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SOME RECENT RESULTS FOR HEAT-DIFFUSION

MOVING BOUNDARY PROBLEMS

JAMES M. HILL AND JEFFREY N. DEWYNNE

Integral formulations for the three classical single phase

Stefan problems involving the infinite slab and inward

solidifying cylinders and spheres are utilized to generate

standard analytical approximations. These approximations

include the pseudo steady state estimate, large Stefan number

expansions, upper and lower bounds, approximations based on

integral iteration and related results such as formal series

solutions. In order to demonstrate the applicability and

limitations of the integral formulations three generalizations

of the classical Stefan problem are considered briefly. These

problems are diffusion with two simultaneous chemical reactions,

a Stefan problem with two moving boundaries and the genuine two

phase Stefan problem.

1. Introduction

Heat-diffusion moving boundary problems have numerous applications in

fields such as the freezing and thawing of foods, production of ice,

thawing or formation of ice around pipes, solidification of steel and

diffusion limited chemical reactions, where either a moving freezing.
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moving melting or moving reaction front is present. Mathematically these

problems involve solving the heat-diffusion equation in an unknown region,

which has to be determined as part of the problem. Exact solutions to

moving boundary problems are limited in number and for heat-diffusion

problems the only physically relevant exact solutions occur when the

position of the moving boundary (or boundaries) varies as the square root

of time (that is, similarity solutions). The mathematical difficulties

associated with solving other moving boundary problems exactly are

considerable and are of a fundamental character. The mathematical

literature on the subject has developed in three main areas, namely,

approximate analytical methods, numerical techniques and qualitative

results such as existence and uniqueness theorems. In each of these areas

the literature is extensive. This paper deals primarily with the first

area for the classical phase change or Stefan problems, involving the semi-

infinite slab and the inward solidifying cylinder or sphere. Approximate

and semi-analytical estimates are important for at least two reasons.

Firstly, an analytical result is generally more revealing (in terms of

parameter dependence) than a numerical result. Secondly, short time

analytical approximations are frequently necessary as starting solutions

in a numerical scheme. The purpose of this paper is to demonstrate that a

number of important approximate analytical estimates readily emerge from

an integral formulation for such Stefan problems and the paper provides a

survey of recent results described in Dewynne and Hill [2], [3], [4], [5]

and Hill and Dewynne [S], [9] and further is a summary of the Ph.D. thesis

of Dewynne [1].

We are primarily concerned with the classical single phase Stefan

problem either for the infinite slab (-°=31} or for inward solidifying

cylinders or spheres. Such problems arise from the idealized isothermal

freezing of a pure liquid, which does not change density upon freezing, and

which is initially uniformly at its fusion temperature. In non-dimensional

variables we may summarize these three problems in the general form by

(1.2) T(l,t) + 1*^(1,t) = 1, T(B(t)3t) = 0,

(1.3) *L(R(t)3t) = _ a g f R(0) = i3
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where T(r3t)3 r, R(t) and t denote the dimensionless temperature of

the solid, (radial) position, moving boundary position and time,

respectively. The parameter A takes the values 0, 1 and 2 for the

slab, cylinder and sphere, respectively. We note that T(r3t) is non-

dimensionalized so that i t satisfies the inequalities

(1.4) 0 z T(r, t) < 1.

The constant a called the Stefan number, i s the ratio of latent heat

of fusion to sensible heat of the solid and is therefore strictly positive.

The inverse Biot modulus, 6, is a non-negative measure of thermal

resistance at the surface v = 1. In Section 5 we establish a new formal

integral for the boundary motion

I1 A
(1.5) t = I Z. IK (13V + 63

A

where the function K (x,y) i s defined by
A

(1.6) K (x,y) = [

Equation (1.5) represents the basic equation, deduced from the integral

formulation (5.1), for the boundary motion. We emphasize that if T(r3t)

is the exact temperature occurring in (1.1)-(1.3) then (1.5) coincides

with the boundary motion determined by the Stefan condition (1.3).

However, if estimates only of the temperature are available, then in

general (1.3) and (1.5) lead to distinct approximate boundary motions.

