0
| Ai(𝑥 + 𝑦 + 𝑡) |2 𝑑𝑥 𝑑𝑦 � 𝑒−2𝑡

∫ ∞

0

∫ ∞

0
𝑒−2(𝑥+𝑦) 𝑑𝑥 𝑑𝑦 = 1

4 𝑒
−2𝑡 (𝑡 ∈ R),

and, likewise with some constants 𝑐∗𝑗 , by

‖K 𝑗 ‖J 1 (𝑡 ,∞) � 𝑐∗𝑗𝑒
−2𝑡 (1 � 𝑗 � 𝑚, 𝑡 ∈ R).

Here, we have used

‖𝑢 ⊗ 𝑣‖J 1 (𝑡 ,∞) � ‖𝑢‖𝐿2 (𝑡 ,∞) ‖𝑣‖𝐿2 (𝑡 ,∞) �
𝑎𝑝𝑎𝑞

2
𝑒−2𝑡 (𝑡 ∈ R)

for factors 𝑢(𝜉), 𝑣(𝜉) of the form (2.2) with some polynomials p and q.
However, there is in general no direct relation between kernel bounds and bounds of the trace norm

of induced integral operators (see [74, p. 25]). Writing the kernel of the error term in (2.1), and its

15This bound, chosen for convenience but not for optimality, follows from the superexponential decay of the Airy function and
its derivative as 𝜉 → +∞ and the bounds 𝑂

(
(−𝜉 )−1/4) and 𝑂

(
(−𝜉 )1/4) as 𝜉 → −∞; cf. the expansions (A.18) and [66, Eq.

(9.7.9/10)].
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bound, in the form

ℎ𝑚+1𝑅𝑚+1,ℎ (𝑥, 𝑦) = ℎ𝑚+1𝑂
(
𝑒−(𝑥+𝑦)

)
(2.4)

does therefore not offer, as it stands, any direct method of lifting the bound to trace norm.16
By taking, however, the explicitly assumed differentiability of the kernel expansion into account,

there is a constant 𝑐♯ such that

𝑆𝑚+1,ℎ (𝑥, 𝑦) := 𝜕𝑦𝑅𝑚+1,ℎ (𝑥, 𝑦), |𝑆𝑚+1,ℎ (𝑥, 𝑦) | � 𝑐♯𝑒
−(𝑥+𝑦)

holds true for all 𝑡0 � 𝑥, 𝑦 < 𝑐ℎ−1 and 0 < ℎ � ℎ0 (ℎ0 chosen sufficiently small). If we denote an
indicator function by 𝜒 and choose some 𝑐∗ < 𝑐 close to c, integration gives

𝑅𝑚+1,ℎ (𝑥, 𝑦) = 𝑅𝑚+1(𝑥, 𝑐∗ℎ−1) −
∫ 𝑐∗ℎ−1

𝑡
𝑆𝑚+1,ℎ (𝑥, 𝜎)𝑒𝜎/2 · 𝑒−𝜎/2𝜒[𝑡 ,𝜎 ] (𝑦) 𝑑𝜎

if 𝑡0 � 𝑥, 𝑦 � 𝑐∗ℎ
−1. This shows that the induced integral operator on 𝐿2 (𝑡, 𝑐∗ℎ−1), briefly written

accordingly as

R̄𝑚+1,ℎ = R̄♭
𝑚+1,ℎ + R̄♯

𝑚+1,ℎ ,

is trace class since it is the sum of a rank-one operator and a product of two Hilbert–Schmidt operators.
In fact, for 𝑡0 � 𝑡 � 𝑐∗ℎ

−1, the trace norms of those terms are bounded by (denoting the implied constant
in (2.4) by 𝑐♭)

‖R̄♭
𝑚+1,ℎ ‖

2
J 1 (𝑡 ,𝑐∗ℎ−1) � ‖1‖2

𝐿2 (𝑡 ,𝑐∗ℎ−1) · ‖𝑅𝑚+1,ℎ ( · , 𝑐∗ℎ−1)‖2
𝐿2 (𝑡 ,𝑐∗ℎ−1)

� (𝑐ℎ−1 − 𝑡0) · 𝑐2
♭𝑒

−2𝑐∗ℎ−1
∫ ∞

𝑡
𝑒−2𝑥 𝑑𝑥 = ℎ−1𝑒−2𝑐∗ℎ−1

𝑂 (𝑒−2𝑡 )

and

‖R̄♯
𝑚+1,ℎ ‖

2
J 1 (𝑡 ,𝑐∗ℎ−1) �

(∫ 𝑐∗ℎ−1

𝑡

∫ 𝑐∗ℎ−1

𝑡
𝑆𝑚+1,ℎ (𝑥, 𝑦)2𝑒𝑦 𝑑𝑥 𝑑𝑦

)
·
(∫ 𝑐∗ℎ−1

𝑡

∫ 𝑥

𝑡
𝑒−𝑥 𝑑𝑥 𝑑𝑦

)
� 𝑐2

♯

(∫ ∞

𝑡

∫ ∞

𝑡
𝑒−2𝑥−𝑦 𝑑𝑥 𝑑𝑦

)
·
(∫ ∞

𝑡

∫ 𝑥

𝑡
𝑒−𝑥 𝑑𝑥 𝑑𝑦

)
= 𝑂 (𝑒−4𝑡 ).

Here, the implied constants are independent of the particular choice of 𝑐∗. By noting that the orthogonal
projection of 𝐿2 (𝑡, 𝑐ℎ−1) onto 𝐿2 (𝑡, 𝑐∗ℎ−1) converges, as 𝑐∗ → 𝑐, to the identity in the strong operator
topology, we obtain by a continuity theorem17 of Grümm [49, Thm. 1]

‖R̄𝑚+1,ℎ ‖J 1 (𝑡 ,𝑐ℎ−1) = lim
𝑐∗→𝑐

‖R̄𝑚+1,ℎ ‖J 1 (𝑡 ,𝑐∗ℎ−1)

≤ lim sup
𝑐∗→𝑐

‖R̄♭
𝑚+1,ℎ ‖J 1 (𝑡 ,𝑐∗ℎ−1) + lim sup

𝑐∗→𝑐
‖R̄♯

𝑚+1,ℎ ‖J 1 (𝑡 ,𝑐∗ℎ−1)

= ℎ−1/2𝑒−𝑐ℎ
−1
𝑂 (𝑒−𝑡 ) +𝑂 (𝑒−2𝑡 ).

16This subtle technical point has frequently been missed in the literature when lifting kernel expansion to trace class operators.
(For example, the argument given in [24, p. 12] for lifting a kernel expansion to the Edgeworth expansion of the largest eigenvalue
distribution of GUE and LUE lacks in that respect. It can be made rigorous when supplemented by the estimates given here; see
Theorem 2.1. Another rigorous approach can be found in the work of Johnstone [57, 58].)

17We use just a simple special case: if H is a separable Hilbert space, 𝐴 ∈ J 1 (𝐻 ) and 𝑃𝑛 : 𝐻 → 𝐻 a sequence of orthogonal
projections converging to the identity in the strong operator topology, then ‖𝑃𝑛𝐴𝑃𝑛 − 𝐴‖J 1 (𝐻 ) → 0. See also also [74, p. 28,
Example 3].
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We have thus lifted the kernel expansion (2.1) to an operator expansion in J 1 (𝑡, 𝑐ℎ−1) – namely,

K̄(ℎ) = K̄0 +
𝑚∑
𝑗=1

ℎ 𝑗K̄ 𝑗 + ℎ𝑚+1R̄𝑚+1,ℎ , (2.5a)

with the bounds (recall (2.3) and observe that we can absorb ℎ𝑚+1/2𝑒−𝑐ℎ
−1 into 𝑂 (𝑒−𝑐ℎ−1))

‖K 𝑗 ‖J 1 (𝑡 ,∞) = 𝑂 (𝑒−2𝑡 ), (2.5b)

ℎ𝑚+1‖R̄𝑚+1,ℎ ‖J 1 (𝑡 ,𝑐ℎ−1) = ℎ𝑚+1𝑂 (𝑒−2𝑡 ) + 𝑒−𝑐ℎ
−1
𝑂 (𝑒−𝑡 ), (2.5c)

uniformly valid for 𝑡0 � 𝑡 < 𝑐ℎ−1 as ℎ → 0+.

2.2. Fredholm determinants

Given a continuous kernel 𝐾 (𝑥, 𝑦) on the bounded rectangle 𝑡0 � 𝑥, 𝑦 � 𝑡1, the Fredholm determinant
(cf. [4, §3.4])

det(𝐼 − 𝐾) |𝐿2 (𝑡 ,𝑠) :=
∞∑

𝑚=0

(−1)𝑚
𝑚!

∫ 𝑠

𝑡
· · ·

∫ 𝑠

𝑡

𝑚
det
𝑗 ,𝑘=1

𝐾 (𝑥 𝑗 , 𝑥𝑘 ) 𝑑𝑥1 · · · 𝑑𝑥𝑚 (2.6)

is well-defined for 𝑡0 � 𝑡 < 𝑠 � 𝑡1. If, as is the case for the kernels 𝐾 𝑗 (see Section 2.1), the kernel is
also continuous for all 𝑥, 𝑦 � 𝑡0 and there is a weighted uniform bound of the form

sup
𝑥,𝑦�𝑡0

𝑒𝑥+𝑦 |𝐾 (𝑥, 𝑦) | � 𝑀 < ∞,

the Fredholm determinant (2.6) is well-defined even if we choose 𝑠 = ∞ (this can be seen by writing
the integrals in terms of the weighted measure 𝑒−𝑥 𝑑𝑥; cf. [4, §3.4]).

Now, if the induced integral operator K|𝐿2 (𝑡 ,𝑠) on 𝐿2 (𝑡, 𝑠) is trace class, the Fredholm determinant
can be expressed in terms of the operator determinant (cf. [74, Chap. 3]):

det(𝐼 − 𝐾) |𝐿2 (𝑡 ,𝑠) = det
(
I − K|𝐿2 (𝑡 ,𝑠)

)
. (2.7)

Using the orthogonal decomposition

𝐿2 (𝑡,∞) = 𝐿2 (𝑡, 𝑐ℎ−1) ⊕ 𝐿2 (𝑐ℎ−1,∞) (2.8)

and writing the operator expansion (2.5) in the form

K̄(ℎ) = K̄𝑚,ℎ + ℎ𝑚+1R̄𝑚+1,ℎ , K̄𝑚,ℎ := K̄0 +
𝑚∑
𝑗=1

ℎ 𝑗K̄ 𝑗 ,

we get from the error estimate in (2.5c), by the local Lipschitz continuity of operator determinants w.r.t.
trace norm (cf. [74, Thm. 3.4]), that

det
(
𝐼 − 𝐾 (ℎ)

)
|𝐿2 (𝑡 ,𝑐ℎ−1) = det(I − K̄(ℎ) ) = det

(
I − K̄𝑚,ℎ

)
+ ℎ𝑚+1𝑂 (𝑒−2𝑡 ) + 𝑒−𝑐ℎ

−1
𝑂 (𝑒−𝑡 )

= det
(
I − K𝑚,ℎ

)
+ ℎ𝑚+1𝑂 (𝑒−2𝑡 ) + 𝑒−𝑐ℎ

−1
𝑂 (𝑒−𝑡 ),

uniformly for 𝑡0 � 𝑡 < 𝑐ℎ−1 as ℎ → 0+. Here, the last estimate comes from a block decomposition of
K̄(ℎ) according to (2.8) and applying the trace norm bounds of K 𝑗 in Section 2.1 to the boundary case
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𝑡 = 𝑐ℎ−1, which yields

det
(
I − K̄𝑚,ℎ

)
= det

(
I − K𝑚,ℎ

)
+𝑂 (𝑒−2𝑐ℎ−1);

note that the error term of order 𝑂 (𝑒−2𝑐ℎ−1 ) can be absorbed into 𝑒−𝑐ℎ
−1
𝑂 (𝑒−𝑡 ) if 𝑡 < 𝑐ℎ−1.

2.3. Expansions of operator determinants

Plemelj’s formula gives, for trace class perturbations E of the identity on 𝐿2 (𝑡,∞) bounded by
‖E‖J 1 (𝑡 ,∞) < 1, the convergent series expansion (cf. [74, Eq. (5.12)])

det(I − E) = exp

(
−

∞∑
𝑛=1

𝑛−1 tr(E𝑛)
)

(2.9)

= 1 − tr E + 1
2

(
(tr E)2 − tr(E2)

)
+ 1

6

(
−(tr E)3 + 3 tr E tr E2 − 2 tr E3

)
+𝑂

(
‖E‖4

J 1 (𝑡 ,∞)

)
.

Thus, since I − K0 is invertible with a uniformly bounded inverse as 𝑡 � 𝑡0,18 we have

det
(
I − K𝑚,ℎ

)
= det(I − K0) det

(
I − E𝑚,ℎ

)
, E𝑚,ℎ :=

𝑚∑
𝑗=1

ℎ 𝑗 (I − K0)−1K 𝑗 ,

with the trace norm of E𝑚,ℎ being bounded as follows (using the results of Section 2.1 and observing
that the trace class forms an ideal within the algebra of bounded operators):

‖E𝑚,ℎ ‖J 1 (𝑡 ,∞) � ‖(I − K0)−1‖ ℎ

1 − ℎ
· 𝑂

(
𝑒−2𝑡 ) = ℎ · 𝑂 (𝑒−2𝑡 ),

uniformly for 𝑡 � 𝑡0 as ℎ → 0+. By (2.9), this implies, uniformly under the same conditions,

det
(
I − E𝑚,ℎ

)
= 1 +

𝑚∑
𝑗=1

𝑑 𝑗 (𝑡)ℎ 𝑗 + ℎ𝑚+1 · 𝑂 (𝑒−2𝑡 ).

Here, 𝑑 𝑗 (𝑡) depends smoothly on t and satisfies the (right) tail bound 𝑑 𝑗 (𝑡) = 𝑂 (𝑒−2𝑡 ). If we write briefly

E 𝑗 = (I − K0)−1K 𝑗 ,

the first few cases are given by the expressions (because the traces are taken for trace class operators
acting on 𝐿2 (𝑡,∞) they depend on t)

𝑑1 (𝑡) = − tr E1, (2.10a)

𝑑2 (𝑡) =
1
2
(tr E1)2 − 1

2
tr E2

1 − tr E2, (2.10b)

𝑑3 (𝑡) = −1
6
(tr E1)3 + 1

2
tr E1 tr E2

1 −
1
2

tr(E1E2 + E2E1) (2.10c)

− 1
3

tr E3
1 + tr E1 tr E2 − tr E3.

18The Airy kernel 𝐾0 induces a symmetric positive definite integral operator K0 on 𝐿2 (𝑡 ,∞) . Its norm as a bounded operator
is thus is given by the spectral radius, which stays below 1 uniformly as 𝑡 � 𝑡0, cf. [78]:

‖K0 ‖ = 𝜌(K0) � 𝑐 (𝑡0) < 1.

By functional calculus, we thus get the uniform bound ‖ (I − K0)−1 ‖ = 1
1−𝜌(K0 )

� 1
1−𝑐 (𝑡0 )

.
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Since the K 𝑗 are trace class, those trace expressions can be recast in terms of resolvent kernels and
integral traces (cf. [74, Thm. (3.9)]).

Taking the bound 0 � 𝐹 (𝑡) � 1 of the Tracy–Widom distribution (being a probability distribution)
into account, the results of Section 2 can be summarized in form of the following:

Theorem 2.1. Let 𝐾 (ℎ) (𝑥, 𝑦) be a continuous kernel, 𝐾0 the Airy kernel (1.6), and let the 𝐾 𝑗 (𝑥, 𝑦) be
finite sums of rank one kernels with factors of the form (2.2). If, for some fixed non-negative integer m
and some real number 𝑡0, there is a kernel expansion of the form

𝐾 (ℎ) (𝑥, 𝑦) = 𝐾0(𝑥, 𝑦) +
𝑚∑
𝑗=1

ℎ 𝑗𝐾 𝑗 (𝑥, 𝑦) + ℎ𝑚+1 · 𝑂
(
𝑒−(𝑥+𝑦)

)
,

which, for some constant 𝑐 > 0, holds uniformly in 𝑡0 � 𝑥, 𝑦 < 𝑐ℎ−1 as ℎ → 0+and which can be
repeatedly differentiated w.r.t. x and y as uniform expansions, then the Fredholm determinant of 𝐾 (ℎ)
on (𝑡, 𝑐ℎ−1) satisfies

det
(
𝐼 − 𝐾 (ℎ)

)
|𝐿2 (𝑡 ,𝑐ℎ−1) = 𝐹 (𝑡) +

𝑚∑
𝑗=1

𝐺 𝑗 (𝑡)ℎ 𝑗 + ℎ𝑚+1𝑂 (𝑒−2𝑡 ) + 𝑒−𝑐ℎ
−1
𝑂 (𝑒−𝑡 ), (2.11)

uniformly for 𝑡0 � 𝑡 < 𝑐ℎ−1 as ℎ → 0+. Here, F denotes the Tracy–Widom distribution (1.5) and
the 𝐺 𝑗 (𝑡) are smooth functions depending on the kernels 𝐾1, . . . , 𝐾 𝑗 , satisfying the (right) tail bounds
𝐺 𝑗 (𝑡) = 𝑂 (𝑒−2𝑡 ). The first two are

𝐺1 (𝑡) = −𝐹 (𝑡) · tr
(
(𝐼 − 𝐾0)−1𝐾1

) ��
𝐿2 (𝑡 ,∞) ,

𝐺2 (𝑡) = 𝐹 (𝑡) ·
(

1
2

(
tr

(
(𝐼 − 𝐾0)−1𝐾1

) ��
𝐿2 (𝑡 ,∞)

)2

− 1
2

tr
(
((𝐼 − 𝐾0)−1𝐾1)2) ��

𝐿2 (𝑡 ,∞) − tr
(
(𝐼 − 𝐾0)−1𝐾2

) ��
𝐿2 (𝑡 ,∞)

)
,

where (𝐼 − 𝐾0)−1 is understood as a resolvent kernel and the traces as integrals. The determinantal
expansion (2.11) can repeatedly be differentiated w.r.t. t, preserving uniformity.

3. Expansion of the hard-to-soft edge transition

In this section, we prove an expansion for the hard-to-soft edge transition limit (1.7). To avoid notational
clutter, we use the quantity

ℎ𝜈 := 2−1/3𝜈−2/3 (3.1)

and study expansions in powers of ℎ𝜈 as ℎ𝜈 → 0+. The transform 𝑠 = 𝜙𝜈 (𝑡) used in the transition limit
can briefly be written as

𝜙𝜈 (𝑡) = 𝜈2(1 − ℎ𝜈𝑡)2. (3.2)

Theorem 3.1. There holds the hard-to-soft edge transition expansion

𝐸hard
2 (𝜙𝜈 (𝑡); 𝜈) = 𝐹 (𝑡) +

𝑚∑
𝑗=1

𝐹𝑗 (𝑡)ℎ 𝑗
𝜈 + ℎ𝑚+1

𝜈 · 𝑂 (𝑒−3𝑡/2), (3.3)

which is uniformly valid when 𝑡0 � 𝑡 < ℎ−1
𝜈 as ℎ𝜈 → 0+, m being any fixed non-negative integer and 𝑡0

any fixed real number. Preserving uniformity, the expansion can be repeatedly differentiated w.r.t. the
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Figure 1. Plots of 𝐹1 (𝑡) (left panel) and 𝐹2 (𝑡) (middle panel) as in (3.4a/b). The right panel shows 𝐹3 (𝑡)
as in (3.4c) (black solid line) with the approximations (3.5) for 𝜈 = 100 (red dotted line) and 𝜈 = 800
(green dashed line): the close agreement validates the functional forms displayed in (3.4). Details about
the numerical method can be found in [14, 15, 19, 20].

variable t. Here, the 𝐹𝑗 are certain smooth functions starting with

𝐹1 (𝑡) =
3𝑡2

10
𝐹 ′(𝑡) − 1

5
𝐹 ′′(𝑡), (3.4a)

𝐹2 (𝑡) =
( 2
175

+ 32𝑡3

175

)
𝐹 ′(𝑡) +

(
− 16𝑡

175
+ 9𝑡4

200

)
𝐹 ′′(𝑡) − 3𝑡2

50
𝐹 ′′′(𝑡) + 1

50
𝐹 (4) (𝑡), (3.4b)

𝐹3 (𝑡) =
( 64𝑡
7875

+ 1037𝑡4

7875

)
𝐹 ′(𝑡) +

(
− 9𝑡2

175
+ 48𝑡5

875

)
𝐹 ′′(𝑡) (3.4c)

+
(
− 122

7875
− 8𝑡3

125
+ 9𝑡6

2000

)
𝐹 ′′′(𝑡) +

( 16𝑡
875

− 9𝑡4

1000

)
𝐹 (4) (𝑡)

+ 3𝑡2

500
𝐹 (5) (𝑡) − 1

750
𝐹 (6) (𝑡).

It is rewarding to validate intriguing formulae such as (3.4a–c) by numerical methods: Figure 1 plots
the functions 𝐹1 (𝑡), 𝐹2 (𝑡), 𝐹3 (𝑡) next to the approximation

𝐹3 (𝑡) ≈ ℎ−3
𝜈 ·

(
𝐸hard

2 (𝜙𝜈 (𝑡); 𝜈) − 𝐹 (𝑡) − 𝐹1 (𝑡)ℎ𝜈 − 𝐹2 (𝑡)ℎ2
𝜈

)
(3.5)

for 𝜈 = 100 and 𝜈 = 800: the close matching with 𝐹3 (𝑡) as displayed by the latter is a very strong
testament of the correctness of (3.4a–c) (in fact, some slips in preliminary calculations have been caught
looking at plots which exhibited mismatches).

The proof of Theorem 3.1 is split into several steps and will be concluded in Sections 3.2 and 3.3.

3.1. Kernel expansions

We start with an auxiliary result.

Lemma 3.2. Define for ℎ > 0 and 𝑥, 𝑦 < ℎ−1 the function

Φ(𝑥, 𝑦; ℎ) :=
√
(1 − ℎ𝑥) (1 − ℎ𝑦)
1 − ℎ(𝑥 + 𝑦)/2

. (3.6)

This function Φ satisfies the bound

0 < Φ(𝑥, 𝑦; ℎ) � 1 (3.7)
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and has the convergent power series expansion

Φ(𝑥, 𝑦; ℎ) = 1 − (𝑥 − 𝑦)2
∞∑
𝑘=2

𝑟𝑘 (𝑥, 𝑦)ℎ𝑘 , (3.8a)

where the 𝑟𝑘 (𝑥, 𝑦) are certain homogeneous symmetric rational19 polynomials of degree 𝑘 − 2, the first
few of them being

𝑟2(𝑥, 𝑦) =
1
8
, 𝑟3(𝑥, 𝑦) =

1
8
(𝑥 + 𝑦), 𝑟4 (𝑥, 𝑦) =

1
128

(
13(𝑥2 + 𝑦2) + 22𝑥𝑦

)
. (3.8b)

The series converges uniformly for 𝑥, 𝑦 < (1 − 𝛿)ℎ−1, 𝛿 being any fixed real positive number.

