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SEMISIMPLE RADICAL CLASSES OF
INVOLUTION ALGEBRAS

by N. V. LOI*

(Received 7th February 1986, revised 10th June 1988)

J. Wichman has asked about semisimple radical classes of involution algebras. In the
present paper we describe the semisimple radical classes of involution algebras over a
field K* with involution *. If K* is infinite, then there are only trivial semisimple radical
classes. If K* is finite then these classes are subdirect closures of strongly hereditary
finite sets of finite idempotent algebras. In proving this result we determine the structure
of certain simple involution algebras. We prove that the variety of symmetric involution
algebras over Z<2) does not have attainable identities, answering a problem posed by
Gardner [2]. Most of the results are valid also for involution rings (over the integers).

1. Preliminaries

Let K be a field with involution *. K-algebra A is an involution algebra if in A there is
defined a unary operation * such that x** = x, (x + y)* = x* + y*, (xy)* = y*x* and
(/ex)* = k*x* for all x, y e A and keK. Without the fear of ambiguity we shall denote by *
both the involutions defined in K and A. We shall write K* for the field K whenever we
wish to emphasize that K is with involution *. In particular Kid will mean that the
involution on K is the identical one. An involution subalgebra / of A is called an ideal
of A if it is a ring-ideal of A*. This fact will be indicated by I<i*A.

A class C of involution algebras is called extension-closed if /<i * A, / e C and A/I e C
and A/IeC implies AeC. As in [1, Theorem 1.5] we can show that if C is a variety of
involution algebras, which is extension-closed, then C is inductive (that is, if an
involution algebra A contains an ascending chain of ideals Ia such that u lx = A and
/„ e C for each a, then A e C). Thus the variety of C of involution algebras is a radical
class (in the sense of Kurosh and Amitsur) if it is extension-closed.

Let C be any class of involution algebras. For each involution algebra A, let us define

A(C) = n{l\l<i*A and A/IeC}.

Then C is said to have attainable identities if ,4(C)(C) = A(C). Let us notice again that if
C is a variety of involution algebra, and C has attainable identities, then C is extension-
closed (see [1, Theorem 1.5]). In this case C is a semisimple class. Thus if C is a
semisimple variety, then C is a semisimple radical class.

Let us recall that a class C of involution algebras is hypernilpotent (hypoidempotent) if
C contains all nilpotent involution algebras (if C consists only of idempotent involution
algebras, respectively).
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2 N. V. LOI

For further details of the basic fact of involution algebras and of radical theory we
refer to [4] and to [11]. Radicals of involution albegras have been studied in the recent
papers [2, 6, 7, 8 and 10]. The semisimple radical classes of algebras were investigated
in several papers. The full list of references can be found in [3]. In this paper we work
only with involution algebras over a field K*, though many of the results can be
extended to rings with involution as well as to some other varieties. These cases will be
treated later.

2. Varieties and attainable identities

Proposition 1. A free involution algebra is a subdirect sum of nilpotent involution
algebras.

Proof. Let A be any free involution algebra, then it is well known that f]neNA" = 0.
Thus A is a subdirect sum of A/A", which are clearly nilpotent involution algebras.

We will prove the analogous result of [11, Lemma 30.2] for involution algebras. Let
us notice that this short and simple proof can be applied to the case of associative rings.

Proposition 2. / / C is a hypernilpotent class of involution algebra closed under
homomorphisms and subdirect sums, then C is a class of all involution algebras.

Proof. Since C is closed under subdirect sums, by Proposition 1 every free
involution algebra is contained in C. Since any involution algebra is a homomorphic
image of a free involution algebra, the assertion is proved by the fact that C is closed
under homomorphisms.

Now let P be any subset of an involution algebra A. As in [4] we shall make use of
the following symbols:

= {xeP\x* = x},

= {xeP\x*=-x},

Z(P) = {xeP\xy=yx for all yeP},

and

P(*) = {x\x=p* for any peP}.