In the following section we give a brief description of a simple

numerical enthalpy scheme and present temperature profiles and boundary

motions produced by this scheme. In Section 3 we discuss the pseudo

steady state approximation for the problem (1.1)-(1.3), and in Section 4 a

large a approximation is given. In Section 5 we sketch two derivations

of the integral formulation, one by direct integration and one using

the symmetric Green's function associated with the spatial component in

(1.1) (see equation (4.4)). The integral formulation is used in Section

6 to derive upper and lower bounds for the boundary motion and in Section

7 to produce an iterative integral technique which may be used to generate

approximate solutions to (1.1)-(1.3). In Section 8 formal series solutions.
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in terms of 2> and R(t), are derived from the integral formulation.

In the final three sections we briefly discuss a number of more general

moving boundary problems which admit analogous integral formulations. In

Section 9 we consider a moving boundary problem involving two simultaneous

chemical reactions. In Section 10 we consider a multiphase (multicomponent)

Stefan problem, that is where more than one moving boundary is present and

in Section 11 we treat the genuine two phase Stefan problem arising from

the freezing of a material ini t ial ly above i t s freezing temperature.

Finally in this section, we refer the interested reader to the books by

Ockendon and Hodgkins [ 7 0] and Wilson et. al. [72D for general background

material and references concerning heat-diffusion moving boundary problems.

2. Numerical enthalpy scheme

The problem (1.1)-(1.3) can be reformulated as a fixed domain

problem by introducing the enthalpy or total heat content H, defined by

H - a , H > a,
(2.1) T = •

We regard an enthalpy H = 0 as representing the liquid at the fusion

point, whereas an enthalpy H = a represents the solid at the fusion

point. Thus, there is a jump discontinuity in enthalpy H of magnitude

a across the moving boundary R( t). In terms of H and T we may

reformulate (1.1)-(1.3) as

(2.2) f f = ̂ ~~f + r I f J 0 < r < 1,

(2.3) T(l,t) + B^(l,t) = 1, T(O,t) = 0, ^(O't) = °> H(r,0) = 0,

where the no flux and fixed temperature conditions at r = 0 actually

apply at v = -°° for the slab and for the cylinder and sphere only remain

valid while there is liquid present in the region (0,1). Since H is

discontinuous across the phase change boundary, (2.2) holds only in a

weak sense, but even so a simple and effective finite difference scheme

results from discretizing (2.2) and applying conditions (2.1) and (2.3).

To find the moving boundary R(t), we need only locate the jump

discontinuity in ff, and this can be done in a numerical scheme using the

method of Voller and Cross [77], which results in an accurate determination
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of R(t).

An explicit discretization of (2.2) with a small mesh spacing leads

to particularly accurate numerical solutions, albeit at the expense of a

good deal of computing time due to stability restrictions. The figures

shown in this paper are generated using such a scheme with a mesh spacing

of 1/60. Figures 1 and 2 show temperature profiles for the sphere with

a = 0.1 and a = 10.0 and B zero, respectively, at four equally spaced

positions of the moving boundary R(t) which do not correspond to equal

time intervals. Note the change in the concavity of the profiles with

increasing a, and the growth of the thermal boundary layer as the

boundary approaches the origin. This boundary layer becomes more

pronounced with increasing a and 6, that is, with decreasing boundary

speeds. Figures 3, 4, 5 and 6 show boundary motions for slabs, cylinder

and sphere with a variety of values of a and 6. From (1.2)^ and (1.3)

we may show that the initial boundary velocity is (a 6) » while the

final velocity, as R •*• 0 , is theoretically infinite and these features

are apparent from the numerical boundary motions shown in these figures.

3. Pseudo steady state approximation

The pseudo steady state solution of (1.1)-(1.3) arises from (1.1)-

(1.3) by ignoring the time partial derivative in (1.1), that i s , by

replacing the heat equation by Laplace's equation. Using the boundary

conditions (1.2) at r = 1 and r = R we obtain an expression for the

pseudo steady state temperature, which can be substituted into the Stefan

condition (1.3) to obtain either an approximate boundary position as a

function of the actual time or an approximate time as a function of the

actual boundary position. For our purposes we adopt the latter point of

view, and find that the pseudo steady state approximation is

(3.1) T(r,R) = K.(r,R)/lK UtR)+ 6] ,

(3.2) KaJ
poo - • &

As we show in the following section, the pseudo steady state solution is

asymptotically valid, as a -»-•», that is, as the boundary motion becomes
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very much slower than the heat conduction. As well, we demonstrate in