Proof. The bound (3.7) is the inequality of arithmetic and geometric means for the two positive real
quantities 1 − ℎ𝑥 and 1 − ℎ𝑦. By using

lim
𝑦→𝑥

1
(𝑥 − 𝑦)2

(
Φ(𝑥, 𝑦; ℎ) − 1

)
= −1

8

(
ℎ

1 − ℎ𝑥

)2
,

the analyticity of Φ(𝑥, 𝑦; ℎ) w.r.t. h, and the scaling law

Φ(𝜆−1𝑥, 𝜆−1𝑦;𝜆ℎ) = Φ(𝑥, 𝑦; ℎ) (𝜆 > 0),

we deduce the claims about the form and uniformity of the power series expansion (3.8). �

Because of the representation (1.2) of 𝐸hard
2 (𝑠; 𝜈) in terms of a Fredholm determinant of the Bessel

kernel (1.3), we have to expand the induced transformation of that kernel.

Lemma 3.3. The change of variables 𝑠 = 𝜙𝜈 (𝑡), mapping 𝑡 < ℎ−1
𝜈 monotonically decreasing to 𝑠 > 0,

induces the symmetrically transformed Bessel kernel

�̂�Bessel
𝜈 (𝑥, 𝑦) :=

√
𝜙′
𝜈 (𝑥)𝜙′

𝜈 (𝑦) 𝐾Bessel
𝜈 (𝜙𝜈 (𝑥), 𝜙𝜈 (𝑦)). (3.9a)

There holds the kernel expansion

�̂�Bessel
𝜈 (𝑥, 𝑦) = 𝐾0(𝑥, 𝑦) +

𝑚∑
𝑗=1

𝐾 𝑗 (𝑥, 𝑦)ℎ 𝑗
𝜈 + ℎ𝑚+1

𝜈 · 𝑂
(
𝑒−(𝑥+𝑦)

)
, (3.9b)

which is uniformly valid when 𝑡0 � 𝑥, 𝑦 < ℎ−1
𝜈 as ℎ𝜈 → 0+, m being any fixed non-negative integer and

𝑡0 any fixed real number. Here, the 𝐾 𝑗 are certain finite rank kernels of the form

𝐾 𝑗 (𝑥, 𝑦) =
∑

𝜅,𝜆∈{0,1}
𝑝 𝑗 ,𝜅𝜆 (𝑥, 𝑦) Ai(𝜅) (𝑥) Ai(𝜆) (𝑦),

where 𝑝 𝑗 ,𝜅𝜆 (𝑥, 𝑦) are rational polynomials; the first two kernels are

𝐾1(𝑥, 𝑦) =
1

10

(
− 3

(
𝑥2 + 𝑥𝑦 + 𝑦2) Ai(𝑥) Ai(𝑦) (3.10a)

+ 2
(
Ai(𝑥) Ai′(𝑦) + Ai′(𝑥) Ai(𝑦)

)
+ 3(𝑥 + 𝑦) Ai′(𝑥) Ai′(𝑦)

)
,

19Throughout the paper, the term ‘rational polynomial’ is used for polynomials with rational coefficients.
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𝐾2(𝑥, 𝑦) =
1

1400

( (
− 235

(
𝑥3 + 𝑦3

)
− 319𝑥𝑦(𝑥 + 𝑦) + 56

)
Ai(𝑥) Ai(𝑦) (3.10b)

+
(
63(𝑥4 + 𝑥3𝑦 − 𝑥2𝑦2 − 𝑥𝑦3 − 𝑦4) − 55𝑥 + 239𝑦

)
Ai(𝑥) Ai′(𝑦)

+
(
63(−𝑥4 − 𝑥3𝑦 − 𝑥2𝑦2 + 𝑥𝑦3 + 𝑦4) + 239𝑥 − 55𝑦

)
Ai′(𝑥) Ai(𝑦)

+
(
340(𝑥2 + 𝑦2) + 256𝑥𝑦

)
Ai′(𝑥) Ai′(𝑦)

)
.

Preserving uniformity, the kernel expansion (3.9) can repeatedly be differentiated w.r.t. x, y.

Proof. We have to prove, analytically, the claim about the domain of uniformity of the error of the
expansion and, algebraically, the finite-rank structure of the expansion kernels 𝐾 𝑗 . In our original
proof,20 presented below, we use Olver’s expansion of Bessel functions of large order in the transition
region (see Appendix A.3), and the finite-rank structure is obtained by explicitly inspecting (with
Mathematica) a certain algebraic condition (see (3.14)) for the first instances 𝑗 = 1, . . . , 𝑚∗ – we choose
to stop at 𝑚∗ = 100. However, using the machinery of Riemann–Hilbert problem, this restriction was
recently removed by Yao and Zhang [85] (their proof extends over 18 pages); we will comment on their
work at the end.

The original proof, requiring 𝑚 � 𝑚∗. By using Φ(𝑥, 𝑦; ℎ) as defined in (3.6) and writing

𝜙𝜈 (𝑡) = 𝜔𝜈 (𝑡)2, 𝜔𝜈 (𝑡) = 𝜈(1 − ℎ𝜈𝑡),

𝑎𝜈 (𝑥, 𝑦) = (1 − ℎ𝜈𝑦) ·
1

√
2ℎ𝜈

𝐽𝜈
(
𝜔𝜈 (𝑥)

)
· 𝑑

𝑑𝑦

1
√

2ℎ𝜈

𝐽𝜈
(
𝜔𝜈 (𝑦)

)
,

we can factor the transformed Bessel kernel in the simple form

�̂�Bessel
𝜈 (𝑥, 𝑦) = Φ(𝑥, 𝑦; ℎ𝜈) ·

𝑎𝜈 (𝑥, 𝑦) − 𝑎𝜈 (𝑦, 𝑥)
𝑥 − 𝑦

,

noting, by symmetry, the removability of the singularities at 𝑥 = 𝑦 of the second factor.
First, if x or y is between 3

4 · ℎ−1
𝜈 and ℎ−1

𝜈 , using the bound 0 < Φ � 1 (see (3.7)), one can argue as in
the proof of Lemma A.9: since at least one of the Bessel factors is of the form 𝐽 (𝜅)𝜈 (𝑧) with 0 � 𝑧 � 1/4,
which plainly falls into the superexponentially decaying region as 𝜈 → ∞, and since at least one of
the Airy factors of each term of the expansion is also superexponentially decaying as 𝜈 → ∞, the
transformed Bessel kernel and the expansion terms in (3.9) get completely absorbed into the error term
(bounding the other factors as in Section 2.1)

ℎ𝑚+1
𝜈 · 𝑂

(
𝑒−(𝑥+𝑦)

)
.

Here, the removable singularities at 𝑥 = 𝑦 are dealt with by using the differentiability of the corresponding
bounds (or by extending to the complex domain and using Cauchy’s integral formula as in the proof of
[21, Prop. 8]).

Therefore, we may suppose from now on that 𝑡0 � 𝑥, 𝑦 � 3
4 · ℎ−1

𝜈 . By Lemma 3.2, in this range of x
and y, the power series expansion

Φ(𝑥, 𝑦; ℎ𝜈) = 1 − (𝑥 − 𝑦)2
∞∑
𝑘=2

𝑟𝑘 (𝑥, 𝑦)ℎ𝑘
𝜈 (3.11)

converges uniformly. Here, the 𝑟𝑘 (𝑥, 𝑦) are certain homogeneous symmetric rational polynomials of
degree 𝑘 − 2, the first of them being 𝑟2(𝑥, 𝑦) = 1/8.

20Which has the merit of being comparatively short and suggesting the nonlinear transform used in Lemma 3.5.
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Next, we rewrite the uniform version of the large order expansion of Bessel functions in the transition
region, as given in Lemma A.9, in the form

1
√

2ℎ𝜈

𝐽𝜈
(
𝜔𝜈 (𝑡)

)
=

(
1 + ℎ𝜈 𝑝𝑚 (𝑡; ℎ𝜈)

)
Ai(𝑡) + ℎ𝜈𝑞𝑚 (𝑡; ℎ𝜈) Ai′(𝑡) + ℎ𝑚+1

𝜈 𝑂 (𝑒−𝑡 ), (3.12)

where the estimate of the remainder is uniform for 𝑡0 � 𝑡 < ℎ−1
𝜈 as ℎ𝜈 → 0+ and

𝑝𝑚(𝑡; ℎ) = 21/3
𝑚−1∑
𝑘=0

𝐴𝑘+1(−𝑡/21/3) (21/3ℎ)𝑘 , 𝑞𝑚(𝑡; ℎ) = 22/3
𝑚−1∑
𝑘=0

𝐵𝑘+1(−𝑡/21/3) (21/3ℎ)𝑘 ,

with the polynomials 𝐴𝑘 (𝜏) and 𝐵𝑘 (𝜏) from (A.16). It follows from Remark A.8 that 𝑝𝑚(𝑡; ℎ) and
𝑞𝑚 (𝑡; ℎ) are rational polynomials in t and h, starting with

𝑝2 (𝑡; ℎ) =
2
10

𝑡 + ℎ

1400
(63𝑡5 + 120𝑡2), 𝑞2 (𝑡; ℎ) =

3
10

𝑡2 + ℎ

1400
(340𝑡3 + 40).

Also given in Lemma A.9, under the same conditions, the expansion (3.12) can be repeatedly differ-
entiated w.r.t t while preserving uniformity. From this, we obtain, using the Airy differential equation
Ai′′(𝜉) = 𝜉 Ai(𝜉), that uniformly (given the range x and y)21

𝑎𝜈 (𝑥, 𝑦) =
∑

𝜅,𝜆∈{0,1}
𝑝𝑚
𝜅𝜆 (𝑥, 𝑦; ℎ𝜈) Ai(𝜅) (𝑥) Ai(𝜆) (𝑦) + ℎ𝑚+1

𝜈 𝑂 (𝑒−(𝑥+𝑦) ),

where

𝑝𝑚
00 (𝑥, 𝑦; ℎ) = ℎ(1 − ℎ𝑦) (1 + ℎ𝑝𝑚 (𝑥; ℎ))

(
𝑦𝑞𝑚 (𝑦; ℎ) + 𝜕𝑦 𝑝𝑚 (𝑦; ℎ)

)
,

𝑝𝑚
01 (𝑥, 𝑦; ℎ) = (1 − ℎ𝑦) (1 + ℎ𝑝𝑚 (𝑥; ℎ))

(
1 + ℎ(𝑝𝑚 (𝑦; ℎ) + 𝜕𝑦𝑞𝑚(𝑦; ℎ))

)
,

𝑝𝑚
10 (𝑥, 𝑦; ℎ) = ℎ2 (1 − ℎ𝑦)𝑞𝑚 (𝑥; ℎ)

(
𝑦𝑞𝑚 (𝑦; ℎ) + 𝜕𝑦 𝑝𝑚 (𝑦; ℎ)

)
,

𝑝𝑚
11 (𝑥, 𝑦; ℎ) = ℎ(1 − ℎ𝑦)𝑞𝑚 (𝑥; ℎ)

(
1 + ℎ(𝑝𝑚 (𝑦; ℎ) + 𝜕𝑦𝑞𝑚(𝑦; ℎ))

)
are rational polynomials in x, y and h. In particular, those factorizations show

𝑝𝑚
00 (𝑥, 𝑦; ℎ) = 𝑂 (ℎ), 𝑝𝑚

11 (𝑥, 𝑦; ℎ) = 𝑂 (ℎ),
𝑝𝑚

01 (𝑥, 𝑦; ℎ) = 1 +𝑂 (ℎ), 𝑝𝑚
10 (𝑥, 𝑦; ℎ) = 𝑂 (ℎ2).

If we denote by 𝑝𝑚
𝜅𝜆 (𝑥, 𝑦; ℎ) the polynomials obtained from 𝑝𝑚

𝜅𝜆 (𝑥, 𝑦; ℎ) after dropping all powers of h
that have an exponent larger than m (thus contributing terms to the expansion that get absorbed in the
error term), we obtain

𝑎𝜈 (𝑥, 𝑦) = Ai(𝑥) Ai′(𝑦) +
∑

𝜅,𝜆∈{0,1}
𝑝𝑚
𝜅𝜆 (𝑥, 𝑦; ℎ𝜈) Ai(𝜅) (𝑥) Ai(𝜆) (𝑦) + ℎ𝑚+1

𝜈 𝑂 (𝑒−(𝑥+𝑦) ),

with a polynomial expansion

𝑝𝑚
𝜅𝜆 (𝑥, 𝑦; ℎ) =

𝑚∑
𝑗=1

𝑝 𝑗 ,𝜅𝜆 (𝑥, 𝑦)ℎ 𝑗 ,

21Because of the superexponential decay (A.18) of the Airy function Ai(𝑡) and its derivative Ai′ (𝑡) as 𝑡 → +∞, cross terms
with the remainder are uniformly estimated in the form

polynomial(𝑥) · Ai(𝜅 ) (𝑥) ·𝑂
(
𝑒−𝑦

)
= 𝑂

(
𝑒−(𝑥+𝑦)

)
.
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whose coefficient polynomials 𝑝 𝑗 ,𝜅𝜆 (𝑥, 𝑦), being the unique expansion coefficients as ℎ𝜈 → 0+, are now
independent of m. Hence, the anti-symmetrization of 𝑎𝜈 (𝑥, 𝑦) satisfies the uniform expansion (given
the range of x and y)

𝑎𝜈 (𝑥, 𝑦) − 𝑎𝜈 (𝑦, 𝑥) = Ai(𝑥) Ai′(𝑦) − Ai′(𝑥) Ai(𝑦)

+
∑

𝜅,𝜆∈{0,1}
𝑞𝑚
𝜅𝜆 (𝑥, 𝑦; ℎ𝜈) Ai(𝜅) (𝑥) Ai(𝜆) (𝑦) + ℎ𝑚+1

𝜈 𝑂 (𝑒−(𝑥+𝑦) ) (3.13)

with the polynomial expansion

𝑞𝑚
𝜅𝜆 (𝑥, 𝑦; ℎ) =

𝑚∑
𝑗=1

𝑞 𝑗 ,𝜅𝜆 (𝑥, 𝑦)ℎ 𝑗 ,

𝑞 𝑗 ,00 (𝑥, 𝑦) = 𝑝 𝑗 ,00 (𝑥, 𝑦) − 𝑝 𝑗 ,00 (𝑦, 𝑥), 𝑞 𝑗 ,11 (𝑥, 𝑦) = 𝑝 𝑗 ,11 (𝑥, 𝑦) − 𝑝 𝑗 ,11 (𝑦, 𝑥)
𝑞 𝑗 ,01 (𝑥, 𝑦) = 𝑝 𝑗 ,01 (𝑥, 𝑦) − 𝑝 𝑗 ,10 (𝑦, 𝑥), 𝑞 𝑗 ,10 (𝑥, 𝑦) = −𝑞 𝑗 ,01 (𝑦, 𝑥).

Since the rational polynomials 𝑞 𝑗 ,00 (𝑥, 𝑦) and 𝑞 𝑗 ,11 (𝑥, 𝑦) are anti-symmetric in x, y, they factor in the
form

(𝑥 − 𝑦) × (symmetric rational polynomial in 𝑥 and 𝑦); (3.14)

the first few cases are

𝑞1,00 (𝑥, 𝑦) = − 3
10

(𝑥 − 𝑦) (𝑥2 + 𝑥𝑦 + 𝑦2),

𝑞1,11 (𝑥, 𝑦) =
3

10
(𝑥 − 𝑦) (𝑥 + 𝑦),

𝑞2,00 (𝑥, 𝑦) =
1

1400
(𝑥 − 𝑦)

(
− 235

(
𝑥3 + 𝑦3) − 319𝑥𝑦(𝑥 + 𝑦) + 56

)
,

𝑞2,11 (𝑥, 𝑦) =
1

1400
(𝑥 − 𝑦)

(
340

(
𝑥2 + 𝑦2) + 256𝑥𝑦

)
.

Even though there is no straightforward structural reason for the rational polynomials 𝑞 𝑗 ,01 (and thus
𝑞 𝑗 ,10) to be divisible by 𝑥 − 𝑦 as well, an inspection22 of the first cases reveals this to be true for at least
𝑗 = 1, . . . , 𝑚∗, the first two of them being

𝑞1,01 (𝑥, 𝑦) =
2

10
(𝑥 − 𝑦),

𝑞2,01 (𝑥, 𝑦) =
1

1400
(𝑥 − 𝑦)

(
63

(
𝑥4 + 𝑥3𝑦 − 𝑥2𝑦2 − 𝑥𝑦3 − 𝑦4) + 120𝑥 + 64𝑦

)
.

Now, by restricting ourselves to the explicitly checked cases 𝑚 � 𝑚∗, we denote by 𝑞𝑚
𝜅𝜆 (𝑥, 𝑦; ℎ) the

polynomials obtained from 𝑞𝑚
𝜅𝜆 (𝑥, 𝑦; ℎ) after division by the factor 𝑥 − 𝑦. Since (3.13) is an expansion

of an anti-symmetric function with anti-symmetric remainder which can repeatedly be differentiated,
division by 𝑥 − 𝑦 yields removable singularities at 𝑥 = 𝑦 and does not change the character of the
expansion (see also the argument given in the proof of [21, Prop. 8]):

𝑎𝜈 (𝑥, 𝑦) − 𝑎𝜈 (𝑦, 𝑥)
𝑥 − 𝑦

= 𝐾0(𝑥, 𝑦) +
∑

𝜅,𝜆∈{0,1}
𝑞𝑚
𝜅𝜆 (𝑥, 𝑦; ℎ𝜈) Ai(𝜅) (𝑥) Ai(𝜆) (𝑦) + ℎ𝑚+1

𝜈 𝑂
(
𝑒−(𝑥+𝑦)

)
.

22See Remark A.8 for the computation of the polynomials 𝐴𝑘 , 𝐵𝑘 and thus 𝑞 𝑗,01 (𝑥, 𝑦) – a Mathematica notebook comes with
the source files at arxiv:2301.02022.
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The lemma now follows by multiplying this expansion with (3.11), noting that the terms

−𝑟𝑘 (𝑥, 𝑦) (𝑥 − 𝑦)2𝐾0(𝑥, 𝑦) = −𝑟𝑘 (𝑥, 𝑦) (𝑥 − 𝑦)
(
Ai(𝑥) Ai′(𝑦) − Ai′(𝑥) Ai(𝑦)

)
also take the form asserted for the terms in the kernels 𝐾 𝑗 ( 𝑗 � 1).

Finally, since all the expansions can repeatedly be differentiated under the same conditions while
preserving their uniformity, the same holds for the resulting expansion of the kernel.

Comments on the unconditional proof of Yao and Zhang [85]. Instead of using expansions of the
Bessel functions of large order in the transition region, Yao and Zhang address expanding the integrable
kernel

𝑎𝜈 (𝑥, 𝑦) − 𝑎𝜈 (𝑦, 𝑥)
𝑥 − 𝑦

directly by the machinery of Riemann–Hilbert problems (see [27] for a general discussion of kernels
of that form and their induced integral operators). The advantage of such a direct approach is a better
understanding of the polynomial coefficients in (3.13), and the divisibility by 𝑥 − 𝑦 follows from an
interesting algebraic structure of the Airy functions; namely, by the Airy differential equation, there are
rational polynomials 𝛼𝑘 , 𝛽𝑘 ∈ Q[𝜉] such that

Ai(𝑘) (𝜉) = 𝛼𝑘 (𝜉) Ai(𝜉) + 𝛽𝑘 (𝜉) Ai′(𝜉),

and the divisibility (3.14) turns out to be equivalent [85, pp. 18–20] to the relation [85, Lemma 4.1]

𝑚∑
𝑗=0

(
𝑚

𝑗

)����𝛼 𝑗 𝛼𝑚+1− 𝑗

𝛽 𝑗 𝛽𝑚+1− 𝑗

���� = 0 (𝑚 � 1),

which can be proved by induction. �

Remark 3.4. The case 𝑚 = 0 of Lemma 3.3,

�̂�Bessel
𝜈 (𝑥, 𝑦) = 𝐾0(𝑥, 𝑦) + ℎ𝜈 · 𝑂

(
𝑒−(𝑥+𝑦)

)
,

is the 𝛽 = 2 case of [21, Eq. (4.8)] in the work of Borodin and Forrester. There, in [21, Prop. 8], it is
stated that this expansion would be uniformly valid for 𝑥, 𝑦 � 𝑡0. However, stated in such a generality, it
is not correct (see Footnote A.10) and, in fact, similar to our proof given above, their proof is restricted
to the range 𝑡0 � 𝑥, 𝑦 < ℎ−1

𝜈 , which completely suffices to address the hard-to-soft edge transition. (See
Remark A.10 for yet another issue with [21, Prop. 8].)

To reduce the complexity of calculating the functional form of the first three finite-size correction
terms in the hard-to-soft edge transition (3.3), we consider a second kernel transform.

Lemma 3.5. For ℎ > 0, the Airy kernel 𝐾0 and the first expansion kernels 𝐾1, 𝐾2, 𝐾3 from Lemma 3.3
we consider

𝐾 (ℎ) (𝑥, 𝑦) := 𝐾0(𝑥, 𝑦) + 𝐾1(𝑥, 𝑦)ℎ + 𝐾2(𝑥, 𝑦)ℎ2 + 𝐾3(𝑥, 𝑦)ℎ3

and the transformation,23 where 𝜁 (𝑧) is defined as in Section A.3,

𝑠 = 𝜓−1
ℎ (𝑡) := 2−1/3ℎ−1𝜁 (1 − ℎ𝑡). (3.15)

23Note that for 𝑧 = 1 − ℎ𝜈 𝑡 , we thus get 𝜈𝑧 = 𝜔𝜈 (𝑡) and 𝜈2/3𝜁 = 𝑠 in Olver’s expansion (A.17). As it turns out, by using this
transformation, the kernel expansion simplifies in the same fashion also for 𝑚 � 2, cf. Footnote 13.
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Then 𝑡 = 𝜓ℎ (𝑠) maps 𝑠 ∈ Rmonotonically increasing to−∞ < 𝑡 < ℎ−1, with 𝑡 � 𝜇ℎ−1, 𝜇 = 0.94884 · · · ,
when 𝑠 � 2ℎ−1, and induces the symmetrically transformed kernel

�̃� (ℎ) (𝑥, 𝑦) :=
√
𝜓 ′
ℎ (𝑥)𝜓

′
ℎ (𝑦) 𝐾 (ℎ) (𝜓ℎ (𝑥), 𝜓ℎ (𝑦)) (3.16a)

which expands as

�̃� (ℎ) (𝑥, 𝑦) = 𝐾0(𝑥, 𝑦) + �̃�1(𝑥, 𝑦)ℎ + �̃�2(𝑥, 𝑦)ℎ2 + �̃�3(𝑥, 𝑦)ℎ3 + ℎ4 · 𝑂
(
𝑒−(𝑥+𝑦)

)
, (3.16b)

uniformly in 𝑠0 � 𝑥, 𝑦 � 2ℎ−1 as ℎ → 0+, 𝑠0 being a fixed real number. The three kernels are

�̃�1 =
1
5
(Ai ⊗ Ai′ +Ai′ ⊗ Ai), (3.16c)

�̃�2 = − 48
175

Ai ⊗ Ai+11
70

(Ai ⊗ Ai′′′ +Ai′′′ ⊗ Ai) − 51
350

(Ai′ ⊗ Ai′′ +Ai′′ ⊗ Ai′), (3.16d)

�̃�3 = − 176
1125

(Ai ⊗ Ai′′ +Ai′′ ⊗ Ai) + 13
450

(Ai ⊗ AiV +AiV ⊗ Ai) + 3728
7875

Ai′ ⊗ Ai′ (3.16e)

− 583
5250

(Ai′ ⊗ AiI𝑉 +AiI𝑉 ⊗ Ai′) + 13
225

(Ai′′ ⊗ Ai′′′ +Ai′′′ ⊗ Ai′′).