Let Ao denote the additive group of an involution algebra A. Then Ao can be
considered as an algebra over K with zero-multiplication. Let us notice that in the case
K* = K'd the operators id(xid = x) and —id(x"id= — x) define involutions on the algebra
Ao. These involution algebras will be denoted by A'Q and Ag'd, respectively. The
characteristic of a field K is denoted by charX. In the following theorem we
characterize certain varieties of involution algebras.
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Theorem 3. Let Vs, VK be the varieties of involution algebras defined by the identities
x* = x, x* = — x respectively. If Vs =£ 0 and VK =f= 0, then they have not attainable
identities. Moreover,

(i) Vs, VK are inductive,

(ii) if K*£Kid then Vs = VK = {0},

(iii) if charX = 2 and K* = Kid then Vs and VK are not closed under extensions, and
hence they are not radical classes,

(iv) if char K =jfe 2 and K* = K'a then Vs and VK are radical classes,

(v) if W is an extension-closed variety, which contains a non-zero nilpotent involution
algebra in Vs (or in VK), then Vs £ W (or VK £ W).

Proof, (i) is clear.
(ii) Suppose 0 =)= a e A e Vs. Then for all keK* we have

k*a = k*a*=(ka)* = ka,

so (k*-k)a = 0 and therefore k* = k. Thus K* = Kli if Vs^{0}. The proof for VK is
essentially the same.

(iii) Now, as is well known, VS = VK =/=(). Using [6, Theorem 2], [7, Theorem 10] and
[8, Theorem 1], it is straightforward to see that in this case any radical class is either
hypernilpotent or hypoidempotent radical variety. Hence by Proposition 2 Vs contains
all involution algebras, a contradiction.

(iv) Similar to [2, Theorem 1].
(v) As in [1, Theorem 1.4] W is a radical variety and by (ii), K* = Kid. Analogous to

Proposition 1 we can show that any free involution algebra of Vs (or VK) is a subdirect
sum of nilpotent involution algebras of Vs (or VK). It is easy to see that K'Q e W (or
XoideW). Hence W contains all free involution algebras of Vs (or of VK), and
consequently Vs £ W (or VK £ W).

Now we return to show that if Vs^=0 and VK^0, then Vs and V^ are not semisimple
classes, and hence they have not attainable identities. Let us notice here that in this case
K* = K'd. In the case char K = 2 the assertion is obvious by (ii). In the other case let F
be the free involution algebra generated by a single element x. Denote by / and J the
ideals of F generated by {(x—x*)2, (x — x*)F(x — x*)} and by (x —x*), respectively. Let
H = F/I, P=J/I. We have that Po*H and P2 = 0. Moreover, it is easy to verify by
elementary verification that K(P)<a*P but K(P) is not ideal of H, and H/P,
P/K(P)eVs. Thus for H we get

that is Vs has not attainable identities. An analogous reasoning proves the assertion for
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Remark. The result of Theorem 3 is valid if K is the ring Z<2) = {m/2n\m,neZ}, that is

In the variety of all involution Zm-algebra Vs has not attainable identities.

The proof follows from the above constructions. This is the answer for the question of
Gardner in [2].

3. Algebras over an infinite field

Proposition 4. / / C is a semisimple radical class of involution algebras, then either C is
the class of all involution algebras or C is a hypoidempotent radical.

Proof. It is clear that in the case char K = 2 and K* = Kid (by [6, Theorem 2] and
[7, Theorem 10]) and in the case K*=fcKid that C is hypoidempotent or C contains
every nilpotent involution algebra. And hence by Proposition 2 for the latter case C is
the class of all involution algebras. In the case char K =£2 and K* = Kid we can show that
C is either hypoidempotent or KJfeC or K^ ideC. Hence, in the latter case since C is a
variety, it follows that C contains nilpotent involution algebras, which are in Vs or in
VK. By Theorem 3(v), either Vs or VK is contained in C. Assume that Vs £ C. Since
C has attainable identities, for the involution algebra H constructed above we have
H(C) = 0, that is HeC, and hence K(P)eCr\VK. This implies that VK£<C. By [7,
Theorem 10] every nilpotent involution algebra is contained in C. Thus again by
Proposition 2 C is the class of all involution algebras. Similar to the case VK £ C.

Corollary 5. If C is a semisimple radical class of involution algebras, then C has the
A-D-S property (i.e., C(I)<i*Afor any ideal I of an involution algebra A).