Section 5 that the pseudo steady state temperature i s an upper bound on

the actual temperature, for a given position of the moving boundary R,

while in Section 6 we show that the pseudo steady state boundary motion

(3.2) provides a lower bound on the actual boundary motion. These results

might be expected, considering the physical significance of replacing the

heat equation by Laplace's equation. Finally we note that by putting

R = 0 in (3.2) we have the approximation t
pssa

(3 3) t t a(1 + 2BJ't t
ta~psso~ 2(1 + \) >

for the time t taken for the liquid to freeze completely, that is for

the boundary to reach the origin, R(t ) = 0.

4. Large a approximation

If we introduce a new time variable x = t/a in to ( l . l ) - ( l . 3) and

expand

(4.1) T(r,x) = TQ(r,-[)

we find that

(4.2) TJr,x) = T o(r,R(t)),
u ps s

(4.3)
>R(t)

TlM - (

where G" i s a symmetric Green's function given by

(4.4) G*(r,K;R) = •

'-\Kx(l,r) + &-]Kx(^R)/LKx(l,R) + SL R 1

-LKX(1,V + Z-&x(r,R)/\_Kx(l,R) + 6L r < g < 1.

For the cylinder and sphere (\ = 1,2) the f i rs t order correction 2"7

and higher terms become singular as R -*• 0. Nevertheless, substituting

(4.2) and (4.3) into the Stefan condition and reverting to the time scale

t gives respectively the following approximations for t, namely

(4.5) tQ(R) =

(4.6) t2(R) = tpss(R) + j 5 LKx(l,a + S]?ILK. (1,\
}R X

https://doi.org/10.1017/S0004972700002549 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700002549


Moving Boundary Problems 443

In particular, the order one corrected approximation t^(R) remains

finite as R •*• 0. In fact, as we show in Section 6, t.(R) and t^(R)

are lower and upper bounds, respectively, for the boundary motion.

5. Derivation of the integral formulation

On integrating the heat equation (1.1) from R(t) to r twice,

changing the order of integration and applying (1.2) and (1.3) we have

(5.1) T(r,t) = | -
3 * )R(t)

which t o g e t h e r wi th the s u r f a c e c o n d i t i o n (1.2)-^ y i e l d s

r1 A
\(5.2) 1 =%r \

dt >R(t)

and on integrating (5.2) with respect to time we obtain the formal

integral for the boundary motion (1.5). Alternatively, if we form the

difference

(5.3) u(r,t) = T(r,t) - Too(r,R(t))3

poo

and consider the homogeneous (moving) boundary value problem for u(v,t)

which results, we find that

(5.4) T(r,t) = T(r,R(t)) + f C*(r, ̂ R(t)) ̂  %r(l,t)dZ ,

pss ) R ( t ) 3t

where G is given by (4.4). This, together with (1.2^ gives (5.2) and

hence (1.5). As well, if use the physically apparent result that — - 0

and note that G - 0 then from (5.4) we can deduce that

(5.5) T(r,t) < T^Jr.Rd)).

pss

We use this upper bound on T(v3 t) in the next section to obtain upper

bounds for the boundary motion. Finally in this section we note that in

terms of the enthalpy H , given by (2.1), we may write the integral

formulation (5.1) and (5.2) as

(5.6) T(r,t) =Yt\
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(5.7) 1 l i \ Z

since H is zero between the origin and the moving boundary R(t), and

these results may also be formally deduced from the enthalpy formulation

6. Upper and lower bounds

Substituting the inequalities (1.4) into the integral (1.5) gives

the results

(6.1) t (R) < t < (1 + -)t (R) ,
pss a pss '

where t (R) is given by (3.2) and in particular, putting R = 0

gives the bounds

'"•*' 2(1 + X) ~ a ~ 2(1 + X)

for the time t to complete freezing. Using the pseudo steady state
c

upper bound for the temperature, (5.5), in the integral (1.5) gives the

bound

I1 X(6.3) t i t (R) + \ ClK.(l,V + BHa + T (ZjR)ldZ,
pSS J D A pSS

which i s merely the order one corrected boundary motion and is an

improvement on the upper bound in (6.1). For the cylinder and sphere

(X = 1,2) , putt ing R = 0 in (6.3) leads to the same upper bound (6.2)

on t because for these geometries T (v,0) = 1. However, for the
a pss

slab (X = 0) putt ing R = 0 in (6.3) leads to the new upper bound

for t

(6.4, ° to < la + 2&) + O-UtSl,

which i s superior to that arising from (6.2).