Preserving uniformity, the kernel expansion can repeatedly be differentiated w.r.t. x, y.

Proof. Reversing the power series (A.19) gives

𝑡 = 𝜓ℎ (𝑠) = 𝑠 − 3𝑠2

10
ℎ − 𝑠3

350
ℎ2 + 479𝑠4

63000
ℎ3 + · · · ,

which is uniformly convergent for 𝑠0 � 𝑠 � 2ℎ−1 since |ℎ𝑡 | � 𝜇 < 1. Taking the expressions for 𝐾1, 𝐾2
given in (3.10), and for 𝐾3 from the supplementary Mathematica notebook referred to in Footnote 13,
a routine calculation with truncated power series gives formula (3.16c) for �̃�1 and

�̃�2(𝑥, 𝑦) =
1

350

(
14 Ai(𝑥) Ai(𝑦) + (−51𝑥 + 55𝑦) Ai(𝑥) Ai′(𝑦) + (55𝑥 − 51𝑦) Ai′(𝑥) Ai(𝑦)

)
,

�̃�3(𝑥, 𝑦) =
1

15750

(
266(𝑥 + 𝑦) Ai(𝑥) Ai(𝑦) + (−1749𝑥2 + 910𝑥𝑦 + 455𝑦2) Ai(𝑥) Ai′(𝑦)

+(455𝑥2 + 910𝑥𝑦 − 1749𝑦2) Ai′(𝑥) Ai(𝑦) + 460 Ai′(𝑥) Ai′(𝑦)
)
.

The Airy differential equation 𝜉 Ai(𝜉) = Ai′′(𝜉) implies the replacement rule

𝜉 𝑗 Ai(𝑘) (𝜉) = 𝜉 𝑗−1 Ai(𝑘+2) (𝜉) − 𝑘𝜉 𝑗−1 Ai(𝑘−1) (𝜉) ( 𝑗 � 1, 𝑘 � 0) (3.17)

which, if repeatedly applied to a kernel of the given structure, allows us to absorb any powers of x and
y into higher order derivatives of Ai. This process yields the asserted form of �̃�2 and �̃�3, which will be
the preferred form in course of the calculations in Section 3.3.

Since we stay within the range of uniformity of the power series expansions and calculations with
truncated powers series are amenable to repeated differentiation, the result now follows from the bounds
given in Section 2.1. �
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3.2. Proof of the general form of the expansion

By Lemma 3.3 and Theorem 2.1, we get (the Fredholm determinants are seen to be equal by transforming
the integrals)

𝐸hard
2 (𝜙𝜈 (𝑡); 𝜈) = det(𝐼 − 𝐾Bessel

𝜈 ) |𝐿2 (0,𝜙𝜈 (𝑡)) = det(𝐼 − �̂�Bessel
𝜈 ) |𝐿2 (𝑡 ,ℎ−1

𝜈 )

= 𝐹 (𝑡) +
𝑚∑
𝑗=1

𝐹𝑗 (𝑡)ℎ 𝑗
𝜈 + ℎ𝑚+1

𝜈 𝑂 (𝑒−2𝑡 ) + 𝑒−ℎ
−1
𝜈 𝑂 (𝑒−𝑡 ),

uniformly for 𝑡0 � 𝑡 < ℎ−1
𝜈 as ℎ𝜈 → 0+; preserving uniformity, this expansion can be repeatedly

differentiated w.r.t. the variable t. By Theorem 2.1, the 𝐹𝑗 (𝑡) are certain smooth functions that can be
expressed in terms of traces of integral operators of the form given in Theorem 2.1. Observing

𝑒−ℎ
−1
𝜈 < 𝑒−ℎ

−1
𝜈 /2𝑒−𝑡/2 = ℎ𝑚+1

𝜈 𝑂 (𝑒−𝑡/2) (ℎ𝜈 → 0+),

we can combine the two error terms as ℎ𝑚+1
𝜈 𝑂 (𝑒−3𝑡/2). This finishes the proof of (3.3).

3.3. Functional form of 𝐹1 (𝑡), 𝐹2 (𝑡) and 𝐹3 (𝑡)

Instead of calculating 𝐹1, 𝐹2, 𝐹3 directly from the formulae in Theorem 2.1 applied to the kernels 𝐾1, 𝐾2
in (3.10) (and to the unwieldy expression for 𝐾3 obtained in the supplementary Mathematica notebook
referred to in Footnote 13), we will reduce them to the corresponding functions �̃�1, �̃�2, �̃�3 induced by
the much simpler kernels �̃�1, �̃�2, �̃�3 in (3.16).

3.3.1. Functional form of �̃�1 (𝑡) and �̃�2 (𝑡)
Upon writing

𝑢 𝑗𝑘 (𝑡) = tr
(
(𝐼 − 𝐾0)−1 Ai( 𝑗) ⊗ Ai(𝑘)

) ��
𝐿2 (𝑡 ,∞)

and observing (the symmetry of the resolvent kernel implies the symmetry 𝑢 𝑗𝑘 (𝑡) = 𝑢𝑘 𝑗 (𝑡))

tr
(
(𝐼 − 𝐾0)−1�̃�1

) ��
𝐿2 (𝑡 ,∞) =

2
5
𝑢10(𝑡),

tr
(
((𝐼 − 𝐾0)−1�̃�1)2) ��

𝐿2 (𝑡 ,∞) =
2
25

(
𝑢00 (𝑡)𝑢11(𝑡) + 𝑢10(𝑡)2) ,

tr
(
(𝐼 − 𝐾0)−1�̃�2

) ��
𝐿2 (𝑡 ,∞) =

1
175

(
− 48𝑢00 (𝑡) − 51𝑢21 (𝑡) + 55𝑢30 (𝑡)

)
,

the formulae of Theorem 2.1 applied to �̃�1 and �̃�2 give

�̃�1 (𝑡) = −2
5
𝐹 (𝑡)𝑢10(𝑡), (3.18a)

�̃�2 (𝑡) = 𝐹 (𝑡)
(

48
175

𝑢00(𝑡) −
1

25

����𝑢00(𝑡) 𝑢01 (𝑡)
𝑢10(𝑡) 𝑢11 (𝑡)

���� + 51
175

𝑢21 (𝑡) −
11
35

𝑢30(𝑡)
)
. (3.18b)

We recall from [19, Remark 3.1] that the simple recursion

𝑢′𝑗𝑘 (𝑡) = 𝑢 𝑗+1,𝑘 (𝑡) + 𝑢 𝑗 ,𝑘+1 (𝑡) − 𝑢 𝑗0 (𝑡)𝑢𝑘0(𝑡)
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yields similar formulae for the first few derivatives of the distribution 𝐹 (𝑡):

𝐹 ′(𝑡) = 𝐹 (𝑡)·𝑢00(𝑡), 𝐹 ′′(𝑡) = 2𝐹 (𝑡) · 𝑢10(𝑡), 𝐹 ′′′(𝑡) = 2𝐹 (𝑡) ·
(
𝑢11(𝑡) + 𝑢20 (𝑡)

)
,

𝐹 (4) (𝑡) = 2𝐹 (𝑡) ·
(����𝑢00(𝑡) 𝑢01(𝑡)
𝑢10(𝑡) 𝑢11(𝑡)

���� + 3𝑢21(𝑡) + 𝑢30 (𝑡)
)
.

(3.19)

By a linear elimination of the terms

𝑢00(𝑡), 𝑢10(𝑡),
����𝑢00(𝑡) 𝑢01(𝑡)
𝑢10(𝑡) 𝑢11(𝑡)

����,
we obtain, as an intermediate step,

�̃�1 (𝑡) = −1
5
𝐹 ′′(𝑡), �̃�2 (𝑡) =

48
175

𝐹 ′(𝑡) − 1
50

𝐹 (4) (𝑡) + 24
175

𝐹 (𝑡)
(
3𝑢21 (𝑡) − 2𝑢30 (𝑡)

)
. (3.20a)

To simplify even further, we have to refer to the full power of the general Tracy–Widom theory (i.e.,
representing F in terms of Painlevé II): by advancing its set of formulae, Shinault and Tracy [73, p. 68]
showed, through an explicit inspection of each single case, that the functions 𝐹 (𝑡) · 𝑢 𝑗𝑘 (𝑡) in the range
0 � 𝑗 + 𝑘 � 8 are linear combinations of the form

𝑝1 (𝑡)𝐹 ′(𝑡) + 𝑝2 (𝑡)𝐹 ′′(𝑡) + · · · + 𝑝 𝑗+𝑘+1(𝑡)𝐹 ( 𝑗+𝑘+1) (𝑡) (3.20b)

with rational polynomials 𝑝𝜅 (𝑡) (depending, of course, on j, k). They conjectured this structure to be
true for all j, k. In particular, their table [73, p. 68] has the entries

𝐹 (𝑡) · 𝑢21(𝑡) = −1
4
𝐹 ′(𝑡) + 1

8
𝐹 (4) (𝑡), 𝐹 (𝑡) · 𝑢30(𝑡) =

7
12

𝐹 ′(𝑡) + 𝑡

3
𝐹 ′′(𝑡) + 1

24
𝐹 (4) (𝑡).

This way, we get, rather unexpectedly, the simple and short form24

�̃�2 (𝑡) =
2

175
𝐹 ′(𝑡) − 16𝑡

175
𝐹 ′′(𝑡) + 1

50
𝐹 (4) (𝑡). (3.20c)

3.3.2. Functional form of �̃�3 (𝑡)
For the �̃�𝑗 (𝑡) with 𝑗 � 3, calculating such functional forms requires a more systematic, algorithmic
approach. By ‘reverse engineering’ the remarks of Shinault and Tracy about validating their table [73,
p. 68], we have actually found an algorithm to compile such a table; see Appendix B. This algorithm
can also be applied to nonlinear rational polynomials of the terms 𝑢 𝑗𝑘 , resulting either in an expression
of the desired form (3.20b) (with 𝑗 + 𝑘 + 1 replaced by some n), or a message that such a form does not
exist (for the given n).

Now, if we evaluate the expansion function 𝐺3(𝑡) = 𝐹 (𝑡)𝑑3(𝑡) of Theorem 2.1 by using (2.10c) and
rewrite the traces in terms of the 𝑢 𝑗𝑘 , we obtain

�̃�3 (𝑡) = 𝐹 (𝑡)
(
−3728

7875
𝑢11(𝑡) +

352
1125

𝑢20(𝑡) −
51
875

����𝑢10(𝑡) 𝑢11(𝑡)
𝑢20(𝑡) 𝑢21(𝑡)

���� (3.21a)

− 11
175

����𝑢00(𝑡) 𝑢01 (𝑡)
𝑢30(𝑡) 𝑢31 (𝑡)

���� − 26
225

𝑢32(𝑡) +
583

2625
𝑢41(𝑡) −

13
225

𝑢50(𝑡)
)
,

24Note that a direct application of the table in [73, p. 68] to (3.18b) produces a far less appealing result – namely,

�̃�2 (𝑡) =
19

1050
𝐹 ′ (𝑡) + 𝑡𝐹 ′ (𝑡)2

75𝐹 (𝑡) − 11𝑡
105

𝐹 ′′ (𝑡) + 𝐹 ′′ (𝑡)2

100𝐹 (𝑡) − 𝐹 ′ (𝑡)𝐹 ′′′ (𝑡)
75𝐹 (𝑡) + 7

300
𝐹 (4) (𝑡) ,

which is no longer linear in F and its derivatives.
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which evaluates by the algorithm of Appendix B further to

=
64𝑡

7875
𝐹 ′(𝑡) − 24𝑡2

875
𝐹 ′′(𝑡) − 122

7875
𝐹 ′′′(𝑡) + 16𝑡

875
𝐹 (4) (𝑡) − 1

750
𝐹 (6) (𝑡). (3.21b)

Alternatively, we arrive here by combining the tabulated expressions for 𝑢11, 𝑢20, 𝑢32, 𝑢41, 𝑢50 as
displayed in [73, p. 68] with those for both of the 2 × 2 determinants in (B.8).

3.3.3. Lifting to the functional form of 𝐹1 (𝑡), 𝐹2 (𝑡), 𝐹3 (𝑡)
The relation between 𝐹1 (𝑡), 𝐹2 (𝑡), 𝐹3 (𝑡) and their counterparts with a tilde is established by Lemma 3.5.
By using the notation introduced there, with t being any fixed real number, the expansion parameter h
sufficiently small and 𝑠 = 𝜓−1

ℎ (𝑡), Theorem 2.1 yields (the Fredholm determinants are seen to be equal
by transforming the integrals)

det
(
𝐼 − 𝐾 (ℎ)

)
|𝐿2 (𝑡 , 𝜇ℎ−1) = 𝐹 (𝑡) + 𝐹1 (𝑡)ℎ + 𝐹2 (𝑡)ℎ2 + 𝐹3 (𝑡)ℎ3 +𝑂 (ℎ4)

= det
(
𝐼 − �̃� (ℎ)

)
|𝐿2 (𝑠, 2ℎ−1) = 𝐹 (𝑠) + �̃�1 (𝑠)ℎ + �̃�2 (𝑠)ℎ2 + �̃�3 (𝑠)ℎ3 +𝑂 (ℎ4),

(3.22)

where we have absorbed the exponentially small contributions 𝑒−𝜇ℎ−1
𝑂 (𝑒−𝑡 ) and 𝑒−2ℎ−1

𝑂 (𝑒−𝑠) into the
𝑂 (ℎ4) error term. Using the power series (A.19),

𝑠 = 2−1/3ℎ−1𝜁 (1 − ℎ𝑡) = 𝑡 + 3𝑡2

10
ℎ + 32𝑡3

175
ℎ2 + 1037𝑡4

7875
ℎ3 + · · · ,

we get by Taylor expansion, for any smooth function 𝐺 (𝑠),

𝐺 (𝑠) = 𝐺 (𝑡) + 3𝑡2

10
𝐺 ′(𝑡)ℎ +

(
32𝑡3

175
𝐺 ′(𝑡) + 9𝑡4

200
𝐺 ′′(𝑡)

)
ℎ2

+
(

1037𝑡4

7875
𝐺 ′(𝑡) + 48𝑡5

875
𝐺 ′′(𝑡) + 9𝑡6

2000
𝐺 ′′′(𝑡)

)
ℎ3 +𝑂 (ℎ4).

By plugging this into (3.22) and comparing coefficients, we obtain

𝐹1 (𝑡) = �̃�1 (𝑡) +
3𝑡2

10
𝐹 ′(𝑡),

𝐹2 (𝑡) = �̃�2 (𝑡) +
3𝑡2

10
�̃� ′

1 (𝑡) +
32𝑡3

175
𝐹 ′(𝑡) + 9𝑡4

200
𝐹 ′′(𝑡),

𝐹3 (𝑡) = �̃�3 (𝑡) +
32𝑡3

175
�̃� ′

1 (𝑡) +
9𝑡4

200
�̃� ′′

1 (𝑡) + 3𝑡2

10
�̃� ′

2 (𝑡) +
1037𝑡4

7875
𝐹 ′(𝑡) + 48𝑡5

875
𝐹 ′′(𝑡) + 9𝑡6𝐹 ′′′(𝑡)

2000
.

Combined with (3.20), this finishes the proof of (3.4).

3.4. Simplifying the form of Choup’s Edgeworth expansions

When, instead of the detour via �̃�1, Theorem 2.1 is directly applied to the kernel 𝐾1 in (3.10a), we get

𝐹1 (𝑡) = −1
5
𝐹 ′′(𝑡) + 3

10
𝐹 (𝑡) tr

(
(𝐼 − 𝐾0)−1𝐿

) ��
𝐿2 (𝑡 ,∞) ,

where

𝐿(𝑥, 𝑦) = (𝑥2 + 𝑥𝑦 + 𝑦2) Ai(𝑥) Ai(𝑦) − (𝑥 + 𝑦) Ai′(𝑥) Ai′(𝑦). (3.23a)
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Now, a comparison with (3.4a) proves the useful formula25

𝐹 (𝑡) tr
(
(𝐼 − 𝐾0)−1𝐿

) ��
𝐿2 (𝑡 ,∞) = 𝑡2𝐹 ′(𝑡). (3.23b)

As an application to the existing literature, this formula helps us to simplify the results obtained by
Choup for the soft-edge limit expansions of GUE and LUE – that is, when studying the distribution of
the largest eigenvalue distribution function in GUE𝑛 and LUE𝑛,𝜈 (dimension n, parameter 𝜈) as 𝑛 → ∞.
In fact, since the kernel L appears in the first finite-size correction term of a corresponding kernel
expansion [24, Thm. 1.2/1.3], lifting that expansion to the Fredholm determinant by Theorem 2.1 allows
us to recast [24, Thm. 1.4] in a simplified form; namely, denoting the maximum eigenvalues by 𝜆G

𝑛 and
𝜆L
𝑛,𝜈 , we obtain, locally uniform in t as 𝑛 → ∞,

P

(
𝜆G
𝑛 �

√
2𝑛 + 𝑡 · 2−1/2𝑛−1/6

)
= 𝐹 (𝑡) + 𝑛−2/3

40
(
2𝑡2𝐹 ′(𝑡) − 3𝐹 ′′(𝑡)

)
+𝑂 (𝑛−1), (3.24)

P

(
𝜆L
𝑛,𝜈 � 4𝑛 + 2𝜈 + 𝑡 · 2(2𝑛)1/3

)
= 𝐹 (𝑡) − 21/3𝑛−2/3

10
(
𝑡2𝐹 ′(𝑡) + 𝐹 ′′(𝑡)

)
+𝑂 (𝑛−1), (3.25)

a result, which answers a question suggested by Baik and Jenkins [11, p. 4367].

4. Expansion of the Poissonized length distribution

The Poissonization of the length distribution requires the hard-to-soft edge transition of Theorem 3.1
to be applied to the probability distribution 𝐸hard

2 (4𝑟; 𝜈) (for integer 𝜈 = 𝑙, but we consider the case of
general 𝜈 > 0 first). For large intensities r, the mode of this distribution is located in the range of those
parameters 𝜈 for which the scaled variable

𝑡𝜈 (𝑟) :=
𝜈 − 2

√
𝑟

𝑟1/6 (𝑟 > 0) (4.1a)

stays bounded. It is convenient to note that 𝑡𝜈 (𝑟) satisfies the differential equation

𝑡 ′𝜈 (𝑟) = −𝑟−2/3 − 𝑟−1

6
𝑡𝜈 (𝑟) (𝑟 > 0). (4.1b)

In these terms, we get the following theorem.

Theorem 4.1. There holds the expansion

𝐸hard
2 (4𝑟; 𝜈) = 𝐹 (𝑡) +

𝑚∑
𝑗=1

𝐹𝑃
𝑗 (𝑡) 𝑟− 𝑗/3 + 𝑟−(𝑚+1)/3 · 𝑂

(
𝑒−𝑡

) ����
𝑡=𝑡𝜈 (𝑟 )

, (4.2)

which is uniformly valid when 𝑟, 𝜈 → ∞ subject to

𝑡0 � 𝑡𝜈 (𝑟) � 𝑟1/3,

25Note that our derivation of this formula does only depend on Fredholm determinants and does not use any representation in
terms of Painlevé II. Based on Painlevé representations, it has been derived, implicitly though, in the recent work of Forrester and
Mays [45]: see Equations (1.16), (1.19), (2.17) and (2.29) there. A further alternative derivation follows from observing that, by
repeated application of (3.17),

tr
(
(𝐼 − 𝐾0)−1𝐿

) ��
𝐿2 (𝑡,∞) = −2𝑢10 (𝑡) + 𝑢22 (𝑡) − 2𝑢31 (𝑡) + 2𝑢40 (𝑡)

and using the table for the functions 𝐹 (𝑡) · 𝑢 𝑗𝑘 (𝑡) (0 � 𝑗 + 𝑘 � 8) compiled in [73, p. 68] (which is based on an extension of
formulae of the Tracy–Widom theory that represents F in terms of Painlevé II).
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Figure 2. Plots of 𝐹𝑃
1 (𝑡) (left panel) and 𝐹𝑃

2 (𝑡) (middle panel) as in (4.4a/b). The right panel shows
𝐹𝑃

3 (𝑡) as in (4.4c) (black solid line) with the approximations (4.3) for 𝑟 = 250 (red dotted line) and
𝑟 = 2000 (green dashed line); the parameter 𝜈 has been varied such that 𝑡𝜈 (𝑟) covers the range of t on
display. Note that the functions 𝐹𝑃

𝑗 (𝑡) ( 𝑗 = 1, 2, 3) are about two orders of magnitude smaller in scale
than their counterparts in Figure 1.

with m being any fixed non-negative integer and 𝑡0 any fixed real number. Preserving uniformity,
the expansion can be repeatedly differentiated w.r.t. the variable r. Here, the 𝐹𝑃

𝑗 are certain smooth
functions; the first three are26

𝐹𝑃
1 (𝑡) = − 𝑡2

60
𝐹 ′(𝑡) − 1

10
𝐹 ′′(𝑡), (4.4a)

𝐹𝑃
2 (𝑡) =

( 1
350

+ 2𝑡3

1575

)
𝐹 ′(𝑡) +

( 11𝑡
1050

+ 𝑡4

7200

)
𝐹 ′′(𝑡) + 𝑡2

600
𝐹 ′′′(𝑡) + 1

200
𝐹 (4) (𝑡), (4.4b)

𝐹𝑃
3 (𝑡) = −

( 𝑡

1125
+ 41𝑡4

283500

)
𝐹 ′(𝑡) −

( 11𝑡2

6300
+ 𝑡5

47250

)
𝐹 ′′(𝑡) (4.4c)

−
( 61
31500

+ 19𝑡3

63000
+ 𝑡6

1296000

)
𝐹 ′′′(𝑡) −

( 11𝑡
10500

+ 𝑡4

72000

)
𝐹 (4) (𝑡)

− 𝑡2

12000
𝐹 (5) (𝑡) − 1

6000
𝐹 (6) (𝑡).

Proof. For 𝑟, 𝜈 > 0 (i.e., equivalently, 𝑡 > −2𝑟1/3 and 𝑠 < ℎ−1
𝜈 ), the transformations

4𝑟 = 𝜙𝜈 (𝑠), 𝑡 = 𝑡𝜈 (𝑟)

are inverted by the expressions

𝑠 =
𝑡(

1 + 𝑡
2𝑟

−1/3)1/3 , ℎ𝜈 =
𝑟−1/3

2
(
1 + 𝑡

2𝑟
−1/3)2/3 . (4.5)

For 𝑡0 � 𝑡 � 𝑟1/3, we get

𝑠0 := ( 2
3 )

1/3𝑡0 � ( 2
3 )

1/3𝑡 � 𝑠 < ℎ−1
𝜈

and observe that in this range of t the expressions in (4.5) expand as uniformly convergent power series
in powers of 𝑟−1/3, starting with

26To validate formulae (4.4a–c), Figure 2 plots 𝐹𝑃
3 (𝑡) next to the approximation

𝐹𝑃
3

(
𝑡𝜈 (𝑟 )

)
≈ 𝑟 ·

(
𝐸hard

2 (4𝑟 ; 𝜈) − 𝐹 (𝑡) − 𝐹𝑃
1 (𝑡)𝑟−1/3 − 𝐹𝑃

2 (𝑡)𝑟−2/3
) ����

𝑡=𝑡𝜈 (𝑟 )
(4.3)

for 𝑟 = 250 and 𝑟 = 2000, varying 𝜈 in such a way that 𝑡 = 𝑡𝜈 (𝑟 ) covers the interval [−6, 2].
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𝑠 = 𝑡 − 𝑡2

6
𝑟−1/3 + 𝑡3

18
𝑟−2/3 − 7𝑡4

324
𝑟−1 + · · · , ℎ𝜈 =

1
2
𝑟−1/3 − 𝑡

6
𝑟−2/3 + 5𝑡2

72
𝑟−1 + · · · .