Proof. By [7, Theorem 10] and by Proposition 4 the assertion is obvious.

Proposition 6. Let K be an involution field. If S(K) is finite, then K is finite.

Proof. Let / be any automorphism of the field K (without involution). The fixed
subfield N of K over / is defined as the set of all elements of K, which are left fixed by
f. If f is finite ordered, then by [5, paper 16, Theorem 11] K is finite-dimensional over
N. Now we apply this fact to the automorphism / = *. Since * is finite ordered (*2 = 1) it
follows that K is finite-dimensional over the fixed subfield of *. This field is exactly
S(K). Hence if S(K) is finite, so is K.

Theorem 7. / / K is infinite, then there are no nontrivial semisimple radical classes in
the variety of involution K*-algebras.

Proof. Suppose that C is a non-trivial semisimple radical class. Thus by Proposition
4 C is hypoidempotent. Let a be any non-zero symmetric element of an algebra A e C.
Since C is a variety, every involution subalgebra, in particular, the involution subalgebra
/ generated by the element a, is in C. Since C is hypoidempotent, it follows I2 = /. This
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means that a = a2p(a), where p(a) is a polynomial of a. Hence b=ap(a) is a non-zero
idempotent element of A. Thus if bb* =/= 0, then the involution subalgebra of A generated
by the idempotent element b** is isomorphic to K*. In the other case the element b+b*
is idempotent, and the involution subalgebra of A generated by b + b* is also isomorphic
to K*. It follows that K*eC. By Proposition 6 it is enough to show that in K the set
S(K) of symmetric elements is finite. We can show this fact by a proof similar to that of
[1, Theorem 2.3].

4. Algebras over a finite field

In this part we will determine the non-trivial semisimple radical classes of involution
algebras.

Let us recall that the involution algebra A is *-prime if I, J<i*A and 7J = 0 imply
that either 7 = 0 or .7 = 0. Let us notice that if A is prime, then A is also *-p'rime but the
converse is not true. The involution algebra / l # 0 is called simple if A is semiprime and
if 1<\* A implies that 7 = 0 or 7 = A It is also clear that if A is simple as an algebra
(without involution), then A is a simple involution algebra. The converse is not valid.
For any algebra A let Aop denote the opposite algebra of A (x°y = yx).

Proposition 8. / / A is a simple involution algebra, then either A is a simple algebra or
there is a simple algebra I such that A = l + I relative to the exchange involution
((x,y)*=(y,x)).

Proof. Suppose that A is not a simple algebra. In this case A has a non-zero proper
algebra-ideal /, so /•*' is also a proper algebra-ideal of A Moreover, 7n7(*> and 7 + 7(*'
are ideals of A. Since A is a simple involution algebra and Ii= A, therefore

A = I@Il*) and /n / ( * ) = 0.

This implies that A = I®I{*) holds. Since 7(*) = 70p, it follows that A^I®lop relative to
the exchange involution.

Proposition 9. Let F be a finite field and R be a ring of 2 x 2 matrices over F. If * is
any involution of R, then the following conditions are equivalent:

(i) if xe S(R) u K(R) and x" = 0, then x = 0;

(ii) x*x = 0 if and only if x = 0;
(iii) there exists a fixed element aeF such that for any reR

r* =

and a. # — t2 for every teF.

Proof. (i)=>(ii). Since R is not commutative, we have K(R)^Q. Assume that x*x=0
for some xeR (x#0). It is clear that x*K(R)x^K(R) and hence by the assumption
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(x*K(R)x)2 = 0. This implies that x*K(R)x = 0. Therefore

x*rx = x(r — r* + r*)x = x*r*x = (x*rx)*

holds for every reR. On the other hand R is a prime ring, thus there is an element reR
such that s = x*rx = 0. Since seS(R) and s2 = (x*rx)(x*rx)=0 which is a contradiction.

(ii)=>(iii). By [4, Theorem 2.5.1] and [9, Theorem 1] the involution * of R is either
symplectic or of transpose type. If * is symplectic, then

5 \o o) [o o
and hence seK(R). But s2 = 0, a contradiction. Thus * must be of transpose type. In this
case as in the last part of the proof [4, Theorem 3.3.1] we can show that the involution
induced by * on F is identical and there is a fixed element aeF(ot^O) such that

a c\* (a <x'ld
d b) \ac

Now we show that a # — t2 for every teF. Suppose indirectly that a= — t2. Then for the
matrix x = {'t [) we have that x*x = 0 contradicting condition (ii). Thus (iii) is valid.