To improve the pseudo steady state lower bound (6.1) for the

boundary motion, we substitute the expression (5.1) for T(v,t) into

(1.5) and integrate. After using the inequalities T(r3t) 1 0 and

dt X dt
 SS
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(which ar ises from (5.2) and the inequal i ty ~rr - 0) , we find that

9 9
(6.6) t > t (A) + 2a

PSS
>R >R

Since the double integral occurring in this expression i s a positive

quantity, this result improves the lower bound given in (6.1). For the

precise details of the derivation of (6.6) we refer the interested

reader to [8]. Although i t i s possible to continue this process, using

(5.1) to substitute for T(ryt) and (6.5) to simplify the integral at

each step, the results are generally inferior to (6.6), and we refer the

reader to LSI for a discussion of this point. Figure 3 compares the

upper and lower bounds (6.1), (6.3) and (6.6) for the slab with a = 1. 0

and $ zero with the well known exact boundary motion (see for example

[2]). Figure 4 compares the upper and lower bounds (6.1), (6.3) and (6.6)

for the cylinder with a = 10.0 and 6 = 1.0 with the numerical

boundary motion.

For large values of the Stefan number a the bounds given by (6.3)

and (6.6) are sufficiently t ight for most practical purposes. For small

values of a there i s , however, scope for improvement. Obviously,

improved bounds on T(r,t) could be exploited directly, using (1.5).

As well, a non-trivial lower bound on' T(r,t) could be used to replace

the t r i v i a l bound T(r3t) - 0 in the derivation of (6.6), leading to

a tighter lower bound than direct substitution in (1.5). If a non-trivial

lower bound for the speed - -JT were found, i t could be used in

conjunction with the pseudo steady state temperature to obtain tighter

upper bounds, in a manner analogous to that in which (6.5) and the lower

bound T(Fjt) . 0 are used to deduce (6.6). As well, such a lower

bound on - -TT could be used in conjunction with the inequality

(6.7) T(r,t) > -ar£j_R(t)XKx(r,R(t))3

(which comes from (5.1) and the inequality — - 0), to obtain a non-

t r iv ia l lower bound on T(r,t).
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7. Approximation by integral iteration

Using the notation T (r,R) to denote the temperature as a function

of r and boundary position R(t), we use the integral formulation (5.1),

(5.2) and (1.5) to deduce the iterative scheme

(7.1)

(7.2) tn+1(R) = ; :

The in i t i a l estimate T n = 0 gives T and tn as T and t

-1 0 0 pss pss

respectively, (see (3.1)-(3.2)), and the order one corrected boundary

motion t~ emerges from the next iteration, (see (4.6)). Thus, t^ and

t7 respectively constitute lower and upper bounds for the actual

boundary motion, and i t can be shown that the next iteration t0 lies

within these bounds, for all three geometries with a > 0 and S - 0.

For the details we refer the reader to Dewynne [ / ] .

For the slab with 3 zero i t appears that the sequences resulting

from (7.1) and (7.2) do indeed converge to the known similarity solution

of (1.1)-(1.3) (see Dewynne [/]). However, for the cylinder and sphere

(\ = 1,2) we find that t0 has the undesirable property of not being

uniquely invertible. Specifically, when the boundary is 'near' the

origin i t i s possible to find pairs i?7 and R„ such that

t~(R~) = to(Ro), that i s , for a given time t0 (close to t , the time

to complete freezing), there are two boundary positions. This situation

i s of course physically absurd, violates the assumption that R(t) is

invertable (on which (7.1) and (7.2) are based), and leads to an infinite

boundary velocity 'before' the boundary reaches the origin. We use

quotations here because, this infinite velocity occurs at time t > t^(0),

that i s after the approximate boundary reaches the origin! Since the

denominator in (7.1) i s ^+1 t o n e might expect that, for the sphere and
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cylinder, the i terat ion To would be singular for some value of R, and

an extensive calculation confirms th i s . Indeed i t appears that this

singularity i s propagated throughout the higher order terms in both

sequences. However, these problems only arise for large times, that i s

for times when the boundary i s near the origin. For short times numerical

and graphical results indicate that both T- and £„ are excellent

approximations to the actual temperature and boundary motion. Figures 5

and 6 compare £_, t~ and £„ to the numerical boundary motion for the

cylinder, with a = 2.0 and 8 zero, and the sphere, with a = S.O and

P = 1. 0 and the unphysical behaviour of £„ in both cases i s apparent.