If we plug these uniformly convergent power series into the uniform expansion of Theorem 3.1,

𝐸hard
2 (4𝑟; 𝜈) = 𝐸hard

2 (𝜙𝜈 (𝑠); 𝜈) = 𝐹 (𝑠) +
𝑚∑
𝑗=1

𝐹1 (𝑠)ℎ 𝑗
𝜈 + ℎ𝑚+1

𝜈 𝑂 (𝑒−3𝑠/2),

we obtain the asserted form of the expansion (4.2) (as well as the claim about the repeated differen-
tiability), simplifying the exponential error term by observing that (3/2)2/3 > 1. In particular, the first
three correction terms in (4.2) are thus

𝐹𝑃
1 (𝑡) = 1

2
𝐹1 (𝑡) −

𝑡2

6
𝐹 ′(𝑡),

𝐹𝑃
2 (𝑡) = 1

4
𝐹2 (𝑡) −

𝑡

6
𝐹1 (𝑡) −

𝑡2

12
𝐹 ′

1 (𝑡) +
𝑡3

18
𝐹 ′(𝑡) + 𝑡4

72
𝐹 ′′(𝑡),

𝐹𝑃
3 (𝑡) = 1

8
𝐹3 (𝑡) −

𝑡

6
𝐹2 (𝑡) −

𝑡2

24
𝐹 ′

2 (𝑡) +
5𝑡2

72
𝐹1 (𝑡) +

𝑡3

18
𝐹 ′

1 (𝑡) +
𝑡4

144
𝐹 ′′

1 (𝑡)

− 7𝑡4

324
𝐹 ′(𝑡) − 𝑡5

108
𝐹 ′′(𝑡) − 𝑡6

1296
𝐹 ′′′(𝑡).

Together with the expressions given in (3.4), this yields the functional form asserted in (4.4). �

By (1.1), specializing Theorem 4.1 to the case of integer parameter 𝜈 = 𝑙 yields the expansion

P
(
𝐿𝑁𝑟 � 𝑙

)
= 𝐹 (𝑡) +

𝑚∑
𝑗=1

𝐹𝑃
𝑗 (𝑡) 𝑟− 𝑗/3 + 𝑟−(𝑚+1)/3 · 𝑂

(
𝑒−𝑡

) ����
𝑡=𝑡𝑙 (𝑟 )

, (4.6)

which is uniformly valid under the conditions stated there.

Remark 4.2. In the literature, scalings are often applied to the probability distribution rather than to the
expansion terms. Since 𝐿𝑁𝑟 is a an integer-valued random variable, one has to exercise some care with
the scaled distribution function being piecewise constant. Namely, for 𝑡 ∈ R being any fixed number,
one has

P

(
𝐿𝑁𝑟 − 2

√
𝑟

𝑟1/6 � 𝑡

)
= P

(
𝐿𝑁𝑟 � 𝑙

)
, 𝑙 =

⌊
2
√
𝑟 + 𝑡𝑟1/6⌋ ,

where 
·� denotes the Gauss bracket. Thus, by defining

𝑡 (𝑟 ) =

⌊
2
√
𝑟 + 𝑡𝑟1/6⌋ − 2

√
𝑟

𝑟1/6

and noting that 𝑡 (𝑟 ) stays bounded when 𝑟 → ∞ while t is fixed, (4.6) takes the form

P

(
𝐿𝑁𝑟 − 2

√
𝑟

𝑟1/6 � 𝑡

)
= 𝐹

(
𝑡 (𝑟 )

)
+

𝑚∑
𝑗=1

𝐹𝑃
𝑗

(
𝑡 (𝑟 )

)
𝑟− 𝑗/3 +𝑂

(
𝑟−(𝑚+1)/3) (𝑟 → ∞). (4.7)

If one chooses to re-introduce the continuous variable t in (parts of) the expansion terms, one has to
take into account that

𝑡 (𝑟 ) = 𝑡 +𝑂 (𝑟−1/6) (𝑟 → ∞), (4.8)
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where the exponent −1/6 in the error term is sharp. For example, this gives (as previously obtained
by Baik and Jenkins [11, Thm. 1.3] using the technology of Riemann–Hilbert problems to prove the
expansion and Painlevé representations to put 𝐹𝑃

1 into the simple functional form (4.4a))

P

(
𝐿𝑁𝑟 − 2

√
𝑟

𝑟1/6 � 𝑡

)
= 𝐹

(
𝑡 (𝑟 )

)
+ 𝐹𝑃

1 (𝑡) 𝑟−1/3 +𝑂 (𝑟−1/2) (𝑟 → ∞), (4.9)

where the 𝑂 (𝑟−1/2) error term is governed by the Gauss bracket in (4.8) and cannot be improved upon
– completely dominating the order 𝑂 (𝑟−2/3) correction term in (4.7). Therefore, claiming an 𝑂 (𝑟−2/3)
error term to hold in (4.9) as stated in [45, Prop. 1.1] neglects the effect of the Gauss bracket.27

Part II: Results based on the tameness hypothesis

5. De-Poissonization and the expansion of the length distribution

5.1. Expansion of the CDF

In this section, we prove (subject to a tameness hypothesis on the zeros of the generating functions
in a sector of the complex plane) an expansion of the CDF P(𝐿𝑛 � 𝑙) of the length distribution near
its mode. The general form of such an expansion was conjectured in the recent papers [19, 45] where
approximations of the graphical form of the first few terms were provided (see [19, Figs. 4/6] and [45,
Fig. 7]). Here, for the first time, we give the functional form of these terms. The underlying tool is
analytic de-Poissonization, a technique that was developed in the 1990s in theoretical computer science
and analytic combinatorics.

To prepare for the application of analytic de-Poissonization in the form of the Jacquet–Szpankowski
Theorem A.2, we consider any fixed compact interval [𝑡0, 𝑡1] and a sequence of integers 𝑙𝑛 → ∞ such
that

𝑡0 � 𝑡∗𝑛 := 𝑡𝑙𝑛 (𝑛) � 𝑡1 (𝑛 = 1, 2, 3, . . .). (5.1)

When 𝑛 − 𝑛3/5 � 𝑟 � 𝑛 + 𝑛3/5 and 𝑛 � 𝑛0 with 𝑛0 large enough (depending only on 𝑡0, 𝑡1), we thus get
the uniform bounds28

2
√
𝑟 + (𝑡0 − 1)𝑟1/6 � 𝑙𝑛 � 2

√
𝑟 + (𝑡1 + 1)𝑟1/6.

We write the induced Poisson generating function, and exponential generating function, of the length
distribution as

𝑃𝑘 (𝑧) := 𝑃(𝑧; 𝑙𝑘 ) = 𝑒−𝑧
∞∑
𝑛=0
P(𝐿𝑛 � 𝑙𝑘 )

𝑧𝑛

𝑛!
, 𝑓𝑘 (𝑧) := 𝑒𝑧𝑃𝑘 (𝑧). (5.2)

27Furthermore, the right panel of [45, Fig. 3] is not showing an approximation of the 𝑂 (𝑟−2/3) term in (4.7), let alone in (4.9),
but instead an approximation of the 𝑂 (𝜈−4/3) term in the auxiliary expansion

𝐸hard
2

((
𝜈 − 𝑡 ( 𝜈2 )

1/3 + 𝑡2
6 ( 𝜈2 )

−1/3
)2

; 𝜈
)
= 𝐹 (𝑡) + �̂�1 (𝑡) ( 𝜈2 )

−2/3 + �̂�2 (𝑡) ( 𝜈2 )
−4/3 +𝑂 (𝜈−2) (𝜈 → ∞);

cf. [45, Eqs. (2.3/2.33)]. Now, Theorem 3.1 and the formulae in (4.4) yield the simple relations

�̂�1 (𝑡) = 𝐹𝑃
1 (𝑡) , �̂�2 (𝑡) = 𝐹𝑃

2 (𝑡) + 𝑡

3
𝐹𝑃

1 (𝑡) ,

which are consistent with [45, Fig. 3]; the additional term 𝑡𝐹𝑃
1 (𝑡)/3 explains the different shape of �̂�2 (𝑡) , as displayed in the

right panel there, when compared to 𝐹𝑃
2 (𝑡) , as shown in the middle panel of Figure 2 here.

28Observe that

2
√
𝑟 + 𝑡𝑟1/6 = 2

√
𝑛 + 𝑡𝑛1/6 +𝑂 (𝑛1/10)

uniformly for 𝑡0 � 𝑡 � 𝑡1 and 𝑛 − 𝑛3/5 � 𝑟 � 𝑛 + 𝑛3/5 as 𝑛 → ∞.
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By (1.1), we have 𝑃𝑛 (𝑟) = 𝐸hard
2 (4𝑟; 𝑙𝑛) for real 𝑟 > 0, so that Theorem 4.1 (see also (4.6)) gives the

expansion

𝑃𝑛 (𝑟) = 𝐹 (𝑡) +
𝑚∑
𝑗=1

𝐹𝑃
𝑗 (𝑡) 𝑟− 𝑗/3 +𝑂 (𝑟−(𝑚+1)/3)

����
𝑡=𝑡𝑙𝑛 (𝑟 )

, (5.3)

uniformly valid when 𝑛 − 𝑛3/5 � 𝑟 � 𝑛 + 𝑛3/5 as 𝑛 → ∞, m being any fixed non-negative integer.
Here, the implied constant in the error term depends only on 𝑡0, 𝑡1, but not on the specific sequence 𝑙𝑛.
Preserving uniformity, the expansion can be repeatedly differentiated w.r.t. the variable r. In particular,
using the differential equation (4.1b), we get that 𝑃 ( 𝑗)

𝑛 (𝑛) expands in powers of 𝑛−1/3, starting with a
leading order term of the form

𝑃
( 𝑗)
𝑛 (𝑛) = (−1) 𝑗𝐹 ( 𝑗) (𝑡∗𝑛)𝑛−2 𝑗/3 +𝑂 (𝑛−(2 𝑗+1)/3) (𝑛 → ∞); (5.4a)

the specific cases to be used below are (see (6.7) for 𝑃′
𝑛 (𝑛))

𝑃𝑛 (𝑛) = 𝐹 (𝑡) + 𝐹𝑃
1 (𝑡)𝑛−1/3 + 𝐹𝑃

2 (𝑡)𝑛−2/3 + 𝐹𝑃
3 (𝑡)𝑛−1 +𝑂 (𝑛−4/3)

����
𝑡=𝑡∗𝑛

, (5.4b)

𝑃′′
𝑛 (𝑛) = 𝐹 ′′(𝑡)𝑛−4/3 +

(
𝐹𝑃

1
′′(𝑡) + 5

6
𝐹 ′(𝑡) + 𝑡

3
𝐹 ′′(𝑡)

)
𝑛−5/3 (5.4c)

+
(

3
2
𝐹𝑃

1
′(𝑡) + 𝑡

3
𝐹𝑃

1
′′(𝑡) + 𝐹𝑃

2
′′(𝑡) + 7𝑡

36
𝐹 ′(𝑡) + 𝑡2

36
𝐹 ′′(𝑡)

)
𝑛−2 +𝑂 (𝑛−7/3)

����
𝑡=𝑡∗𝑛

,

𝑃′′′
𝑛 (𝑛) = −𝐹 ′′′(𝑡)𝑛−2 +𝑂 (𝑛−7/3)

����
𝑡=𝑡∗𝑛

(5.4d)

𝑃 (4)
𝑛 (𝑛) = 𝐹 (4) (𝑡)𝑛−8/3 +

(
𝐹𝑃

1
(4) (𝑡) + 5𝐹 ′′′(𝑡) + 2𝑡

3
𝐹 (4) (𝑡)

)
𝑛−3 +𝑂 (𝑛−10/3)

����
𝑡=𝑡∗𝑛

, (5.4e)

𝑃 (6)
𝑛 (𝑛) = 𝐹 (6) (𝑡)𝑛−4 +𝑂 (𝑛−13/3)

����
𝑡=𝑡∗𝑛

, (5.4f)

where the implied constants in the error terms depend only on 𝑡0, 𝑡1.
We recall from the results of [19, Sect. 2] (note the slight differences in notation), and the proofs

given there, that the exponential generating functions 𝑓𝑛 (𝑧) are entire functions of genus zero having,
for each 0 < 𝜖 < 𝜋/2, only finitely many zeros29 in the sector |arg 𝑧 | � 𝜋/2 + 𝜖 . If we denote the real
auxiliary functions (cf. Definition A.1) of 𝑓𝑛 (𝑟) = 𝑒𝑟𝑃𝑛 (𝑟) by 𝑎𝑛 (𝑟) and 𝑏𝑛 (𝑟), the expansion (5.3),
and its derivatives based on (4.1b), give (cf. also (6.8))

𝑎𝑛 (𝑟) = 𝑟 +𝑂 (𝑟1/3), 𝑏𝑛 (𝑟) = 𝑟 +𝑂 (𝑟2/3), (5.5)

uniformly valid when 𝑛−𝑛3/5 � 𝑟 � 𝑛+𝑛3/5 as 𝑛 → ∞; the implied constants in the error terms depend
only on 𝑡0, 𝑡1.

Analytically, we lack the tools to study the asymptotic distribution of the finitely many zeros of
𝑓𝑛 (𝑧) in the sector |arg 𝑧 | � 𝜋/2 + 𝜖 as 𝑛 → ∞. Numerically, we proceed as follows. The meromorphic
logarithmic derivative of 𝑓𝑛 (𝑧) takes the form [19, §3.1]

𝑓 ′𝑛 (𝑧)
𝑓𝑛 (𝑧)

= 1 −
𝑣𝑙𝑛 (𝑧)

𝑧
,

29Because of 𝑓𝑛 (𝑟 ) > 0 for 𝑟 > 0, the real zeros of 𝑓𝑛 are negative and the complex ones are coming in conjugate pairs.
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Figure 3. Plots of 𝐹𝐷
1 (𝑡) (left panel), 𝐹𝐷

2 (𝑡) (middle panel) as in (5.8); both agree with the numerical
prediction of their graphical form given in the left panels of [19, Figs. 4/6]. The right panel shows 𝐹𝐷

3 (𝑡)
as in (5.8) (black solid line) with the approximations (5.7) for 𝑛 = 250 (red +), 𝑛 = 500 (green ◦) and
𝑛 = 1000 (blue •); the integer l has been varied such that 𝑡𝑙 (𝑛) spreads over the range of t displayed here.
Evaluation of (5.7) uses the table of exact values of P(𝐿𝑛 � 𝑙) up to 𝑛 = 1000 that was compiled in [19].

where 𝑣𝑙 satisfies a Jimbo–Miwa–Okamoto 𝜎-form of the Painlevé III equation [19, Eq. (31)], or
alternatively, a certain Chazy I equation [19, Eq. (34)]. Because of 𝑓𝑛 (0) = 1, the zeros of 𝑓𝑛 are in a
one-to-one correspondence to the pole field of the meromorphic function 𝑣𝑙𝑛 . Fornberg and Weideman
[39] developed a numerical method, the pole field solver, specifically for the task of numerically studying
the pole fields of equations of the Painlevé class. They documented results for Painlevé I [39], Painlevé
II [40], its imaginary variant [41] and, together with Fasondini, for (multivalued) variants of the Painlevé
III, V and VI equations [34, 35].

Now, extensive numerical experiments with the pole field solver applied to 𝑣𝑙𝑛 (which will be
documented in a separate publication) strongly hint at the property that the zeros of the exponential
generating functions 𝑓𝑛 (𝑧) in the sectors |arg 𝑧 | � 𝜋/2 + 𝜖 satisfy a uniform tameness condition as in
Definition A.2 (see also Remark A.6): the zeros are neither coming too close to the positive real axis
nor are they getting too large. Given this state of affairs, the results on the expansions of the length
distribution will be subject to the following:

Tameness hypothesis. For any real 𝑡0 < 𝑡1 and sequence of integers 𝑙𝑛 → ∞ satisfying (5.1), the
zeros of the induced family 𝑓𝑛 (𝑧) of exponential generating functions (5.2) are uniformly tame (see
Definition A.2), with parameters and implied constants only depending on 𝑡0 and 𝑡1.

Theorem 5.1. Let 𝑡0 < 𝑡1 be any real numbers and assume the tameness hypothesis. Then there holds
the expansion

P(𝐿𝑛 � 𝑙) = 𝐹 (𝑡) +
𝑚∑
𝑗=1

𝐹𝐷
𝑗 (𝑡) 𝑛− 𝑗/3 +𝑂 (𝑛−(𝑚+1)/3)

����
𝑡=𝑡𝑙 (𝑛)

, (5.6)

which is uniformly valid when 𝑛, 𝑙 → ∞ subject to 𝑡0 � 𝑡𝑙 (𝑛) � 𝑡1 with m being any fixed non-negative
integer. Here, the 𝐹𝐷

𝑗 are certain smooth functions; the first three are30

𝐹𝐷
1 (𝑡) = − 𝑡2

60
𝐹 ′(𝑡) − 3

5
𝐹 ′′(𝑡), (5.8a)

𝐹𝐷
2 (𝑡) =

(
− 139

350
+ 2𝑡3

1575

)
𝐹 ′(𝑡) +

(
− 43𝑡

350
+ 𝑡4

7200

)
𝐹 ′′(𝑡) + 𝑡2

100
𝐹 ′′′(𝑡) + 9

50
𝐹 (4) (𝑡), (5.8b)

30To validate the expansion (5.6) and the formulae (5.8a–c), Figure 3 plots 𝐹𝐷
3 (𝑡) next to the approximation

𝐹𝐷
3

(
𝑡𝑙 (𝑛)

)
≈ 𝑛 ·

(
P(𝐿𝑛 � 𝑙) − 𝐹 (𝑡) − 𝐹𝐷

1 (𝑡)𝑛−1/3 − 𝐹𝐷
2 (𝑡)𝑛−2/3

) ����
𝑡=𝑡𝑙 (𝑛)

(5.7)

for 𝑛 = 250, 𝑛 = 500 and 𝑛 = 1000, varying the integer l in such a way that 𝑡 = 𝑡𝑙 (𝑛) spreads over [−6, 3].
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𝐹𝐷
3 (𝑡) = −

( 562𝑡
7875

+ 41𝑡4

283500

)
𝐹 ′(𝑡) +

( 𝑡2

300
− 𝑡5

47250

)
𝐹 ′′(𝑡) (5.8c)

+
( 5137
15750

+ 9𝑡3

7000
− 𝑡6

1296000

)
𝐹 ′′′(𝑡) +

( 129𝑡
1750

− 𝑡4

12000

)
𝐹 (4) (𝑡)

− 3𝑡2

1000
𝐹 (5) (𝑡) − 9

250
𝐹 (6) (𝑡).

Proof. Following up the preparations preceding the formulation of the theorem, the tameness hypothesis
allows us to apply Corollary A.7, bounding 𝑓𝑛 (𝑧) = 𝑒𝑧𝑃𝑛 (𝑧) by

�� 𝑓𝑛 (𝑟𝑒𝑖 𝜃 )�� � {
2 𝑓𝑛 (𝑟)𝑒−

1
2 𝜃2𝑟 , 0 � |𝜃 | � 𝑟−2/5,

2 𝑓𝑛 (𝑟)𝑒−
1
2 𝑟

1/5
, 𝑟−2/5 � |𝜃 | � 𝜋,

(5.9)

for 𝑛 − 𝑛3/5 � 𝑟 � 𝑛 + 𝑛3/5 and 𝑛 � 𝑛0 when 𝑛0 is sufficiently large (depending on 𝑡0, 𝑡1). Using the
trivial bounds (for 𝑟 > 0 and |𝜃 | � 𝜋)

0 � 𝑓𝑛 (𝑟) � 𝑒𝑟 , 0 � 𝑃𝑛 (𝑟) � 1, 1 − 1
2 𝜃

2 � cos 𝜃,

the first case in (5.9) can be recast in form of the bound��𝑃𝑛 (𝑟𝑒𝑖 𝜃 )
�� � 2𝑃𝑛 (𝑟)𝑒

𝑟
(
1−cos 𝜃− 1

2 𝜃2
)
� 2,

which proves condition (I) of Theorem A.2 with 𝐵 = 2, 𝐷 = 1, 𝛽 = 0 and 𝛿 = 2/5, whereas the second
case implies

| 𝑓𝑛 (𝑛𝑒𝑖 𝜃 ) | � 2 𝑓𝑛 (𝑛)𝑒−
1
2 𝑛1/5

� 2 exp
(
𝑛 − 1

2𝑛
1/5) ,

which proves condition (O) of Theorem A.2 with 𝐴 = 1/2, 𝐶 = 0, 𝛼 = 1/5 and 𝛾 = 0. Hence, there
holds the Jasz expansion (A.7) – namely,

P(𝐿𝑛 � 𝑙𝑛) = 𝑃𝑛 (𝑛) +
𝑀∑
𝑗=2

𝑏 𝑗 (𝑛)𝑃 ( 𝑗)
𝑛 (𝑛) +𝑂 (𝑛−(𝑀+1)/5)

for any 𝑀 = 0, 1, 2, . . . as 𝑛 � 𝑛1; here, 𝑛1 and the implied constant depend on 𝑡0, 𝑡1. By noting that the
diagonal Poisson–Charlier polynomials 𝑏 𝑗 have degree � 
 𝑗/2� and by choosing M large enough, the
expansions (5.4) of 𝑃 ( 𝑗)

𝑛 (𝑛) in terms of powers of 𝑛−1/3 yield that there are smooth functions 𝐹𝐷
𝑗 such

that

P(𝐿𝑛 � 𝑙𝑛) = 𝐹 (𝑡) +
𝑚∑
𝑗=1

𝐹𝐷
𝑗 (𝑡) 𝑛− 𝑗/3 +𝑂 (𝑛−(𝑚+1)/3)

����
𝑡=𝑡∗𝑛

as 𝑛 → ∞, with m being any fixed non-negative integer. Given the uniformity of the bound for fixed 𝑡0
and 𝑡1, we can replace 𝑙𝑛 by l and 𝑡∗𝑛 by 𝑡𝑙 (𝑛) as long as we respect 𝑡0 � 𝑡𝑙 (𝑛) � 𝑡1. This finishes the
proof of (5.6).

The first three functions 𝐹𝐷
1 , 𝐹𝐷

2 (𝑡), 𝐹𝐷
3 (𝑡) can be determined using the particular case (A.8) of the

Jasz expansion from Example A.3 (which applies here because of (5.4a)) – namely,

P(𝐿𝑛 � 𝑙𝑛) = 𝑃𝑛 (𝑛) −
𝑛

2
𝑃′′
𝑛 (𝑛) +

𝑛

3
𝑃′′′
𝑛 (𝑛) + 𝑛2

8
𝑃 (4)
𝑛 (𝑛) − 𝑛3

48
𝑃 (6)
𝑛 (𝑛) +𝑂 (𝑛−4/3).
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Inserting the formulae displayed in (5.4), we thus obtain

𝐹𝐷
1 (𝑡) = 𝐹𝑃

1 (𝑡) − 1
2
𝐹 ′′(𝑡), (5.10a)

𝐹𝐷
2 (𝑡) = 𝐹𝑃

2 (𝑡) − 1
2
𝐹𝑃

1
′′(𝑡) − 5

12
𝐹 ′(𝑡) − 𝑡

6
𝐹 ′′(𝑡) + 1

8
𝐹 (4) (𝑡), (5.10b)

𝐹𝐷
3 (𝑡) = 𝐹𝑃

3 (𝑡) − 1
2
𝐹𝑃

2
′′(𝑡) − 3

4
𝐹𝑃

1
′(𝑡) − 𝑡

6
𝐹𝑃

1
′′(𝑡) + 1

8
𝐹𝑃

1
(4) (𝑡) (5.10c)

− 7𝑡
72

𝐹 ′(𝑡) − 𝑡2

72
𝐹 ′′(𝑡) + 7

24
𝐹 (3) (𝑡) + 𝑡

12
𝐹 (4) (𝑡) − 1

48
𝐹 (6) (𝑡).