(iii)=>(i). If aeK{R), then a has the form a = (_°x £), and so it follows that in this
case a is invertible, hence a is not nilpotent. If aeS{R), then a has the form a = ("x £).
In this case a2 = 0 if and only if either o = 0 or a= —b and <x= —a2fc2. Hence condition
(iii) implies that a = 0. Thus (i) holds.

Corollary 10. Let R be an involution ring of 2 x 2 matrices over a finite field F.
Suppose that x * x # 0 for every x # 0 , xeR. Then every involution subring of R is
idempotent, that is A2 = A.

Proof. It is enough to show that if aeR, then the involution subalgebra [a] of R
generated by a is idempotent. Since R is finite, also [a] is finite. Moreover by
Proposition 9 [a] is semiprime. Hence it follows that [a] is a semiprime Artin algebra.
Thus it is clear that [a] is idempotent.

Proposition 11. Let C be any variety which consists of idempotent involution algebras.
If DeC is a simple involution algebra, then D is finite.

Proof. First we will show that if D e C is an involution field, then D is finite. Now let
AeC be any involution algebra and aeA be a symmetric element. Denote by [a] the
involution subalgebra of A generated by a. Since C is strongly hereditary, it follows that
[a] e C. Hence [a] is idempotent. This fact means that a = a2p{a) holds, where p(x) is a
polynomial over a field K. Thus every symmetric element is a root of some polynomial
over K. Similarly we can show that this is satisfied for every skew-element of AeC.
Applying this argument for the involution algebra /l = JTf £>, a direct product of infinite
copies of an involution field D, we obtain that if b=(...,bh...)eA is a symmetric
element (so is every component £>,-), then b is a root of a polynomial p(x). This implies
that every component 6, is also a root of p(x). On the other hand b{ can be chosen from
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the symmetric elements of D and p(x) has only finitely many roots. It follows that S(D)
is a finite set and hence by Proposition 6 the involution field D is finite.

Now we return to show that if D e C is simple, then D is finite. Since D is a simple
involution algebra, by Proposition 8 D is either simple as an algebra (without
involution) or D is *-prime but not prime. In the first case since a = a2p(a), for every
aeS(D)nK(D), and by [4, Theorem 3.3.3] D is a 2 x 2 matrix ring over a field F. Thus
it is enough to see that F is finite. Since D e C, so is every involution subalgebra of D, in
particular, the involution algebra A of all matrices of the form (g °). Moreover, A is
algebraically isomorphic to F. By the previous consideration, however, A is finite, and
therefore so is F. In the second case there is a simple algebra / such that D s / © / ° p

relative to the exchange involution. Let

A = {{x,xop)\xel}.

Then A is an involution subalgebra of D and A is algebraically isomorphic to /. As in
the first case, we can see that A is finite and consequently also / ) s / $ f has to be
finite. Thus the proof is complete.

Proposition 12. Let C be a variety which consists of idempotent involution algebras.
Then

88 (C) = {AeC A is a simple involution algebra}

is a finite set.

Proof. If Ae£§(C), then by Proposition 11 A is finite. Moreover every involution
subalgebra of A is idempotent. Thus if A is *-prime but not prime, then there is a finite
field F such that A = F®Fop relative to the exchange involution. If A is prime, then
either A is a finite involution field or A is a 2 x 2 matrix ring over a finite field. In each
case there is a finite field F such that A is a vector space over F and DimF4:g4.
Therefore for seeing that 38{C) is finite it is enough to show that

^(C) = {FeC, F is a field}

is a finite set. In this way we trace our proof back to the case of associative algebras
(see [3, 11]). We will not enter into the details.

Before giving a necessary and sufficient condition for a class of idempotent involution
algebras to be a variety, we need the following interesting results.

Let us recall that the involution algebra A is locally finite if every involution
subalgebra of A which is generated by a finite set, is finite. Let A be any semiprime
involution algebra. Denote by soc A the (two sided) socle of A (which is the sum of all
minimal ideals of A).