8. Formal series solutions

On writing (5.1) as

(8.1) T(r,t) = a

'R(t) A " " >R(t)

and repeatedly substituting this expression for T(r,t) into the right

hand side of the equation to obtain

(8.2) T(r,t) = a I ±— &Jr,R(t)),
n=l 3t

on assuming a remainder term tends to zero and where the functions <J
n

satisfy

(8.3) C^+1(r,R) = j ZXKx(r,&C
X(Z}R)dz, n > 0, C^(r3R) = 1.

Explicit formulae for C (\ = 0,1,2) may be found in Dewynne [J]. For

the slab and sphere (X = 0,2) these formulae are relatively simple, and

their general form may be easily deduced, inductively, from (8.3). For

the cylinder (X = 1) the general form of the functions u is far more

complicated, and the interested reader is referred to Hill and Dewynne [9].

The formal solution (8.2) is important for two reasons. Firstly by

choosing some particular function R(t) we can deduce the temperature

and hence the boundary conditions necessary to produce the boundary

motion R(t). As such (8.2) represents the general solution of the
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1 inverse Stefan problem' and is the only systematic means of generating

exact solutions to Stefan problems, albeit art if ical problems. Such

solutions usually have l i t t l e physical relevance but are useful for

testing and evaluating numerical and approximate techniques. Secondly

(8.2) may be used to suggest the functional form of approximate series

solutions of such problems. In particular, by this process we may

deduce suitable approximating expressions for the cylindrical Stefan

problem. Unlike planar and spherical problems for which polynomial

approximating expressions apply, there has been some speculation for

cylindrical problems as to the precise dependence of approximating

expressions on log r and logR(t). From (8.2), for X = 1, we may

deduce (see Hill and Dewynne [9]) the general structure for the

tempe rature

(8.4) T(r,t) = (r2 - R2)F(r2,R2) + G(r2,R2)log(v/R) ,

where F and G denote complicated functions which are analytic and

therefore may be approximated in the usual manner and in the f irst

instance may be approximated simply by functions of time only. Finally,

by substituting (8.2) into a given boundary condition, such as (1.2K,

an infinite order differential equation for the boundary R(t) results.

Normally this differential equation cannot be solved, but i t can be

transformed into a non-linear integral equation for the inverse boundary

motion and for details of this process we refer the reader to Hill [7]-

9. Two simultaneous chemical reactions

In this section we describe the application of the integral

formulation to a problem which arises from the oxydesulphurization of

coal. Coal contains organic sulphur, which oxidizes slowly, and inorganic

sulphur, which oxidizes rapidly. Thus, we consider a slab, cylinder or

sphere consisting of an inert solid matrix in which two solid reactants

are uniformly distributed. We assume that the solid is porous, allowing

a fluid reactant to diffuse in and react instantaneously with one of the

reactants giving rise to a moving reaction front. In the region between

the reaction front and the surface of the solid the fluid is involved in

a slower reaction with the other solid reactant, and we assume that the
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rate of this slow reaction depends only on the concentration of fluid.

In non-dimensional variables we can write this problem as

(9.2) c(l,t) + $Jj<l>t) = 1, c(R(t),t) = 0,

(9.3) ^(R(t)3t) = - c r | , R(0) = 1,

where c(r>t)3 Ty R(t) and t denote non-dimensional concentration of

the fluid, position, moving boundary position and time respectively. The

constants a > 0, B i 0 and k are given by

1 „ a2k
(9.4) « - ^ , B - g j - o r ^ k = — ,

where p is the density of the solid, u> a stoichiometric constant

determined by the rapid reaction, e~ the surface concentration of fluid,

a is a characteristic length scale, h the surface mass transfer mass

transfer coefficient, k- the rate constant for the slow reaction and

D the fluid's diffusivity.