Together with the expressions given in (4.4), this yields the functional form asserted in (5.8). �

5.2. Expansion of the PDF

Subject to its assumptions, Theorem 5.1 implies for the PDF of the length distribution that

P(𝐿𝑛 = 𝑙) = P(𝐿𝑛 � 𝑙) − P(𝐿𝑛 � 𝑙 − 1)

=
(
𝐹 (𝑡𝑙 (𝑛)) − 𝐹 (𝑡𝑙−1 (𝑛))

)
+

𝑚∑
𝑗=1

(
𝐹𝐷
𝑗 (𝑡𝑙 (𝑛)) − 𝐹𝐷

𝑗 (𝑡𝑙−1 (𝑛))
)
𝑛− 𝑗/3 +𝑂 (𝑛−(𝑚+1)/3).

Applying the central differencing formula (which is, basically, just a Taylor expansion for smooth G
centered at the midpoint)

𝐺 (𝑡 + ℎ) − 𝐺 (𝑡) = ℎ𝐺 ′ (𝑡 + ℎ
2
)
+ ℎ3

24
𝐺 ′′′ (𝑡 + ℎ

2
)
+ ℎ5

1920
𝐺 (5) (𝑡 + ℎ

2
)
+ ℎ7

322560
𝐺 (7) (𝑡 + ℎ

2
)
+ · · · ,

with increment ℎ = 𝑛−1/6, we immediately get the following corollary of Theorem 5.1.

Corollary 5.2. Let 𝑡0 < 𝑡1 be any real numbers, and assume the tameness hypothesis. Then there holds
the expansion

𝑛1/6 P(𝐿𝑛 = 𝑙) = 𝐹 ′(𝑡) +
𝑚∑
𝑗=1

𝐹∗
𝑗 (𝑡)𝑛− 𝑗/3 +𝑂 (𝑛−(𝑚+1)/3)

����
𝑡=𝑡𝑙−1/2 (𝑛)

, (5.11)

which is uniformly valid when 𝑛, 𝑙 → ∞ subject to the constraint 𝑡0 � 𝑡𝑙−1/2(𝑛) � 𝑡1 with m being any
fixed non-negative integer. Here, the 𝐹∗

𝑗 are certain smooth functions; in particular,31

𝐹∗
1 (𝑡) = − 𝑡

30
𝐹 ′(𝑡) − 𝑡2

60
𝐹 ′′(𝑡) − 67

120
𝐹 ′′′(𝑡), (5.13a)

𝐹∗
2 (𝑡) =

2𝑡2

525
𝐹 ′(𝑡) +

(
− 629

1200
+ 23𝑡3

12600

)
𝐹 ′′(𝑡) +

(
− 899𝑡

8400
+ 𝑡4

7200

)
𝐹 ′′′(𝑡) (5.13b)

+ 67𝑡2

7200
𝐹 (4) (𝑡) + 1493

9600
𝐹 (5) (𝑡),

31To validate the expansion (5.11) and the formulae (5.13a–c), Figure 4 plots 𝐹∗
3 (𝑡) next to the approximation

𝐹∗
3
(
𝑡𝑙−1/2 (𝑛)

)
≈ 𝑛7/6 ·

(
P(𝐿𝑛 = 𝑙) − 𝐹 ′ (𝑡)𝑛−1/6 − 𝐹∗

1 (𝑡)𝑛−1/2 − 𝐹∗
2 (𝑡)𝑛−5/6

) ����
𝑡=𝑡𝑙−1/2 (𝑛)

(5.12)

for 𝑛 = 250, 𝑛 = 500 and 𝑛 = 1000, varying the integer l in such a way that 𝑡 = 𝑡𝑙−1/2 (𝑛) spreads over [−6, 3].
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Figure 4. Plots of 𝐹∗
1 (𝑡) (left panel) and 𝐹∗

2 (𝑡) (middle panel) as in (5.13a/b); both agree with the
numerical prediction of their graphical form given in the right panels of [19, Figs. 4/6]. The right panel
shows 𝐹∗

3 as in (5.13c) (black solid line) with the approximations (5.12) for 𝑛 = 250 (red +), 𝑛 = 500
(green ◦) and 𝑛 = 1000 (blue •); the integer l has been varied such that 𝑡𝑙−1/2(𝑛) spreads over the range
of t displayed here. Evaluation of (5.12) uses the table of exact values of P(𝐿𝑛 = 𝑙) up to 𝑛 = 1000 that
was compiled in [19].

𝐹∗
3 (𝑡) = −

( 373
5250

+ 41𝑡3

70875

)
𝐹 ′(𝑡) −

( 1781𝑡
28000

+ 71𝑡4

283500

)
𝐹 ′′(𝑡) (5.13c)

+
( 63𝑡2

8000
− 13𝑡5

504000

)
𝐹 ′′′(𝑡) +

( 41473
112000

+ 13𝑡3

12096
− 𝑡6

1296000

)
𝐹 (4) (𝑡)

+
( 131057𝑡
2016000

− 67𝑡4

864000

)
𝐹 (5) (𝑡) − 1493𝑡2

576000
𝐹 (6) (𝑡) − 232319

8064000
𝐹 (7) (𝑡).

Remark 5.3. The case 𝑚 = 0 of Corollary 5.2 gives

𝑛1/6 P(𝐿𝑛 = 𝑙) = 𝐹 ′(𝑡𝑙−1/2(𝑛)) +𝑂 (𝑛−1/3),

where the exponent in the error term cannot be improved. By noting

𝑡𝑙−1/2(𝑛) = 𝑡𝑙 (𝑛) − 1
2𝑛

−1/6,

we understand that, for fixed large n, visualizing the discrete length distribution near its mode by plotting
the points (

𝑡𝑙 (𝑛), 𝑛1/6 P(𝐿𝑛 = 𝑙)
)

next to the graph (𝑡, 𝐹 ′(𝑡)) introduces a perceivable bias; namely, all points are shifted by an amount
of 𝑛−1/6/2 to the right of the graph. Exactly such a bias can be observed in the first ever published plot
of the PDF vs. the density of the Tracy–Widom distribution by Odlyzko and Rains in [62, Fig. 1]: the
Monte-Carlo data for 𝑛 = 106 display a consistent shift by 0.05.

A bias free plot is shown in Figure 5, which, in addition, displays an improvement of the error of the
limit law by a factor of 𝑂 (𝑛−2/3) that is obtained by adding the first two finite-size correction terms.

6. Expansions of Stirling-type formulae

In our work [19], we advocated the use of a Stirling-type formula to approximate the length distribution
for larger n (because of being much more efficient and accurate than Monte-Carlo simulations). To recall
some of our findings there, let us denote the exponential generating function and its Poisson counterpart
simply by

𝑓 (𝑧) =
∞∑
𝑛=0
P(𝐿𝑛 � 𝑙) 𝑧

𝑛

𝑛!
, 𝑃(𝑧) = 𝑒−𝑧 𝑓 (𝑧),
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Figure 5. The exact discrete length distribution P(𝐿𝑛 = 𝑙) (blue bars centered at the integers l) vs. the
asymptotic expansion (5.11) for 𝑚 = 0 (the Baik–Deift–Johansson limit, dotted line) and for 𝑚 = 2 (the
limit with the first two finite-size correction terms added, solid line). Left: 𝑛 = 100; right: 𝑛 = 1000.
The expansions are displayed as functions of the continuous variable 𝜈, evaluating the right-hand side
of (5.11) in 𝑡 = 𝑡𝜈−1/2(𝑛). The exact values are from the table compiled in [19]. Note that a graphically
accurate continuous approximation of the discrete distribution must intersect the bars right in the middle
of their top sides: this is, indeed, the case for 𝑚 = 2 (except at the left tail for 𝑛 = 100). In contrast, the
uncorrected limit law (𝑚 = 0) is noticeable inaccurate for this range of n.

suppressing the dependence on the integer parameter l from the notation for the sake of brevity. It
was shown in [19, Thm. 2.2] that the entire function f is H-admissible so that there is the normal
approximation (see Definition A.1 and Theorem A.4)

P(𝐿𝑛 � 𝑙) = 𝑛! 𝑓 (𝑟)
𝑟𝑛

√
2𝜋𝑏(𝑟)

(
exp

(
− (𝑛 − 𝑎(𝑟))2

2𝑏(𝑟)

)
+ 𝑜(1)

)
(𝑟 → ∞) (6.1)

uniformly in 𝑛 = 0, 1, 2, . . . while l is any fixed integer. Here, 𝑎(𝑟) and 𝑏(𝑟) are the real auxiliary
functions

𝑎(𝑟) = 𝑟
𝑓 ′(𝑟)
𝑓 (𝑟) , 𝑏(𝑟) = 𝑟𝑎′(𝑟).

We consider the two cases 𝑟 = 𝑟𝑛, 𝑎(𝑟𝑛) = 𝑛 and 𝑟 = 𝑛. After dividing (6.1) by the classical Stirling
factor (which does not change anything of substance; see Remark 6.2)

𝜏𝑛 :=
𝑛!

√
2𝜋𝑛

( 𝑒
𝑛

)𝑛
∼ 1 + 𝑛−1

12
+ 𝑛−2

288
+ · · · , (6.2)

we get after some rearranging of terms the Stirling-type formula 𝑆𝑛,𝑙 (𝑟 = 𝑟𝑛) and the simplified Stirling-
type formula 𝑆𝑛,𝑙 (𝑟 = 𝑛):

𝑆𝑛,𝑙 :=
𝑃(𝑟𝑛)√
𝑏(𝑟𝑛)/𝑛

exp
(
𝑛Λ

( 𝑟𝑛 − 𝑛

𝑛

))
, Λ(ℎ) = ℎ − log(1 + ℎ), (6.3a)

𝑆𝑛,𝑙 :=
𝑃(𝑛)√
𝑏(𝑛)/𝑛

exp
(
− (𝑛 − 𝑎(𝑛))2

2𝑏(𝑛)

)
. (6.3b)

As shown in [19], both approximations are amenable for a straightforward numerical evaluation
using the tools developed in [14, 15, 20]. For fixed l, the normal approximation (6.1) implies
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P(𝐿𝑛 � 𝑙) = 𝑆𝑛,𝑙 · (1 + 𝑜(1)) (𝑛 → ∞);

but numerical experiments reported in [19, Fig. 3, Eq. (8b)] suggest that there holds

P(𝐿𝑛 � 𝑙) = 𝑆𝑛,𝑙 +𝑂 (𝑛−2/3)

uniformly when 𝑛, 𝑙 → ∞ while 𝑡𝑙 (𝑛) stays bounded. Subject to the tameness hypothesis of Theorem
5.1, we prove this observation as well as its counterpart for the simplified Stirling-type formula, thereby
unveiling the functional form of the error term 𝑂 (𝑛−2/3):32

Theorem 6.1. Let 𝑡0 < 𝑡1 be any real numbers, and assume the tameness hypothesis. Then, for the
Stirling-type formula 𝑆𝑛,𝑙 and its simplification 𝑆𝑛,𝑙 , there hold the expansions (note that both are
starting at 𝑗 = 2)

P(𝐿𝑛 � 𝑙) = 𝑆𝑛,𝑙 +
𝑚∑
𝑗=2

𝐹𝑆
𝑗

(
𝑡𝑙 (𝑛)

)
𝑛− 𝑗/3 +𝑂 (𝑛−(𝑚+1)/3), (6.4a)

P(𝐿𝑛 � 𝑙) = 𝑆𝑛,𝑙 +
𝑚∑
𝑗=2

�̃�𝑆
𝑗

(
𝑡𝑙 (𝑛)

)
𝑛− 𝑗/3 +𝑂 (𝑛−(𝑚+1)/3), (6.4b)

which are uniformly valid when 𝑛, 𝑙 → ∞ subject to 𝑡0 � 𝑡𝑙 (𝑛) � 𝑡1 with m being any fixed non-negative
integer. Here, the 𝐹𝑆

𝑗 and �̃�𝑆
𝑗 are certain smooth functions – the first being33

𝐹𝑆
2 (𝑡) = −3

4
𝐹 ′(𝑡)4

𝐹 (𝑡)3 + 3
2
𝐹 ′(𝑡)2𝐹 ′′(𝑡)

𝐹 (𝑡)2 − 3
8
𝐹 ′′(𝑡)2

𝐹 (𝑡) − 1
2
𝐹 ′(𝑡)𝐹 ′′′(𝑡)

𝐹 (𝑡) + 1
8
𝐹 (4)

2 (𝑡), (6.5a)

�̃�𝑆
2 (𝑡) = −1

2
𝐹 ′(𝑡) + 1

4
𝐹 ′(𝑡)4

𝐹 (𝑡)3 − 3
8
𝐹 ′′(𝑡)2

𝐹 (𝑡) + 1
8
𝐹 (4)

2 (𝑡). (6.5b)

The solution 𝑟𝑛 of the equation 𝑎(𝑟𝑛) = 𝑛, required to evaluate 𝑆𝑛,𝑙 , satisfies the expansion34

𝑟𝑛 = 𝑛 +
𝐹 ′ (𝑡𝑙 (𝑛))
𝐹
(
𝑡𝑙 (𝑛)

) 𝑛1/3 +𝑂 (1),

which is uniformly valid under the same conditions.

Proof. We restrict ourselves to the case 𝑚 = 2, focusing on the concrete functional form of the expansion
terms; nevertheless, the general form of the expansions (6.4) should become clear along the way.

Preparatory steps. Because of 𝑃(𝑟) = 𝐸hard
2 (4𝑟; 𝑙) (using the notation preceding Theorem 6.1),

Theorem 4.1 gives that

𝑃(𝑟) = 𝐹 (𝑡) + 𝐹𝑃
1 (𝑡) · 𝑟−1/3 + 𝐹𝑃

2 (𝑡) · 𝑟−2/3 +𝑂 (𝑟−1)
���
𝑡=𝑡𝑙 (𝑟 )

, (6.6)

32Note that the expansions (6.9) for �̃�𝑛,𝑙 and (6.11) for 𝑆𝑛,𝑙 given in the proof do not require the tameness hypothesis. It is
only required to facilitate the comparison with the result of Theorem 5.1, which then yields (6.4).

33The functional form of the terms 𝐹𝑆
2 , �̃�𝑆

2 differs significantly from the one of corresponding terms in the previous theorems.
Though they still share the form

𝐹 (𝑡) ·
(
rational polynomial in 𝑢00 (𝑡) , 𝑢10 (𝑡) , 𝑢11 (𝑡) , 𝑢20 (𝑡) , 𝑢21 (𝑡) , 𝑢30 (𝑡)

)
,

using the algorithmic ideas underlying the tabulation of 𝐹 (𝑡) · 𝑢 𝑗𝑘 (𝑡) (0 � 𝑗 + 𝑘 � 8) in [73, p. 68], one can show that 𝐹𝑆
2 (𝑡)

and �̃�𝑆
2 do not simplify to the form (3.20b) of a linear combination of derivatives of F with (rational) polynomial coefficients (at

least not for orders up to 50; cf. the discussion in Appendix B).
34This provides excellent initial guesses for solving 𝑎 (𝑟𝑛) = 𝑛 by iteration; cf. [19, Sect. 3.4]. It also helps to understand the

quantitative observations made in [16, Example 12.5].
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which is uniformly valid when 𝑟, 𝑙 → ∞ subject to the constraint 𝑡0 � 𝑡𝑙 (𝑟) � 𝑡1 (the same constraint
applies to the expansions to follow). Preserving uniformity, the expansion can be repeatedly differentiated
w.r.t. the variable r, which yields by using the differential equation (4.1b) satisfied by 𝑡𝑙 (𝑟) (cf. also
(5.4a))

𝑃′(𝑟) = −𝐹 ′(𝑡)𝑟−2/3 −
(
𝐹𝑃

1
′(𝑡) + 𝑡

6
𝐹 ′(𝑡)

)
𝑟−1 +𝑂 (𝑟−4/3)

���
𝑡=𝑡𝑙 (𝑟 )

. (6.7)

Recalling 𝑓 (𝑟) = 𝑒𝑟𝑃(𝑟), we thus get

𝑎(𝑟) = 𝑟 + 𝑟
𝑃′(𝑟)
𝑃(𝑟) = 𝑟 + 𝑎1 (𝑡)𝑟1/3 + 𝑎2 (𝑡) +𝑂 (𝑟−1/3)

���
𝑡=𝑡𝑙 (𝑟 )

(6.8a)

with the coefficient functions

𝑎1 (𝑡) = −𝐹 ′(𝑡)
𝐹 (𝑡) , 𝑎2 (𝑡) = − 1

𝐹 (𝑡)

(
𝐹𝑃

1
′(𝑡) + 𝑡

6
𝐹 ′(𝑡)

)
+

𝐹𝑃
1 (𝑡)𝐹 ′(𝑡)
𝐹 (𝑡)2 ; (6.8b)

a further differentiation yields

𝑏(𝑟) = 𝑟𝑎′(𝑟) = 𝑟 − 𝑎′1 (𝑡)𝑟
2/3 +

(1
3
𝑎1 (𝑡) −

𝑡

6
𝑎′1 (𝑡) − 𝑎′2 (𝑡)

)
𝑟1/3 +𝑂 (1)

����
𝑡=𝑡𝑙 (𝑟 )

. (6.8c)

The simplified Stirling-type formula. Here, we have 𝑟 = 𝑛, and we write 𝑡∗ := 𝑡𝑙 (𝑛) to be brief. By
inserting the expansions (6.6) and (6.8) into the expression (6.3b), we obtain after a routine calculation
with truncated power series and collecting terms as in (5.10) that

𝑆𝑛,𝑙 = 𝐹 (𝑡∗) + 𝐹𝐷
1 (𝑡∗)𝑛−1/3 +

(
𝐹𝐷

2 (𝑡∗) − �̃�𝑆
2 (𝑡∗)

)
𝑛−2/3 +𝑂 (𝑛−1), (6.9)

where the remaining �̃�𝑆
2 (𝑡) is given by (6.5b); a subtraction from (5.6) yields (6.4b).

The Stirling-type formula. Here, we have 𝑟 = 𝑟𝑛, and we have to distinguish between 𝑡∗ and

𝑡𝑙 (𝑟) = 𝑡∗ · (𝑛/𝑟)1/6 + 2
√
𝑛 −

√
𝑟

𝑟1/6 .

By inserting the expansion

𝑟𝑛 = 𝑛 + 𝑟1(𝑡∗)𝑛1/3 + 𝑟2 (𝑡∗) +𝑂 (𝑛−1/3) (6.10a)

into 𝑡𝑛 (𝑟𝑛) and 𝑎(𝑟𝑛), we obtain

𝑡𝑙 (𝑟𝑛) = 𝑡∗ − 𝑟1(𝑡∗)𝑛−1/3 −
(
𝑟2 (𝑡∗) +

𝑡∗
6
𝑟1(𝑡∗)

)
𝑛−2/3 +𝑂 (𝑛−1) (6.10b)

𝑎(𝑟𝑛) = 𝑛 + (𝑎1 (𝑡∗) + 𝑟1 (𝑡∗))𝑛1/3 +
(
𝑎2 (𝑡∗) + 𝑟2 (𝑡∗) − 𝑟1(𝑡∗)𝑎′1(𝑡∗)

)
+𝑂 (𝑛−1/3). (6.10c)

Thus, the solution of 𝑎(𝑟𝑛) = 𝑛, which by Theorem A.4 is unique, leads to the relations

𝑟1(𝑡) = −𝑎1 (𝑡), 𝑟2(𝑡) = −𝑎2 (𝑡) − 𝑎1 (𝑡)𝑎′1(𝑡). (6.10d)

By inserting, first, the expansions (6.10) into the expansions (6.6) and (6.8) for the particular choice
𝑟 = 𝑟𝑛 and, next, the thus obtained results into the expression (6.3a), we obtain after a routine calculation
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Figure 6. Left panel: plots of �̃�𝑆
2 (𝑡) (solid line) and �̃�𝑆

2 (𝑡) (dash-dotted line) as in (6.5). The middle
and right panel show the approximations of 𝐹𝑆

3 (𝑡) and �̃�𝑆
3 (𝑡) in (6.12) for 𝑛 = 250 (red +), 𝑛 = 500

(green ◦) and 𝑛 = 1000 (blue •); the integer l has been varied such that 𝑡𝑙 (𝑛) spreads over the range
of the variable t displayed here; the dotted line displays a polynomial fit to the data points of degree
30 to help visualizing their joint graphical form. Evaluation of (6.12) uses the table of exact values of
P(𝐿𝑛 � 𝑙) up to 𝑛 = 1000 that was compiled in [19].

with truncated power series and collecting terms as in (5.10) that

𝑆𝑛,𝑙 = 𝐹 (𝑡∗) + 𝐹𝐷
1 (𝑡∗)𝑛−1/3 +

(
𝐹𝐷

2 (𝑡∗) − 𝐹𝑆
2 (𝑡∗)

)
𝑛−2/3 +𝑂 (𝑛−1), (6.11)

where the remaining 𝐹𝑆
2 (𝑡) is given by (6.5a); a subtraction from (5.6) yields (6.4a). �

To validate the expansions (6.4) and the formulae (6.5a/b), Figure 6 plots the approximations

𝐹𝑆
3
(
𝑡𝑙 (𝑛)

)
≈ 𝑛−1

(
P(𝐿𝑛 � 𝑙) − 𝑆𝑛,𝑙 − 𝐹𝑆

2
(
𝑡𝑙 (𝑛)

)
𝑛−2/3

)
, (6.12a)

�̃�𝑆
3
(
𝑡𝑙 (𝑛)

)
≈ 𝑛−1

(
P(𝐿𝑛 � 𝑙) − 𝑆𝑛,𝑙 − �̃�𝑆

2
(
𝑡𝑙 (𝑛)

)
𝑛−2/3

)
(6.12b)

for 𝑛 = 250, 𝑛 = 500 and 𝑛 = 1000, varying the integer l in such a way that 𝑡 = 𝑡𝑙 (𝑛) spreads over
[−6, 3]. The plot suggests the following observations:

◦ Apparently there holds �̃�𝑆
2 (𝑡) < 𝐹𝑆

2 (𝑡) < 0 for 𝑡 ∈ [−6, 3], which if generally true would imply

P(𝐿𝑛 � 𝑙) < 𝑆𝑛,𝑙 < 𝑆𝑛,𝑙

for n being sufficiently large and l near the mode of the distribution. This one-sided approximation of
the length distribution by the Stirling formula 𝑆𝑛,𝑙 from above is also clearly visible in [19, Tables 1/2].

◦ Comparing 𝐹𝑆
2 (𝑡) in Figure 6 to 𝐹𝐷

2 (𝑡) in Figure 3 shows that the maximum error

max
𝑙=1,...,𝑛

���P(𝐿𝑛 � 𝑙) −
(
𝐹 (𝑡) + 𝐹𝐷

1 (𝑡)𝑛−1/3) ��
𝑡=𝑡𝑙 (𝑛)

��� ≈ 𝑛−2/3‖𝐹𝐷
2 ‖∞ ≈ 0.25𝑛−2/3

of approximating the length distribution by the first finite-size correction in Theorem 5.1 is about an
order of magnitude larger than the maximum error of the Stirling-type formula,

max
𝑙=1,...,𝑛

��P(𝐿𝑛 � 𝑙) − 𝑆𝑛,𝑙
�� ≈ 𝑛−2/3‖𝐹𝑆

2 ‖∞ ≈ 0.031𝑛−2/3.