Proposition 13. Let A be any involution algebra. Suppose that B = socB for all finitely
generated involution subalgebras B of A. If I is an ideal of A such that A/1 is finitely
generated, then there is a finitely generated involution subalgebra B of A such that

Br>I = O and A = B + I.
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Proof. Since A/1 is finitely generated, there are elements xlJ...,xBei4 such that

where [x, x j is the involution subalgebra of A generated by {x1,...,xn\. Let
C = [x1, . . . ,xn] . By the supposition C = socC, every ideal of C is a direct summand of C,
that is there exists an involution subalgebra B such that C = B@{Cr\I). Since A = C + I
it follows that

Clearly B n I = 0. Furthermore B is a homomorphic image of C, thus B is finitely
generated.

Theorem 14. Let K be finite field and C be any class of involution algebras over K.
The following conditions are equivalent:

(i) C is a semisimple class,

(ii) C is either the class of all involution algebras or there is a strongly hereditary finite
set F of finite simple involution algebras such that C consists of all subdirect sums
of elements in F.

Proof. (i)=>(ii). By Proposition 4 we can suppose that the class C is hypoidempotent.
If A is a subdirectly irreducible involution algebra in C, then the heart H of A is a
simple involution algebra. Since C is a variety, also H e C holds. By Proposition 11 H is
finite, and therefore H has an identity. Thus H is a direct summand of A, and hence
H = A as A is subdirectly irreducible. This fact shows that every subdirectly irreducible
involution algebra in C is simple. Hence every involution algebra in C is a subdirect
sum of simple involution algebras in C. Let F=^(C). Then F is finite by Proposition 12,
and clearly F is strongly hereditary. Thus condition (ii) holds.

(ii)=>(i). We may confine ourselves to the case when C is not the class of all
involution algebras. Since every involution algebra of F is finite it follows that each of
them has an identity. Thus we can show as in the case of rings that C is a semisimple
class. It remains to see that C is also homomorphically closed. Since F is a strongly
hereditary finite set of finite simple involution algebras, it is clear that every A e C is
locally finite. On the other hand if CeF and xeS(C)uK(Q, then the involution
subalgebra [x] of C generated by x is commutative and finite. Moreover, [x] is
idempotent. Hence [x] is a finite direct sum of finite fields. From this it follows that
there is a natural number n such that x" = x (w>l). This is true for all elements
XES(C) VJ K(C). Furthermore, since F is finite, there exists a natural number no>\ such
that for arbitrary CeF and xeS(C)u/C(C) xno = x. Since C consists of all subdirect
sums of elements of F, this is satisfied for all CeC. Thus if x = a + a* or x = a — a*, then
xno = x holds. This property is invariant for a homomorphic image. Therefore if R is an
image of C e C, then

(x + x*)no = x + x* and (x - x*)"° = x - x*

for all xeR. Using [4, Theorem 3.3.2] we obtain that R is a subdirect sum of fields and
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2x2 matrix rings over fields. This implies that the homomorphic images of C are
Brown-McCoy semisimple. Now we return to show that C is homomorphically closed.
Since the homomorphic images of C are Brown-McCoy semisimple, it is enough to
show that if CeC and / is a maximal ideal of C, then C/IeC. Taking into account
that C/I is a simple involution algebra and that (x + x*)no = x + x* and (x — x*)no = x—x*
for all xeC/I, by [4, Theorem 3.3.2] we know that C/I is a finite dimensional vector
space over some finite field F and DimF C/I ^ 4. Hence C/I is finite. On the other hand
every finite involution subalgebra P of C is semiprime, so it follows that P = socP.
Applying Proposition 13 for the involution algebra C, we get that there is an involution
subalgebra B of C such that C = B + I and 7 n B = 0. Since CeC, we have BeC.
Furthermore B = C/I, which implies C/IeC. Thus C is homomorphically closed,
completing the proof.

It is known that in the case of associative rings, if C is not a trivial semisimple radical
then C only contains commutative algebras. In the case of involution algebras, however,
non-trivial semisimple radical classes may contain 2x2 matrix rings over finite fields
which are certainly non-commutative involution algebras.
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