This property of the Stirling-type formula was already observed in [19, Fig. 3] and was used there to
approximate the graphical form of 𝐹𝐷

2 (𝑡) (see [19, Fig. 6]).
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Remark 6.2. If one includes the classical Stirling factor (6.2) into the Stirling-type formula by replacing
(6.3a) with the unmodified normal approximation (6.1), that is, with

𝑆∗𝑛,𝑙 := 𝜏𝑛
𝑃(𝑟𝑛)√
𝑏(𝑟𝑛)/𝑛

exp
(
𝑛Λ

( 𝑟𝑛 − 𝑛

𝑛

))
= 𝜏𝑛𝑆𝑛,𝑙 ,

Theorem 6.1 would remain valid: in fact, multiplication of (6.4a) by the expansion (6.2) of 𝜏𝑛 in powers
of 𝑛−1 gives, by taking (5.6) into account,

P(𝐿𝑛 � 𝑙) = 𝑆∗𝑛,𝑙 +
𝑚∑
𝑗=2

𝐹𝑆∗

𝑗

(
𝑡𝑙 (𝑛)

)
𝑛− 𝑗/3 +𝑂 (𝑛−(𝑚+1)/3),

where the first two coefficient functions are

𝐹𝑆∗

2 (𝑡) = 𝐹𝑆
2 (𝑡), 𝐹𝑆∗

3 (𝑡) = 𝐹𝑆
3 (𝑡) − 1

12
𝐹 (𝑡), . . . .

Because of lim𝑡→+∞ 𝐹 (𝑡) = 1, we would loose the decay of 𝐹𝑆
3 (𝑡) for large t, leaving us with a nonzero

residual value coming from the classical Stirling factor. For this reason, we recommend dropping the
factor 𝜏𝑛, thereby resolving an ambiguity expressed in [19, Fn. 28].

7. Expansions of expected value and variance

Lifting the expansion (5.11) of the PDF of the length distribution to one of the expected value and
variance requires a control of the tails (of the distribution itself and of the expansion terms) which, at
least right now, we can only conjecture to hold true.

To get to a reasonable conjecture, we recall the tail estimates for the discrete distribution (see [7,
Eqn. (9.6/9.12)]),

P(𝐿𝑛 = 𝑙) � 𝐶𝑒−𝑐 |𝑡𝑙 (𝑛) |
3 (𝑡𝑙 (𝑛) � 𝑡0 < 0),

P(𝐿𝑛 = 𝑙) � 𝐶𝑒−𝑐 |𝑡𝑙 (𝑛) |
3/5 (0 < 𝑡1 � 𝑡𝑙 (𝑛)),

when n is large enough with 𝑐 > 0 being some absolute constant and 𝐶 > 0 a constant that depends on
𝑡0, 𝑡1.

However, from Theorem 5.1 and its proof we see that the 𝐹∗
𝑗 (𝑡) take the form

𝐹 (𝑡) ·
(
rational polynomial in terms of the form tr((𝐼 − 𝐾0)−1𝐾) |𝐿2 (𝑡 ,∞)

)
, (7.1)

where the kernels K are finite sums of rank one kernels with factors of the form (2.2). The results of
Section 2.3 thus show that the 𝐹∗

𝑗 (𝑡) are exponentially decaying when 𝑡 → ∞. Now, looking at the left
tail, the (heuristic) estimate of the largest eigenvalue of the Airy operator K0 on 𝐿2 (𝑡,∞) as given in the
work of Tracy and Widom [78, Eq. (1.23)] shows a superexponential growth bound of the operator norm

‖(I − K0)−1‖ � 𝐶 |𝑡 |−3/4𝑒𝑐 |𝑡 |
3/2 (𝑡 � 𝑡0).

This, together with the superexponential decay (see [6, Cor. 1.3] and [28, Thm. 1] for the specific
constants)

0 � 𝐹 (𝑡) � 𝐶 |𝑡 |−1/8𝑒−𝑐 |𝑡 |
3 (𝑡 � 𝑡0)

of the Tracy–Widom distribution itself, and with an at most polynomial growth of the trace norms
‖K‖J 1 (𝑡 ,∞) as 𝑡 → −∞, shows that the bounds for the discrete distribution find a counterpart for the
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expansion terms 𝐹∗
𝑗 (𝑡):

|𝐹∗
𝑗 (𝑡) | � 𝐶𝑒−𝑐 |𝑡 |

3 (𝑡 � 𝑡0 < 0),

|𝐹∗
𝑗 (𝑡) | � 𝐶𝑒−𝑐 |𝑡 | (0 < 𝑡1 � 𝑡).

(7.2)

Thus, assuming an additional amount of uniformity that would allow us to absorb the exponentially
small tails in the error term of Corollary 5.2, we conjecture the following:

Uniform Tails Hypothesis. The expansion (5.11) can be sharpened to include the tails in the form

𝑛1/6 P(𝐿𝑛 = 𝑙) = 𝐹 ′(𝑡) +
𝑚∑
𝑗=1

𝐹∗
𝑗 (𝑡)𝑛− 𝑗/3 + 𝑛−(𝑚+1)/3 · 𝑂

(
𝑒−𝑐 |𝑡 |

3/5
) ����

𝑡=𝑡𝑙−1/2 (𝑛)
, (7.3)

uniformly valid in 𝑙 = 1, . . . , 𝑛 as 𝑛 → ∞.
We now follow the ideas sketched in our work [19, §4.3] on the Stirling-type formula. By shift and

rescale, the expected value of 𝐿𝑛 can be written in the form

E(𝐿𝑛) =
𝑛∑
𝑙=1

𝑙 · P(𝐿𝑛 = 𝑙) = 2
√
𝑛 + 1

2
+

𝑛∑
𝑙=1

𝑡𝑙−1/2(𝑛) · 𝑛1/6 P(𝐿𝑛 = 𝑙).

Inserting the expansion (7.3) of the uniform tail hypothesis gives, since its error term is uniformly
summable,

E(𝐿𝑛) = 2
√
𝑛 + 1

2
+

𝑚∑
𝑗=0

𝜇 (𝑛)
𝑗 𝑛1/6− 𝑗/3 +𝑂 (𝑛−1/6−𝑚/3), (7.4)

with coefficients (still depending on n, though), writing 𝐹∗
0 := 𝐹 ′,

𝜇 (𝑛)
𝑗 := 𝑛−1/6

𝑛∑
𝑙=1

𝑡𝑙−1/2(𝑛)𝐹∗
𝑗

(
𝑡𝑙−1/2(𝑛)

)
.

By the tail estimates (7.2), we have, writing 𝑎 := −𝑛−1/6(2
√
𝑛 + 1

2 ) and ℎ := 𝑛−1/6,

𝜇 (𝑛)
𝑗 = ℎ

∞∑
𝑙=−∞

(𝑎 + 𝑙ℎ)𝐹∗
𝑗 (𝑎 + 𝑙ℎ) +𝑂 (𝑒−𝑐𝑛1/3 ).

Now, based on a precise description of its pole field in [52], it is known that the Hastings–McLeod
solution of Painlevé II and a fortiori, by the Tracy–Widom theory [78], also F and its derivatives can be
continued analytically to the strip |�𝑧 | < 2.9. Therefore, we assume the following:

Uniform strip hypothesis. The 𝐹∗
𝑗 ( 𝑗 = 1, . . . , 𝑚) extend analytically to a strip |�𝑧 | � 𝑠 of the

complex z-plane, uniformly converging to 0 as 𝑧 → ∞ in that strip.
Under that hypothesis, a classical result about the rectangular rule in quadrature theory (see, for

example, [26, Eq. (3.4.14)]) gives

ℎ
∞∑

𝑙=−∞
(𝑎 + 𝑙ℎ)𝐹∗

𝑗 (𝑎 + 𝑙ℎ) =
∫ ∞

−∞
𝐹∗
𝑗 (𝑡) 𝑑𝑡 +𝑂 (𝑒−𝜋𝑠/ℎ).

Thus, the 𝜇 (𝑛)
𝑗 and their limit quantities

𝜇 𝑗 =
∫ ∞

−∞
𝑡𝐹∗

𝑗 (𝑡) 𝑑𝑡
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Table 1. Highly accurate values of 𝜇0 , . . . , 𝜇3 and 𝜈0 , . . . , 𝜈3 as computed from (7.6), (7.8) based on values for
𝑀 𝑗 obtained as in [19, Table 3] (cf. Prähofer’s values for 𝑀1 , . . . , 𝑀4, published in [73, p. 70]). For the values
of 𝜇4 , 𝜇5 and 𝜈4 , 𝜈5, see the supplementary material mentioned in Footnote 13.

j 𝑀 𝑗 𝜇 𝑗 𝜈 𝑗

0 1.00000 00000 00000 00000 · · · −1.77108 68074 11601 62598 · · · 0.81319 47928 32957 84477 · · ·
1 −1.77108 68074 11601 62598 · · · 0.06583 23878 70339 62521 · · · −1.20720 50777 85797 46901 · · ·
2 3.94994 32722 20377 51300 · · · 0.26122 27462 52162 60525 · · · 0.56715 66368 69744 43503 · · ·
3 −9.71184 47530 27647 35361 · · · −0.11938 39067 94582 09131 · · · 0.01669 21858 10456 60764 · · ·
4 26.02543 54268 39994 56536 · · · −0.00483 35524 95005 83878 · · · −0.12447 09934 16776 05579 · · ·
5 −74.20410 74434 81824 47477 · · · 0.01222 78407 77590 95405 · · · −0.00293 40551 03931 43008 · · ·

differ only by an exponential small error of at most 𝑂 (𝑒−𝑐𝑛1/6 ), which can be absorbed in the error term
of (7.4); an illustration of such a rapid convergence is given in [19, Table 3] for the case 𝑗 = 0.

The functional form of 𝐹∗
0 = 𝐹 ′, 𝐹∗

1 , 𝐹∗
2 and 𝐹∗

3 – namely, being a linear combination of higher order
derivatives of F with polynomial coefficients (see (5.13)) – allows us to express 𝜇0, 𝜇1, 𝜇2, 𝜇3 in terms
of the moments

𝑀 𝑗 :=
∫ ∞

−∞
𝑡 𝑗𝐹 ′(𝑡) 𝑑𝑡

of the Tracy–Widom distribution F. In fact, repeated integration by parts yields the simplifying rule
(where 𝑘 � 1)

∫ ∞

−∞
𝑡 𝑗 𝐹 (𝑘) (𝑡) 𝑑𝑡 =

⎧⎪⎪⎨⎪⎪⎩
(−1)𝑘−1 𝑗!
( 𝑗 − 𝑘 + 1)!𝑀 𝑗−𝑘+1 𝑘 � 𝑗 + 1,

0 otherwise.

Repeated application of that rule proves, in summary, the following contribution to Ulam’s problem
about the expected value when n grows large.

Theorem 7.1. Let m be any fixed non-negative integer. Then, subject to the tameness, the uniform tails
and the uniform strip hypotheses there holds, as 𝑛 → ∞,

E(𝐿𝑛) = 2
√
𝑛 + 1

2
+

𝑚∑
𝑗=0

𝜇 𝑗𝑛
1/6− 𝑗/3 +𝑂 (𝑛−1/6−𝑚/3), (7.5)

where the constants 𝜇 𝑗 are given by

𝜇0 =
∫ ∞

−∞
𝑡𝐹 ′(𝑡) 𝑑𝑡, 𝜇 𝑗 =

∫ ∞

−∞
𝑡𝐹∗

𝑗 (𝑡) 𝑑𝑡 ( 𝑗 = 1, 2, . . .).

The first few cases can be expressed in terms of the moments of the Tracy–Widom distribution:

𝜇0 = 𝑀1, 𝜇1 =
1

60
𝑀2, 𝜇2 =

89
350

− 1
1400

𝑀3, 𝜇3 =
538

7875
𝑀1 +

281
4536000

𝑀4; (7.6)

highly accurate numerical values are listed in Table 1.
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Likewise, by shift and rescale, the variance of 𝐿𝑛 can be written in the form

V𝑎𝑟 (𝐿𝑛) =
𝑛∑
𝑙=1

𝑙2 · P(𝐿𝑛 = 𝑙) − E(𝐿𝑛)2

= 𝑛1/3
𝑛∑
𝑙=1

𝑡𝑙−1/2(𝑛)2 · P(𝐿𝑛 = 𝑙) −
(
E(𝐿𝑛) − 2

√
𝑛 − 1

2

)2
.

By inserting the expansions (7.3), (7.5) and arguing as for Theorem 7.1 we get the following:

Corollary 7.2. Let m be any fixed non-negative integer. Then, subject to the tameness, the uniform tails
and the uniform strip hypotheses there holds, as 𝑛 → ∞,

V𝑎𝑟 (𝐿𝑛) =
𝑚∑
𝑗=0

𝜈 𝑗𝑛
1/3− 𝑗/3 +𝑂 (𝑛−𝑚/3), (7.7)

with certain constants 𝜈 𝑗 . The first few cases can be expressed in terms of the moments of the Tracy–
Widom distribution

𝜈0 = −𝑀2
1 + 𝑀2, 𝜈1 = −67

60
+ 1

30
(
− 𝑀1𝑀2 + 𝑀3

)
,

𝜈2 = − 57
175

𝑀1 +
1

700
𝑀1𝑀3 −

1
3600

𝑀2
2 − 29

25200
𝑀4,

𝜈3 = −1076
7875

𝑀2
1 − 281

2268000
𝑀1𝑀4 +

893
7875

𝑀2 +
1

42000
𝑀2𝑀3 +

227
2268000

𝑀5;

(7.8)

highly accurate numerical values are listed in Table 1.

The expansions of expected value and variance can be cross-validated by looking at the numerical
values for the coefficients 𝜇1, 𝜇2, 𝜇3 and 𝜈1, 𝜈2, 𝜈3 that we predicted in [19, §4.3]: those values were
computed by fitting, in high precision arithmetic, expansions (back then only conjectured) of the form
(7.5) with 𝑚 = 9 and (7.7) with 𝑚 = 8 to the exact tabulated data for 𝑛 = 500, . . . , 1000. A decision
about which digits were to be considered correct was made by comparing the result against a similar
computation for 𝑛 = 600, . . . , 1000. As it turns out, the predictions of [19, §4.3] agree to all the decimal
places shown there (that is, to 7, 7, 6 and 9, 6, 4 places) with the theory-based, highly accurate values
given in Table 1.

Appendices

A. Variations on the saddle point method

A.1. Analytic de-Poissonization and the Jasz expansion

In their comprehensive 1998 memoir [53], Jacquet and Szpankowski gave a detailed study of what they
termed analytic de-Poissonization (in form of a useful repackaging of the saddle point method), proving
a selection of asymptotic expansions and applying them to various asymptotic problems in analytic
algorithmics and combinatorics (with generating functions given in terms of functional equations
amenable for checking the Tauberian growth conditions in the complex plane). Expositions with a
selection of further applications can be found in [54, Sect. 7.2] and [77, Chap. 10].

A.1.1. Formal derivation of the Jasz expansion
Following the ideas of [53, Remark 3], let us start with a purely formal derivation to motivate the
algebraic form of the expansion. Suppose that the Poisson generating function

𝑃(𝑧) = 𝑒−𝑧
∞∑
𝑛=0

𝑎𝑛
𝑧𝑛

𝑛!
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of a sequence 𝑎𝑛 is an entire function and consider some 𝑟 > 0. If we write the power series expansion
of 𝑃(𝑧), centered at 𝑧 = 𝑟 , in the operator form

𝑃(𝑧) = 𝑒 (𝑧−𝑟 )𝐷𝑃(𝑟),

where D denotes differentiation w.r.t. the variable r, we get by Cauchy’s formula (with a contour
encircling 𝑧 = 0 counter-clockwise with index one)

𝑎𝑛 =
𝑛!

2𝜋𝑖

∮
𝑃(𝑧)𝑒𝑧 𝑑𝑧

𝑧𝑛+1 = 𝑒−𝑟𝐷
(
𝑛!

2𝜋𝑖

∮
𝑒𝑧 (𝐷+1) 𝑑𝑧

𝑧𝑛+1

)
𝑃(𝑟) = 𝑒−𝑟𝐷 (𝐷 + 1)𝑛𝑃(𝑟). (A.1)

By the Cauchy product of power series

𝑒−𝑟 𝑥 (𝑥 + 1)𝑛 =
∞∑
𝑗=0

𝑐 𝑗 (𝑛; 𝑟)𝑥 𝑗 , 𝑐 𝑗 (𝑛; 𝑟) :=
𝑗∑

𝑘=0

(
𝑛

𝑘

)
(−𝑟) 𝑗−𝑘
( 𝑗 − 𝑘)! , (A.2)

we get from (A.1) the formal expansion

𝑎𝑛 ∼
∞∑
𝑗=0

𝑐 𝑗 (𝑛; 𝑟)𝑃 ( 𝑗) (𝑟). (A.3)

Note that the coefficients 𝑐 𝑗 (𝑛; 𝑟) are polynomials of degree j in n and r. From (A.2), one easily verifies
that they satisfy the three-term recurrence

( 𝑗 + 1)𝑐 𝑗+1(𝑛; 𝑟) + ( 𝑗 + 𝑟 − 𝑛)𝑐 𝑗 (𝑛; 𝑟) + 𝑟𝑐 𝑗−1 (𝑛; 𝑟) = 0 ( 𝑗 = 0, 1, 2, . . .)

with initial data 𝑐0 (𝑛; 𝑟) = 1 and 𝑐1 (𝑛; 𝑟) = 𝑛 − 𝑟 .

Remark A.1. From (A.2) and [76, §2.81], one immediately gets that the 𝑐 𝑗 (𝑛; 𝑟) are, up to normalization,
the Poisson–Charlier polynomials:

∞∑
𝑛=0

𝑐 𝑗 (𝑛; 𝑟)𝑐𝑘 (𝑛; 𝑟) 𝑒
−𝑟𝑟𝑛

𝑛!
= 𝛿 𝑗𝑘

𝑟 𝑗

𝑗!
( 𝑗 , 𝑘 = 0, 1, 2, . . .),

so that they are orthogonal w.r.t. the Poisson distribution of intensity 𝑟 > 0. In particular, [76, Eq.
(2.81.6)] gives (with 𝐿 (𝜈)

𝑘 (𝑥) the Laguerre polynomials) the representation

𝑐 𝑗 (𝑛; 𝑟) = 𝐿
(𝑛− 𝑗)
𝑗 (𝑟).

Things simplify for the particular choice 𝑟 = 𝑛 which is suggested by the expected value of the
Poisson distribution (cf. Lemma 1.1). The corresponding polynomials 𝑏 𝑗 (𝑛) := 𝑐 𝑗 (𝑛; 𝑛), which we call
the diagonal Poisson–Charlier polynomials, satisfy the three-term recurrence

𝑏0 (𝑛) = 1, 𝑏1(𝑛) = 0,
( 𝑗 + 1)𝑏 𝑗+1(𝑛) + 𝑗 𝑏 𝑗 (𝑛) + 𝑛𝑏 𝑗−1 (𝑛) = 0 ( 𝑗 = 0, 1, 2, . . .).

(A.4)

From this, we infer inductively that

𝑏 𝑗 (0) = 0, deg 𝑏 𝑗 � 
 𝑗/2� ( 𝑗 = 1, 2, . . .).
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Now the formal expansion (A.1) becomes what is dubbed the Jasz expansion in [38, §VIII.18]:

𝑎𝑛 ∼ 𝑃(𝑛) +
∞∑
𝑗=2

𝑏 𝑗 (𝑛)𝑃 ( 𝑗) (𝑛)

= 𝑃(𝑛) − 𝑛

2
𝑃′′(𝑛) + 𝑛

3
𝑃′′′(𝑛) +

(
𝑛2

8
− 𝑛

4

)
𝑃 (4) (𝑛)

+
(
−𝑛2

6
+ 𝑛

5

)
𝑃 (5) (𝑛) +

(
− 𝑛3

48
+ 13𝑛2

72
− 𝑛

6

)
𝑃 (6) (𝑛) + · · · .

(A.5)

A.1.2. Diagonal analytic de-Poissonization
Jacquet and Szpankowski were able to prove that the expansion (A.5) can be made rigorous if the
Poisson generating function satisfies a Tauberian condition in form of a growth condition at the essential
singularity at 𝑧 = ∞ in the complex plane. In fact, this can be cast to accomodate the needs of double
scaling limits in a uniform fashion: for a two-parameter family of coefficients 𝑎𝑛,𝑘 , one expands the
diagonal term 𝑎𝑛,𝑛 by, first, applying the Jasz expansion w.r.t. to n for k fixed and, then, selecting 𝑘 = 𝑛
only afterwards (a process that is called diagonal de-Poissonization in [53]).

The following theorem is a particular case of [53, Thm. 4] (with Ψ = 1 and the modifications
discussed preceding [53, Eq. (27)]). It repackages the saddle point method (cf. [23, Chap. 5] and [83,
Chap. VI]) for the asymptotic evaluation of the Cauchy integral

𝑎𝑛 =
𝑛!

2𝜋𝑖

∮
𝑃(𝑧)𝑒𝑧 𝑑𝑧

𝑧𝑛+1 (A.6)

in a far more directly applicable fashion. Concerning the asserted uniform bounds of the implied
constants, see the beginning of [53, §5.2].
Theorem A.2 (Jacquet–Szpankowski 1998). Let a family of entire Poisson generating functions of the
form

𝑃𝑘 (𝑧) = 𝑒−𝑧
∞∑
𝑛=0

𝑎𝑛,𝑘
𝑧𝑛

𝑛!
(𝑘 = 0, 1, 2, . . .)

satisfy the following two conditions35 for 𝑛 � 𝑛0 where 𝐴, 𝐵, 𝐶, 𝐷, 𝛼, 𝛽, 𝛾, 𝛿 are some constants with
𝐴, 𝛼 > 0 and 0 � 𝛿 < 1/2:
(I) If |𝑟 − 𝑛| � 𝐷𝑛1−𝛿 and |𝜃 | � 𝐷𝑟−𝛿 , then |𝑃𝑛 (𝑟𝑒𝑖 𝜃 ) | � 𝐵𝑛𝛽 .

(O) If |𝜃 | > 𝐷𝑛−𝛿 , then |𝑃𝑛 (𝑛𝑒𝑖 𝜃 ) exp(𝑛𝑒𝑖 𝜃 ) | � 𝐶𝑛𝛾 exp(𝑛 − 𝐴𝑛𝛼).
Then, for any 𝑚 = 0, 1, 2, . . . there holds, when 𝑛 � 𝑛1 with 𝑛1 large enough,

𝑎𝑛,𝑛 = 𝑃𝑛 (𝑛) +
𝑚∑
𝑗=2

𝑏 𝑗 (𝑛)𝑃 ( 𝑗)
𝑛 (𝑛) +𝑂

(
𝑛𝛽−(𝑚+1) (1−2𝛿) ) , (A.7)

where the 𝑏 𝑗 (𝑛) are the diagonal Poisson–Charlier polynomials (A.4) which have degree � 
 𝑗/2� and
satisfy 𝑏 𝑗 (0) = 0 ( 𝑗 � 1). The implied constant in (A.7) and the constant 𝑛1 depend only on 𝑛0 and the
constants entering the conditions (I) and (O).
Example A.3. In the proof of Theorem 5.1, we use Theorem A.2 in the particular case 𝛽 = 0, 𝛿 = 2/5
for a family of Poisson generating functions with (cf. (5.4a))

𝑃
( 𝑗)
𝑛 (𝑛) = 𝑂 (𝑛−2 𝑗/3).

35Here, (I) means ‘inside’ and (O) ‘outside’ with respect to the ‘polynomial cone’ {𝑧 = 𝑟𝑒𝑖𝜃 : |𝜃 | � 𝐷𝑟−𝛿 }.
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For 𝑚 = 6 the expansion (A.7) is then given by the terms shown in (A.5) up to an error of order 𝑂 (𝑛−7/5)
– that is,

𝑎𝑛,𝑛 = 𝑃𝑛 (𝑛) −
𝑛

2
𝑃′′
𝑛 (𝑛) +

𝑛

3
𝑃′′′
𝑛 (𝑛) +

(
𝑛2

8
− 𝑛

4

)
𝑃 (4)
𝑛 (𝑛)

+
(
−𝑛2

6
+ 𝑛

5

)
𝑃 (5)
𝑛 (𝑛) +

(
− 𝑛3

48
+ 13𝑛2

72
− 𝑛

6

)
𝑃 (6)
𝑛 (𝑛) +𝑂 (𝑛−7/5).

Upon relaxing the error to 𝑂 (𝑛−4/3) and keeping only those terms which do not get absorbed in the
error term, the Jasz expansion then simplifies to

𝑎𝑛,𝑛 = 𝑃𝑛 (𝑛) −
𝑛

2
𝑃′′
𝑛 (𝑛) +

𝑛

3
𝑃′′′
𝑛 (𝑛) + 𝑛2

8
𝑃 (4)
𝑛 (𝑛) − 𝑛3

48
𝑃 (6)
𝑛 (𝑛) +𝑂 (𝑛−4/3). (A.8)

A.2. H-admissibility and Hayman’s Theorem XI

In his 1956 memoir [51] on a generalization of Stirling’s formula, Hayman gave a related but different
repackaging of the saddle point method for the asymptotic evaluation of the Cauchy integral (A.6) by
introducing the notion of H-admissible functions. We collect estimates given in course of the proofs
of some of Hayman’s theorems that will help us to establish the conditions (I) and (O) required for
applying analytic de-Poissonization in form of Theorem A.2.

Definition A.1 (Hayman [51, p. 68]). An entire function 𝑓 (𝑧) is said to be H-admissible if the following
four conditions are satisfied:

– [positivity] for sufficiently large 𝑟 > 0, there holds 𝑓 (𝑟) > 0; inducing there the real functions (which
we call the auxiliary functions associated with f )

𝑎(𝑟) = 𝑟
𝑓 ′(𝑟)
𝑓 (𝑟) , 𝑏(𝑟) = 𝑟𝑎′(𝑟),

by Hadamard’s convexity theorem 𝑎(𝑟) is monotonely increasing and 𝑏(𝑟) is positive.
– [capture] 𝑏(𝑟) → ∞ as 𝑟 → ∞;
– [locality] for some function 0 < 𝜃0 (𝑟) < 𝜋 there holds36

𝑓 (𝑟𝑒𝑖 𝜃 ) = 𝑓 (𝑟)𝑒𝑖 𝜃𝑎 (𝑟 )−𝜃2𝑏 (𝑟 )/2 (1 + 𝑜(1)) (𝑟 → ∞, |𝜃 | � 𝜃0(𝑟));

– [decay] for the angles in the complement there holds

𝑓 (𝑟𝑒𝑖 𝜃 ) = 𝑜( 𝑓 (𝑟))√
𝑏(𝑟)

(𝑟 → ∞, 𝜃0(𝑟) � |𝜃 | � 𝜋).

Instead of providing an asymptotic expansion (with an additive error term) as in Theorem A.2,
H-admissibility gives just a versatile leading order term of 𝑎𝑛 in form of a normal approximation.
However, the error term is multiplicative then.

Theorem A.4 (Hayman [51, Thm. I, Cor. II]). Let f be an entire H-admissible function with Maclaurin
series

𝑓 (𝑧) =
∞∑
𝑛=0

𝑎𝑛𝑧
𝑛 (𝑧 ∈ C).

36As is customary in asymyptotic analysis in the complex plane, we understand such asymptotics (and similar expansions with
o- or O-terms) to hold uniformly in the stated angular segments for all 𝑟 � 𝑟0 with some sufficiently large 𝑟0 > 0.
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Then,

I. [normal approximation] there holds, uniformly in 𝑛 ∈ N0 = {0, 1, 2, . . .}, that

𝑎𝑛𝑟
𝑛

𝑓 (𝑟) =
1√

2𝜋𝑏(𝑟)

(
exp

(
− (𝑛 − 𝑎(𝑟))2

2𝑏(𝑟)

)
+ 𝑜(1)

)
(𝑟 → ∞); (A.9)

II. [Stirling-type formula] for n sufficiently large, it follows from the positivity and capture conditions of
H-admissibility that 𝑎(𝑟𝑛) = 𝑛 has a unique solution 𝑟𝑛 such that 𝑟𝑛 → ∞ as 𝑛 → ∞ and therefore,
by the normal approximation (A.9), there holds

𝑎𝑛 =
𝑓 (𝑟𝑛)

𝑟𝑛𝑛
√

2𝜋𝑏(𝑟𝑛)
(1 + 𝑜(1)) (𝑛 → ∞). (A.10)

For the probabilistic content of the normal approximation (A.9), see, for example, [30] and [19,
Remark 2.1].

We observe the similarity of the locality and decay conditions to the conditions (I) and (O) in the
Jacquet–Szpankowski Theorem A.2. In fact, in establishing the H-admissibility of certain families of
functions, Hayman proved estimates that allow us to infer the validity of conditions (I) and (O). A
striking example is given by the following theorem, which gives uniform bounds for a class of functions
that is of particular interest to our study.

Theorem A.5 (Hayman [51, Thm. XI]). Let f be an entire function of genus zero, having for some 𝜖 > 0
no zeros in the sector |arg 𝑧 | � 𝜋/2 + 𝜖 . If f satisfies the positivity condition of Definition A.1, then there
is the universal bound �� 𝑓 (𝑟𝑒𝑖 𝜃 )�� � {

2 𝑓 (𝑟)𝑒− 1
2 𝜃2𝑏 (𝑟 ) , 0 � |𝜃 | � 𝑏(𝑟)−2/5,

2 𝑓 (𝑟)𝑒− 1
2 𝑏 (𝑟 )

1/5
, 𝑏(𝑟)−2/5 � |𝜃 | � 𝜋,

(A.11)

which is valid when 𝑏(𝑟) is large enough to ensure 8𝑏(𝑟)−1/5 csc2(𝜖/2) csc(𝜖) � log 2. Hence, if f also
satisfies the capture condition of Definition A.1, then it is H-admissible.

Proof. Since the bound (A.11) is hidden in the two-page long proof of [51, Thm. XI] (only the H-
admissibility is stated explicitly there), we collect the details here. First, [51, Eq. (15.6)] states that, if
|𝜃 | � 1/4, then

log 𝑓 (𝑟𝑒𝑖 𝜃 ) = log 𝑓 (𝑟) + 𝑖𝜃𝑎(𝑟) − 1
2
𝜃2𝑏(𝑟) + 𝜖 (𝑟, 𝜃),

where the error term is bounded by

|𝜖 (𝑟, 𝜃) | � 𝑐(𝜖) · 𝑏(𝑟) |𝜃 |3, 𝑐(𝜖) := 8 csc2 (𝜖/2) csc(𝜖).

Now, for 𝑏(𝑟) large enough to ensure

𝑏(𝑟)−1/5 � 𝑐(𝜖)−1 log 2 � min
(√

2𝜖, 1/2
)
,

we thus get with 0 < 𝜃0 (𝑟) := 𝑏(𝑟)−2/5 � min
(
2𝜖, 1/4

)
and 0 � |𝜃 | � 𝜃0 (𝑟) that

log
�� 𝑓 (𝑟𝑒𝑖 𝜃 )�� = � log 𝑓 (𝑟𝑒𝑖 𝜃 ) = log 𝑓 (𝑟) − 1

2
𝜃2𝑏(𝑟) + �𝜖 (𝑟, 𝜃),

���𝜖 (𝑟, 𝜃)
�� � log 2.

Exponentiation gives, for 0 � |𝜃 | � 𝜃0 (𝑟),�� 𝑓 (𝑟𝑒𝑖 𝜃 )�� � 2 𝑓 (𝑟)𝑒−
1
2 𝜃2𝑏 (𝑟 ) .
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Next, if we combine this estimate with [51, Lemma 8], we get, since 𝜃0 (𝑟) � 2𝜖 , that�� 𝑓 (𝑟𝑒𝑖 𝜃 )�� � �� 𝑓 (𝑟𝑒𝑖 𝜃0 (𝑟 ) )
�� � 2 𝑓 (𝑟)𝑒−

1
2 𝜃0 (𝑟 )2𝑏 (𝑟 ) = 2 𝑓 (𝑟)𝑒−

1
2 𝑏 (𝑟 )

1/5 (𝜃0 (𝑟) � |𝜃 | � 𝜋),

which finishes the proof of the universal bound (A.11). �

If, instead of having no zeros in the sector |arg 𝑧 | � 𝜋/2 + 𝜖 at all, the entire function f has a finite
number of them, Theorem A.5 remains valid, but the lower bound on 𝑏(𝑟) will now depend on these
finitely many zeros. To restore uniformity, we consider families of such functions whose zeros satisfy
the following tameness condition.

Definition A.2. Let 𝑓𝑛 be a family of entire functions such that, for some fixed 𝜖 > 0, each of them has
finitely many zeros (listed according to their multiplicities)

𝑧𝑛,1, . . . , 𝑧𝑛,𝑚𝑛

in the sector |arg 𝑧 | � 𝜋/2+ 𝜖 , none of them being a positive real number. We call these zeros uniformly
tame (w.r.t. the positive real axis and w.r.t. infinity) if there are some constants 1/5 < 𝜇 � 1/3 and
𝜈 > 0 such that the family of polynomials

𝑝𝑛 (𝑧) = (𝑧 − 𝑧𝑛,1) · · · (𝑧 − 𝑧𝑛,𝑚𝑛 ) (A.12)

satisfies(
𝑟
𝑑

𝑑𝑟

)2
log 𝑝𝑛 (𝑟) = −

𝑚𝑛∑
𝑗=1

𝑟𝑧𝑛, 𝑗

(𝑟 − 𝑧𝑛, 𝑗 )2 = 𝑂 (𝑟1−𝜇), |𝑝𝑛 (𝑟𝑒𝑖 𝜃 ) | = 𝑝𝑛 (𝑟) (1 +𝑂 (𝑟−𝜈)), (A.13)

uniformly in 𝑛 − 𝑛3/5 � 𝑟 � 𝑛 + 𝑛3/5 as 𝑛 → ∞.

Remark A.6. Note that a single function f would satisfy condition (A.13) with error terms of the form
𝑂 (𝑟−1) in both places. Therefore, the tameness condition allows us to accommodate a significant growth
of the implied constants in these 𝑂 (𝑟−1) terms as 𝑛 → ∞ – in the first case because of zeros of 𝑓𝑛
getting close to the positive real axis and in the second case because of them getting large.

Corollary A.7. Let 𝑓𝑛 be a family of entire functions of genus zero with positive Maclaurin coefficients
such that, for some fixed 𝜖 > 0, each of them has a most finitely many zeros in the sector |arg 𝑧 | � 𝜋/2+𝜖 .
If these zeros are uniformly tame in the sense of Definition A.2 and if the auxiliary functions belonging
to 𝑓𝑛 satisfy

𝑏𝑛 (𝑟) = 𝑟 +𝑂 (𝑟2/3) (𝑟 → ∞), (A.14)

uniformly in 𝑛 − 𝑛3/5 � 𝑟 � 𝑛 + 𝑛3/5 as 𝑛 → ∞, then there holds the bound

�� 𝑓𝑛 (𝑟𝑒𝑖 𝜃 )�� � {
2 𝑓𝑛 (𝑟)𝑒−

1
2 𝜃2𝑟 , 0 � |𝜃 | � 𝑟−2/5,

2 𝑓𝑛 (𝑟)𝑒−
1
2 𝑟

1/5
, 𝑟−2/5 � |𝜃 | � 𝜋,

(A.15)

for all 𝑛 − 𝑛3/5 � 𝑟 � 𝑛 + 𝑛3/5 and 𝑛 � 𝑛0, 𝑛0 being sufficiently large. Here, 𝑛0 depends only on the
parameters of the tameness condition and the implied constants in (A.13) and (A.14).

Proof. Factoring out the finitely many zeros of 𝑓𝑛 in the sector |arg 𝑧 | � 𝜋/2+𝜖 by using the polynomials
(A.12), we have

𝑓𝑛 (𝑧) = 𝑓 ∗𝑛 (𝑧) · 𝑝𝑛 (𝑧),
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where 𝑓 ∗𝑛 is an entire function of genus zero that has no zeros in that sector. Since 𝑓𝑛 (𝑟) > 0 for 𝑟 > 0 and
the leading coefficient of the polynomial 𝑝𝑛 (𝑧) is one, 𝑓 ∗𝑛 satisfies the positivity condition of Definition
A.1. Denoting the auxiliary functions of 𝑓 ∗𝑛 by 𝑎∗𝑛 and 𝑏∗𝑛, the tameness condition (A.13) yields

𝑏𝑛 (𝑟) = 𝑏∗𝑛 (𝑟) +
(
𝑟
𝑑

𝑑𝑟

)2
log 𝑝𝑛 (𝑟) = 𝑏∗𝑛 (𝑟) +𝑂 (𝑟1−𝜇), |𝑝𝑛 (𝑟𝑒𝑖 𝜃 ) | = 𝑝𝑛 (𝑟) (1 +𝑂 (𝑟−𝜈)),

uniformly in 𝑛 − 𝑛3/5 � 𝑟 � 𝑛 + 𝑛3/5 as 𝑛 → ∞.
By (A.14), this gives 𝑏∗𝑛 (𝑟) = 𝑟 (1 + 𝑂 (𝑟−𝜇)), so that by Theorem A.5 (its proof shows that we can

take a factor 3/2 instead of 2 if log 2 is replaced by log(3/2) in the lower bound on 𝑏(𝑟)),�� 𝑓 ∗𝑛 (𝑟𝑒𝑖 𝜃 )�� � {
3
2 𝑓 ∗𝑛 (𝑟)𝑒−

1
2 𝜃2𝑏∗

𝑛 (𝑟 ) , 0 � |𝜃 | � 𝑏∗𝑛 (𝑟)−2/5,
3
2 𝑓 ∗𝑛 (𝑟)𝑒−

1
2 𝑏

∗
𝑛 (𝑟 )1/5

, 𝑏∗𝑛 (𝑟)−2/5 � |𝜃 | � 𝜋,

for n large enough to ensure 8𝑏∗𝑛 (𝑟)−1/5 csc2 (𝜖/2) csc(𝜖) � log(3/2). We write this briefly as�� 𝑓 ∗𝑛 (𝑟𝑒𝑖 𝜃 )�� � 3
2 𝑓 ∗𝑛 (𝑟) exp

(
− 1

2 min
(
𝜃2𝑏∗𝑛 (𝑟), 𝑏∗𝑛 (𝑟)1/5) )

for 𝑛 − 𝑛3/5 � 𝑟 � 𝑛 + 𝑛3/5 and 𝑛 � 𝑛0 where 𝑛0 is large enough (just depending on the parameters and
the implied constants in the tameness condition). If we multiply this bound by

|𝑝𝑛 (𝑟𝑒𝑖 𝜃 ) | = 𝑝𝑛 (𝑟) (1 +𝑂 (𝑟−𝜈))

and use 𝑏∗𝑛 (𝑟) = 𝑟 (1 +𝑂 (𝑟−𝜇)) to infer

min
(
𝜃2𝑏∗𝑛 (𝑟), 𝑏∗𝑛 (𝑟)1/5) = min(𝜃2𝑟, 𝑟1/5) · (1 +𝑂 (𝑟−𝜇)) = min(𝜃2𝑟, 𝑟1/5) +𝑂 (𝑟1/5−𝜇),

we obtain the asserted estimate in the compact form�� 𝑓𝑛 (𝑟𝑒𝑖 𝜃 )�� � 2 𝑓𝑛 (𝑟) exp
(
− 1

2 min
(
𝜃2𝑟, 𝑟1/5) )

for 𝑛 − 𝑛3/5 � 𝑟 � 𝑛 + 𝑛3/5 and 𝑛 � 𝑛0, where 𝑛0 is large enough. �

A.3. Bessel functions of large order in the transition region

In the 1950s, F. Olver started a systematic and exhaustive study of asymptotic expansions of the Bessel
functions 𝐽𝜈 (𝑧) for large order 𝜈 and argument z. For the transition region37 𝑧 = 𝜈 + 𝜏𝜈1/3, he obtained
from applying the saddle point method to integral representations of Sommerfeld’s type the asymptotic
expansion [63, Eq. (3.1)] (cf. also [66, §10.19 (iii)])

𝐽𝜈 (𝜈 + 𝜏𝜈1/3) ∼ 21/3

𝜈1/3 Ai(−21/3𝜏)
∞∑
𝑘=0

𝐴𝑘 (𝜏)
𝜈2𝑘/3 + 22/3

𝜈1/3 Ai′(−21/3𝜏)
∞∑
𝑘=1

𝐵𝑘 (𝜏)
𝜈2𝑘/3 (A.16a)

valid when |arg 𝜈 | � 𝜋/2 − 𝛿 < 𝜋 with 𝜏 being any fixed complex number. Here, 𝐴𝑘 (𝜏) and 𝐵𝑘 (𝜏) are
certain rational polynomials of increasing degree; the first few are [63, Eq. (2.42)]38

𝐴0(𝜏) = 1, 𝐴1(𝜏) = −1
5
𝜏, 𝐴2 (𝜏) = − 9

100
𝜏5 + 3

35
𝜏2, (A.16b)

𝐵0 (𝜏) = 0, 𝐵1 (𝜏) =
3

10
𝜏2, 𝐵2(𝜏) = −17

70
𝜏3 + 1

70
. (A.16c)

37Where 𝐽𝜈 (𝜈 + 𝜏𝜈1/3) changes at about 𝜏 ≈ 0 from being superexponentially small (to the left) to being oscillatory (to the
right).

38Note that we keep the indexing of the polynomials 𝐵𝑘 as in [63], which differs from [66, §10.19 (iii)].
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Remark A.8. The sequence [63, Eqs. (2.10), (2.14), (2.18), (2.38), (2.40)] of formulae in Olver’s 1952
paper gives an actual method39 to calculate 𝐴𝑘 (𝜏) and 𝐵𝑘 (𝜏) (combining reversion and nesting of
power series with recursive formulae). The degrees of 𝐴𝑘 are the positive integers congruent to 0, 1
mod 5 (starting with deg 𝐴1 = 1) and the degrees of 𝐵𝑘 are the positive integers congruent to 2, 3 mod
5 (starting with deg 𝐵1 = 2). In both families of polynomials, the coefficients of 𝜏𝑚 are zero when m is
not congruent mod 3 to the degree.

As stated in [63, p. 422], the expansion (A.16) can be repeatedly differentiated with respect to 𝜏, valid
under the same conditions. For a modern account of differentiability w.r.t. 𝜏 and 𝜈, adding uniformity
for 𝜏 from any compact real set, see the recent work of Sher [72, Prop. 2.8] which is based on the
(microlocal) theory of so-called polyhomogeneous conormal joint asymptotic expansions.

The purposes of Section 3 require to identify a larger region of real 𝜏 where the expansion (A.16) is
uniform as 𝜈 → ∞ through positive real values. To this end, we use the uniform asymptotic expansions
of Bessel functions for large order 𝜈, pioneered by Olver [64] in 1954 by analyzing turning points of the
Bessel differential equation (cf. [65, Chap. 11], [83, Chap. VIII] and, for exponential representations of
the asymptotic series, also [31, §4]),

𝐽𝜈 (𝜈𝑧) ∼
(

4𝜁
1 − 𝑧2

)1/4
(

Ai(𝜈2/3𝜁)
𝜈1/3

∞∑
𝑘=0

𝐴∗
𝑘 (𝜁)
𝜈2𝑘 + Ai′(𝜈2/3𝜁)

𝜈5/3

∞∑
𝑘=0

𝐵∗
𝑘 (𝜁)
𝜈2𝑘

)
, (A.17a)

uniformly for 𝑧 ∈ (0,∞) as 𝜈 → ∞. Here, the parameters and coefficients are, for 0 < 𝑧 < 1,

2
3
𝜁3/2 = log

(
1 +

√
1 − 𝑧2

𝑧

)
−

√
1 − 𝑧2, (A.17b)

and

𝐴∗
𝑘 (𝜁) =

2𝑘∑
𝑗=0

(
3
2

) 𝑗

𝑣 𝑗 𝜁
−3 𝑗/2𝑈2𝑘− 𝑗

(
(1 − 𝑧2)−1/2) , (A.17c)

𝐵∗
𝑘 (𝜁) = −𝜁−1/2

2𝑘+1∑
𝑗=0

(
3
2

) 𝑗

𝑢 𝑗 𝜁
−3 𝑗/2𝑈2𝑘− 𝑗+1

(
(1 − 𝑧2)−1/2) , (A.17d)

where the 𝑈𝑘 (𝑥) are recursively defined rational polynomials of degree 3𝑘 (cf. [64, Eq. (2.19)]) and
𝑢𝑘 , 𝑣𝑘 (𝑢0 = 𝑣0 = 1) are the rational coefficients of the asymptotic expansions of the Airy function and
its derivative in a sector containing the positive real axis,

Ai(𝑧) ∼ 𝑒−𝜉

2
√
𝜋𝑧1/4

∞∑
𝑘=0

(−1)𝑘 𝑢𝑘

𝜉𝑘
, Ai′(𝑧) ∼ − 𝑧1/4𝑒−𝜉

2
√
𝜋

∞∑
𝑘=0

(−1)𝑘 𝑣𝑘
𝜉𝑘

, 𝜉 =
2
3
𝑧3/2, (A.18)

as 𝑧 → ∞ within |arg 𝑧 | � 𝜋 − 𝛿. Note that 𝜁 = 𝜁 (𝑧) can be continued analytically to the z-plane
cut along the negative real axis;40 𝐴∗

𝑘 (𝜁) and 𝐵∗
𝑘 (𝜁) can be continued accordingly. As stated in [64,

p. 342], valid under the same conditions while preserving uniformity, the expansion can be repeatedly
differentiated with respect to z.

39By a Mathematica implementation (for download at arxiv:2301.02022), we extended (and reproduced) Olver’s original table
[63, Eq. (2.42)] of 𝐴0, . . . , 𝐴𝑛 and 𝐵0 , . . . , 𝐵𝑛 from 𝑛 = 4 to 𝑛 = 100 in about 10 minutes computing time. The polynomials
𝐴100 and 𝐵100 of degree 250 and 248 exhibit rational coefficients that are ratios of integers with up to 410 digits.

40In particular, for positive real z, the thus defined 𝜁 (𝑧) is a strictly monotonically decreasing real function with lim𝑧→0+ 𝜁 (𝑧) =
+∞, 𝜁 (1) = 0 and lim𝑧→+∞ 𝜁 (𝑧) = −∞; cf. [66, Eq. (10.20.3)].
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In particular, with 0 < 𝛿 < 1 fixed, the power series expansion

2−1/3𝜁 = (1 − 𝑧) + 3
10

(1 − 𝑧)2 + 32
175

(1 − 𝑧)3 + 1037
7875

(1 − 𝑧)4 + · · · (A.19)

converges uniformly for |1 − 𝑧 | � 1 − 𝛿 (because of the logarithmic singularity at 𝑧 = 0 the radius of
convergence of this series is exactly 1, so that this range of uniformity cannot be extended). If we put

𝜈𝑧 = 𝜈 + 𝜏𝜈1/3, i.e., 𝑧 = 1 + 𝜏𝜈−2/3,

plugging the uniformly convergent series 𝜁 (𝑧) into the uniform large 𝜈 expansion (A.17) recovers the
form of the transition region expansion (A.16) and proves that it holds uniformly for

|𝜏 | � (1 − 𝛿)𝜈2/3

as 𝜈 → ∞ through positive real values.
At the expense of considerably larger error terms, this result can be extended as follows:

Lemma A.9. For any non-negative integer m and any real 𝜏0, there holds, as 𝜈 → ∞ through positive
real values,

𝐽𝜈 (𝜈 + 𝜏𝜈1/3) = 21/3 Ai(−21/3𝜏)
𝑚∑
𝑘=0

𝐴𝑘 (𝜏)
𝜈 (2𝑘+1)/3 + 22/3 Ai′(−21/3𝜏)

𝑚∑
𝑘=1

𝐵𝑘 (𝜏)
𝜈 (2𝑘+1)/3

+ 𝜈−1−2𝑚/3 · 𝑂
(
exp(21/3𝜏)

)
, (A.20)

uniformly for−𝜈2/3 < 𝜏 � 𝜏0. Here, 𝐴𝑘 (𝜏) and 𝐵𝑘 (𝜏) are the rational polynomials in (A.16). Preserving
uniformity, the expansion (A.20) can be repeatedly differentiated w.r.t. 𝜏.

Proof. Let us write

𝐽𝜈 (𝜈 + 𝜏𝜈1/3) = 𝐸𝑚(𝜈; 𝜏) + 𝑅𝑚 (𝜈; 𝜏),

where 𝐸𝑚 denotes the sum of the expansion terms in (A.20) and 𝑅𝑚 is the remainder. We split the range
of 𝜏 into the two parts

(I): − 3
4
𝜈2/3 � 𝜏 � 𝜏0, (II): − 𝜈2/3 < 𝜏 � −3

4
𝜈2/3.

In part (I), as argued above for 𝛿 = 1/4, the expansion (A.16) is uniformly valid – that is,

𝑅𝑚(𝜈; 𝜏) = 𝜈−1−2𝑚/3 · 𝑂
(
𝐴𝑚+1(𝜏) Ai

(
− 21/3𝜏

) )
+ 𝜈−1−2𝑚/3𝑂

(
𝐵𝑚+1(𝜏) Ai′

(
− 21/3𝜏

) )
uniformly for these 𝜏. Now, the superexponential decay of the Airy function Ai(𝑥) and its derivative as
𝑥 → ∞ through positive values, as displayed in the expansions (A.18), imply the asserted uniform bound

𝑅𝑚(𝜈; 𝜏) = 𝜈−1−2𝑚/3 · 𝑂
(
exp(21/3𝜏)

)
in part (I) of the range of 𝜏.

However, in part (II) of the range of 𝜏, we infer from (A.18) that, for 0 < 𝜖 < 1/2,

𝐸𝑚(𝜈; 𝜏) = 𝑂
(
exp(−(3𝜈2/3/4)1+𝜖 ) = 𝜈−1−2𝑚/3 · 𝑂

(
exp(21/3𝜏)

)
.

We now show that also

𝐽𝜈
(
𝜈 + 𝜏𝜈1/3) = 𝜈−1−2𝑚/3 · 𝑂

(
exp(21/3𝜏)

)
(A.21)
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uniformly in part (II) of the range of 𝜏, so that all terms in (A.20) are absorbed in the asserted error
term. Here, we observe

0 < 𝑧 = 1 + 𝜏𝜈2/3 �
1
4
, 1.095 · · · � 2

3
𝜁3/2 < ∞,

so that the leading order terms in (A.17) and (A.18) yield the bound

𝐽𝜈 (𝜈𝑧) ∼ 𝜈−1/2
(

4
1 − 𝑧2

)1/4
(𝜈2/3𝜁)1/4 Ai(𝜈2/3𝜁) = 𝜈−1/2 · 𝑂

(
exp(− 2

3 𝜁
3/2𝜈)

)
,

uniformly for the 𝜏 in (II). Because of 2
3 𝜁

3/2 � 1.095 and −𝜈 � −21/3𝜈2/3 < 21/3𝜏 for 𝜈 � 2, this bound
can be relaxed, as required, to

𝐽𝜈
(
𝜈 + 𝜏𝜈1/3) = 𝐽𝜈 (𝜈𝑧) = 𝜈−1−2𝑚/3 · 𝑂

(
exp(21/3𝜏)

)
.

Finally, the claim about the derivatives follows from the repeated differentiability of the uniform
expansion (A.17) and the differential equation of the Airy function, Ai′′(𝑥) = 𝑥 Ai(𝑥) (so that the
general form of the expansions underlying the proof does not change). �

Remark A.10. The cases 𝑚 = 0 and 𝑚 = 1 of Lemma A.9 have previously been stated as [21, Eq.
(4.11)] and [45, Eq. (2.10)]. However, the proofs given there are incomplete: in [21, p. 2978], the power
series (A.19) is used up to the boundary of its circle of convergence, so that uniformity becomes an
issue, whereas in [45, p. 9], it is claimed that Olver’s transition expansion (A.16) would be uniform w.r.t.
𝜏 ∈ (−∞, 𝜏0], which is not the case.41

B. Compilation of the Shinault–Tracy table and a general conjecture

B.1. The Shinault–Tracy table

Shinault and Tracy [73, p. 68] tabulated, for 0 � 𝑗 + 𝑘 � 8, explicit representations of the terms

𝑢 𝑗𝑘 (𝑠) = tr
(
(𝐼 − 𝐾0)−1 Ai( 𝑗) ⊗ Ai(𝑘)

) ��
𝐿2 (𝑠,∞)

as linear combinations of the form (called a linear F-form of order n here)

𝑇𝑛 (𝑠) = 𝑝1 (𝑠)
𝐹 ′(𝑠)
𝐹 (𝑠) + 𝑝2 (𝑠)

𝐹 ′′(𝑠)
𝐹 (𝑠) + · · · + 𝑝𝑛 (𝑠)

𝐹 (𝑛) (𝑠)
𝐹 (𝑠) , (B.1)

where 𝑝1, . . . , 𝑝𝑛 are certain rational polynomials (depending on j, k) and 𝑛 = 𝑗 + 𝑘 + 1. Though they
sketched a method to validate each entry of their table, Shinault and Tracy did not describe how they
had found those entries in the first place. However, by ‘reverse engineering’ their validation method, we
can give an algorithm to compile such a table.

Starting point is the Tracy–Widom theory [78] of representing F in terms of the Hastings–McLeod
solution 𝑞(𝑠) of Painlevé II,

𝑞′′(𝑠) = 𝑠𝑞(𝑠) + 2𝑞(𝑠)3, 𝑞(𝑠) ∼ Ai(𝑠) (𝑠 → ∞), (B.2a)

𝑢00(𝑠) =
𝐹 ′(𝑠)
𝐹 (𝑠) = 𝑞′(𝑠)2 − 𝑠𝑞(𝑠)2 − 𝑞(𝑠)4. (B.2b)

41Besides that the principal branch of 𝐽𝜈 (𝑧) (𝜈 ∉ Z) is not defined at negative real z, there is a counterexample for 𝜈 = 𝑛 being
a positive integer: choosing 𝜏 = 0 in (A.16) gives to leading order

(−1)𝑛𝐽𝑛 (−𝑛) = 𝐽𝑛 (𝑛) ∼ 21/3𝑛−1/3 Ai(0) (𝑛 → ∞) ,

which differs significantly from applying (A.16) formally to 𝜏 = −2𝑛2/3 (for which 𝑛 + 𝜏𝑛1/3 = −𝑛).
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From these formulae, we get immediately that

𝐹 (𝑛) /𝐹 ∈ Q[𝑠] [𝑞, 𝑞′],

where Q[𝑠] [𝑞, 𝑞′] denotes the space of polynomials in q and 𝑞′ with coefficients being rational
polynomials. Because q satisfies Painlevé II, Q[𝑠] [𝑞, 𝑞′] is closed under differentiation. For a term
𝑇 ∈ Q[𝑠] [𝑞, 𝑞′], we define the q-degree deg𝑞 𝑇 to be the largest 𝛼 + 𝛽 of a q-monomial

𝑞(𝑠)𝛼𝑞′(𝑠)𝛽

that appears in expanding T. Inductively, the general linear F-form 𝑇𝑛 (𝑠) of order n satisfies

deg𝑞 𝑇𝑛 = deg𝑞 𝑇
′
𝑛 = 4𝑛,

#(𝑞-monomials with nonzero coefficient in 𝑇𝑛) = 2(𝑛2 − 𝑛 + 2) (𝑛 � 2),
#(𝑞-monomials with nonzero coefficient in 𝑇 ′

𝑛) = 2𝑛2 + 1.

By advancing the set of formulae of [78], Shinault and Tracy [73, pp. 64–66] obtained

𝑞0 (𝑠) = 𝑞(𝑠), 𝑞1(𝑠) = 𝑞′(𝑠) + 𝑢00(𝑠)𝑞(𝑠), (B.3a)
𝑞𝑛 (𝑠) = (𝑛 − 2)𝑞𝑛−3 (𝑠) + 𝑠𝑞𝑛−2 (𝑠) − 𝑢𝑛−2,1 (𝑠)𝑞0(𝑠) + 𝑢𝑛−2,0 (𝑠)𝑞1(𝑠), (B.3b)
𝑢′𝑗𝑘 (𝑠) = −𝑞 𝑗 (𝑠)𝑞𝑘 (𝑠), (B.3c)

where 𝑛 = 2, 3, . . . (ignoring the term (𝑛 − 2)𝑞𝑛−3 (𝑠) if 𝑛 = 2). It follows that

𝑢𝑛−2,0, 𝑢𝑛−2,1 ∈ Q[𝑠] [𝑞, 𝑞′] (2 � 𝑛 � 𝑗 , 𝑘) ⇒ 𝑢′𝑗𝑘 ∈ Q[𝑠] [𝑞, 𝑞′] .

This suggests the following algorithm to recursively compute the linear F-form of order n representing
𝑢 𝑗𝑘 (if such a form exists in the first place).Suppose such forms have already been found for all smaller
𝑗 + 𝑘; we have to find polynomials 𝑝1, . . . , 𝑝𝑛 ∈ Q[𝑠] such that

𝑢 𝑗𝑘 = 𝑝1
𝐹 ′

𝐹
+ 𝑝2

𝐹 ′′

𝐹
+ · · · + 𝑝𝑛

𝐹 (𝑛)

𝐹
. (B.4)

By differentiating and then comparing the coefficients of all q-monomials, we get an overdetermined
linear system of equations in Q[𝑠] of size (2𝑛2 + 1) × 2𝑛 that is to be satisfied by the polynomials
𝑝1, . . . , 𝑝𝑛, 𝑝

′
1, . . . , 𝑝

′
𝑛.

For instance, the term 𝑢30 (as used in Section 3.3) can be calculated from the previously established
linear F-forms (cf. (3.19) and [73, p. 68])

𝑢10 (𝑠) =
1
2
𝐹 ′′(𝑠)
𝐹 (𝑠) , 𝑢11 (𝑠) = − 𝑠𝐹 ′(𝑠)

𝐹 (𝑠) + 𝐹 ′′′(𝑠)
3𝐹 (𝑠)

by setting up the 33 × 8 linear system displayed in Table 2
which, as a linear system in 8 unknown polynomials, is uniquely solved by(

7/12 𝑠/3 0 1/24 0 1/3 0 0
)𝑇 ∈ Q[𝑠] 8.

Since the last four entries are the derivatives of the first four, this solution is consistent with the form of
solution we are interested in. Generally, we first solve the linear system for(

𝑝1, . . . , 𝑝𝑛, 𝑟1, . . . , 𝑟𝑛
)
∈ Q[𝑠]2𝑛
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Table 2. The 33×8 linear system for constructing the entry 𝑢30 (𝑠) in the table [73, p. 68]..

���������������������������������������������������������������������������������

0 0 2 0 −1 0 0 2
0 0 0 8 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
0 2 0 8𝑠 0 0 2 0
0 0 6 0 0 0 0 8
0 0 0 12 0 0 0 0
1 0 2𝑠 2 𝑠 1 0 2𝑠
0 2 0 0 0 2𝑠 3 0
0 0 3 0 0 0 3𝑠 6
0 0 0 4 0 0 0 4𝑠
0 0 −6𝑠 4 0 0 0 −8𝑠
0 0 0 −24𝑠 0 0 0 0
0 −2𝑠 1 −8𝑠2 1 −𝑠2 −3𝑠 1
0 0 −6𝑠 −4 0 2 −3𝑠2 −12𝑠
0 0 0 −12𝑠 0 0 3 −6𝑠2

0 0 0 0 0 0 0 4
0 0 −6 12𝑠2 0 0 0 −8
0 0 0 −24 0 0 0 0
0 −2 3𝑠2 −12𝑠 0 −2𝑠 𝑠3 − 3 6𝑠2

0 0 −6 12𝑠2 0 0 −6𝑠 4𝑠3 − 12
0 0 0 −12 0 0 0 −12𝑠
0 0 0 24𝑠 0 0 0 0
0 0 6𝑠 −4𝑠3 − 4 0 −1 3𝑠2 12𝑠 − 𝑠4

0 0 0 24𝑠 0 0 −3 12𝑠2

0 0 0 0 0 0 0 −6
0 0 0 12 0 0 0 0
0 0 3 −12𝑠2 0 0 3𝑠 6 − 4𝑠3

0 0 0 12 0 0 0 12𝑠
0 0 0 −12𝑠 0 0 1 −6𝑠2

0 0 0 0 0 0 0 4
0 0 0 −4 0 0 0 −4𝑠
0 0 0 0 0 0 0 −1

���������������������������������������������������������������������������������

����������������

𝑝1 (𝑠)
𝑝2 (𝑠)
𝑝3 (𝑠)
𝑝4 (𝑠)
𝑝′

1 (𝑠)
𝑝′

2 (𝑠)
𝑝′

3 (𝑠)
𝑝′

4 (𝑠)

����������������
=

�����������������������������������������������������������������������������������

0
0
0
0
𝑠

0
1
2
1
4𝑠
3
0
1
6
1
6
−𝑠

− 4𝑠2

3
1
2
− 𝑠

2
0
𝑠2

2
−1
− 11𝑠

6
𝑠2

2

− 1
2
𝑠

− 𝑠3

6 − 1
2

𝑠

0
1
2

− 𝑠2

2
1
2
− 𝑠

2
0
− 1

6
0

�����������������������������������������������������������������������������������
and then check for consistency 𝑝′𝑚 = 𝑟𝑚, 𝑚 = 1, . . . , 𝑛. If consistent, such a solution also satisfies (B.4)
by integrating its differentiated form: the constant of integration vanishes because both sides decay
(rapidly) to zero as 𝑠 → ∞. In the example, we have thus obtained

𝑢30 (𝑠) =
7𝐹 ′(𝑠)
12𝐹 (𝑠) +

𝑠𝐹 ′′(𝑠)
3𝐹 (𝑠) + 𝐹 (4) (𝑠)

24𝐹 (𝑠) .

So, two effects of integrability must happen for this recursive algorithm to work properly:

◦ the overdetermined (2𝑛2 + 1) × 2𝑛 linear system has actually a solution in Q[𝑠]2𝑛,
◦ the solution is consistent (the last n entries being the derivatives of the first n ones).

Because of the algebraic independence of the solution 𝑞, 𝑞′ of Painlevé II over Q[𝑠] (cf. [48, Thm.
21.1]), the converse is also true: if there is a representation as a linear F-form at all, the algorithm
succeeds by finding its unique coefficient polynomials.
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Based on a CAS implementation of the algorithm, we can report that the 𝑢 𝑗𝑘 are represented as linear
F-forms of degree 𝑗 + 𝑘 + 1 for 0 � 𝑗 + 𝑘 � 50,42 adding further evidence to the conjecture of Shinault
and Tracy; a general proof, however, would require theoretical insight into the underlying integrability
of (B.3). If true, an induction shows that

deg𝑞 𝑢 𝑗𝑘 = 4( 𝑗 + 𝑘 + 1), deg𝑞 𝑢
′
𝑗𝑘 = 4( 𝑗 + 𝑘) + 2.

B.2. A general conjecture

As a matter of fact, even certain nonlinear rational polynomials of the terms 𝑢 𝑗𝑘 , such as those
representing �̃�𝑗/𝐹 in (3.18b) and (3.21a), can be represented as linear F-forms.

Namely, Theorem 2.1, Section 3.3 and the perturbation theory of finite-dimensional determinants
imply that �̃�𝑗/𝐹 can be written as a rational linear combination of the minors of (𝑢 𝑗𝑘 )∞𝑗 ,𝑘=0 – that is, of
determinants of the form �������

𝑢 𝑗1𝑘1 · · · 𝑢 𝑗1𝑘𝑚
...

...
𝑢 𝑗𝑚𝑘1 · · · 𝑢 𝑗𝑚𝑘𝑚

�������. (B.5)

We are thus led to the following conjecture (checked computationally up to order 𝑛 = 50):
Conjecture. Each minor of the form (B.5) can be represented as linear F-forms of order

𝑛 = 𝑗1 + · · · + 𝑗𝑚 + 𝑘1 + · · · + 𝑘𝑚 + 𝑚. (B.6)

(Here, the case 𝑚 = 1 corresponds to the conjecture of Shinault and Tracy.) Aside from those terms
which can be recast as linear combinations of minors with coefficients in Q[𝑠], there are no other
polynomial expressions of the 𝑢 𝑗𝑘 with coefficients in Q[𝑠] that can be represented as linear F-forms.

There are abundant examples of nonlinear rational polynomials of the terms 𝑢 𝑗𝑘 which cannot be
represented as linear F-forms. For instance, as we have checked computationally, none of the terms
(which are subterms of the minors shown below)

𝑢2
10, 𝑢00𝑢11, 𝑢10𝑢21, 𝑢11𝑢20, 𝑢00𝑢31, 𝑢10𝑢30

can be represented as linear F-forms of an order up to 𝑛 = 50.
Algorithmically, based on the already tabulated 𝑢 𝑗𝑘 , the linear F-form of order n for a given term T

such as (B.5) can be found, if existent, as follows: by expanding the equation

𝑇 = 𝑝1
𝐹 ′

𝐹
+ 𝑝2

𝐹 ′′

𝐹
+ · · · + 𝑝𝑛

𝐹 (𝑛)

𝐹

in Q[𝑠] [𝑞, 𝑞′] and comparing coefficients of the q-monomials, we get an overdetermined linear system
of size 2(𝑛2 − 𝑛 + 2) × 𝑛 for the coefficient polynomials 𝑝1, . . . , 𝑝𝑛 ∈ Q[𝑠]. If there is a solution, we
have found the linear F-form. If not, there is no such form of order n.

For instance, the nonlinear part in (3.18b) is

𝑢00(𝑠)𝑢11(𝑠) − 𝑢10(𝑠)2 =

����𝑢00(𝑠) 𝑢01(𝑠)
𝑢10(𝑠) 𝑢11(𝑠)

����,
which yields, for the order 𝑛 = 4 taken from (B.6), the 28× 4 linear system in Q[𝑠] displayed in Table 3.

42A table of the resulting linear F-forms comes with the source files at arxiv:2301.02022.
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Table 3. The 28 × 4 linear system for representing 𝑢00 (𝑠)𝑢11 (𝑠) − 𝑢10 (𝑠)2 as in (B.7)..

���������������������������������������������������������������������

−1 0 0 2
0 −1 0 0
0 0 −1 0
0 0 0 −1
0 0 2 0
0 0 0 8
𝑠 1 0 2𝑠
0 2𝑠 3 0
0 0 3𝑠 6
0 0 0 4𝑠
0 0 0 −8𝑠
1 −𝑠2 −3𝑠 1
0 2 −3𝑠2 −12𝑠
0 0 3 −6𝑠2

0 0 0 4
0 0 0 −8
0 −2𝑠 𝑠3 − 3 6𝑠2

0 0 −6𝑠 4𝑠3 − 12
0 0 0 −12𝑠
0 −1 3𝑠2 12𝑠 − 𝑠4

0 0 −3 12𝑠2

0 0 0 −6
0 0 3𝑠 6 − 4𝑠3

0 0 0 12𝑠
0 0 1 −6𝑠2

0 0 0 4
0 0 0 −4𝑠
0 0 0 −1

���������������������������������������������������������������������

������
𝑝1 (𝑠)
𝑝2 (𝑠)
𝑝3 (𝑠)
𝑝4 (𝑠)

�������
=

�������������������������������������������������������������������������

0
𝑠
3
0

− 1
12
0
2
3
0

− 2𝑠2

3
1
2
𝑠
3

− 2𝑠
3

𝑠3

3 + 1
4

− 5𝑠
3

− 𝑠2

2
1
3
− 2

3
7𝑠2

6
𝑠3

3 − 1
−𝑠

4𝑠
3 − 𝑠4

12
𝑠2

− 1
2

1
2 − 𝑠3

3
𝑠

− 𝑠2

2
1
3
− 𝑠

3
− 1

12

�������������������������������������������������������������������������

.

Its unique solution is (
1
6 − 𝑠

3 0 1
12

)𝑇
∈ Q[𝑠]4

so that we obtain the linear F-form����𝑢00(𝑠) 𝑢01(𝑠)
𝑢10(𝑠) 𝑢11(𝑠)

���� = 𝐹 ′(𝑠)
6𝐹 (𝑠) −

𝑠𝐹 ′′(𝑠)
3𝐹 (𝑠) + 𝐹 (4) (𝑠)

12𝐹 (𝑠) . (B.7)

Likewise, we see that the integrability displayed in the evaluation of (3.21) is based on the fact that the
two minors which appear as subexpressions can be represented as linear F-forms; indeed, in both cases,
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(B.6) yields the order 𝑛 = 6, and by solving the corresponding 64 × 6 linear systems, we get43

����𝑢10(𝑠) 𝑢11(𝑠)
𝑢20(𝑠) 𝑢21(𝑠)

���� = − 𝑠𝐹 ′(𝑠)
18𝐹 (𝑠) +

𝑠2𝐹 ′′(𝑠)
9𝐹 (𝑠) − 𝐹 ′′′(𝑠)

24𝐹 (𝑠) −
𝑠𝐹 (4) (𝑠)
18𝐹 (𝑠) + 𝐹 (6) (𝑠)

144𝐹 (𝑠) , (B.8a)

����𝑢00 (𝑠) 𝑢01(𝑠)
𝑢30 (𝑠) 𝑢31(𝑠)

���� = 𝑠𝐹 ′(𝑠)
10𝐹 (𝑠) −

𝑠2𝐹 ′′(𝑠)
5𝐹 (𝑠) − 3𝐹 ′′′(𝑠)

40𝐹 (𝑠) + 𝐹 (6) (𝑠)
80𝐹 (𝑠) . (B.8b)

Remark B.1. Other applications of the technique discussed here can be found in [18, §3.3].
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