To obtain an integral formulation of the problem (9.1)-(9.3) we

introduce the function K (T, E,jk) which is a generalization of the
A

function K.(i>;E,) and is defined to be the solution of

3 \ X dKX
(9.5) |Cr, 5; k) + £ ~£(r> i: k) = 0,

7 \
(9.6) Kx(r,r;k) = 0, / ^ C -^(r3i;k) = 1.

Using K (r,ijk) we can define a pseudo steady state approximation which

A

arises from (9.1)-(9.3) by ignoring the time part ial derivative in (9.1)

and is given by

( 9 - 7 ) %ss(r>R) =KX(r-

(9.8) t (R) = a C
Pss . )R

r 3Kx i
,R;k)/ iK^l^Rjk) + $-^-(l,R;k)\,
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and by taking the difference c(r,t)-c (r,R(t)) and applying a Green's
pss

function we can deduce (as in Section 5) the integral formulation

(9.9) c(r,t) = |r I g\(r, C;k) [a + cfc t) -]dE,,

K (l,Uk) +3-7-—(l,E,;k)
I X f X 1

(9.10) t = C K (l,Uk) +3-7-—(l,E,;k) [a

Proceeding as in Section 6 we can develop upper and lower bounds for

the moving boundary using the inequalities 0 - o(r,t) - a (v,R(t)) - 1
pss

and TT - 0. These bounds are particularly tight when either of a or k

i s large compared to unity. For full details, we refer the reader to

Dewynne and Hill [3]. Using (9.9) and (9.10) we can set up an integral

i teration scheme similar to that described in Section 7, and from (9.9)

formal series solutions can also be developed. We refer the reader to

Hill [7] for the details. Finally we remark that in Hill [6] i t is shown

that the integral formulation (9.9)-(9.10) is both distinct from and

superior to the integral formulation which arises from (9.1)-(9.3) by

direct integration.

10. A Stefan problem with two moving boundaries

Multiphase and multicomponent Stefan problems, with several moving

boundaries separating several distinct phases or components, have been

used to model many processes such as the melting or freezing of

polymorphous materials or multi component systems such as alloys or food

products. We consider the freezing of a material which has two solid

phases and which is in i t ia l ly in liquid state, uniformly at i t s fusion

temperature and subject to a subfreezing temperature at a surface. For

planar, cylindrical and spherical geometries we can write the problem in

non-dimensional form as

(10.1)
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(10.3) T1(lJt) = 1, T^R^tltt) = 0}

(10.4) T^R^Wyt) = 0, T2(R2(t),t) = V,

(10.6) -ag-gl = ~ (B2(t),t)3 R2(0) = 1,

where r and t denote non-dimensional position and time respectively

and T.(v,t) and R.(t) denote the non-dimensional temperature in the

~i phase and the non-dimensional position of the i moving boundary.

The constants a. are the ratio of the latent heats of phase change to

the sensible heat of the f i rs t phase. The non-dimensional in i t i a l

temperature of the liquid is V < 0 and the constant c i s given by

c = kia-,/k2al' where a. and k. are the heat capacity and thermal

conductivity of the -fth phase.

I t i s shown in Dewynne and Hill [5] that (10.1)-(10.6) admits an

integral formulation similar to (5.6)-(5.7) although considerably more

complicated. A simple integral relating the boundary motions arises

from this integral formulation, and is given by

(1 - V)t = CKAI.VIO. + a9 - cV + T ( ,
hiCt) X 1 2 1

(10.7)

rRX(t)
+ C K (1,UIOL - oV + T (£,t)1di,
>R2(t)

 X 2 2

where K-,(v,£,) is given by (1.6). This integral can be generalized to

accommodate the situation where (10.3)^ is replaced by a Newton radiation

surface condition. In [5] i t is observed that (10.7) is equivalent to

- t ,h a
— I t A . ( i t <

)o x

,1
(10.8) (1 - V)t = CK,(l,VH(Z.,t)dt,,

where H(£,,t) is the non-dimensional enthalpy for the problem (10.1)-

(10.6). From this observation i t is possible to find the general form

of the integral relating the boundary motions for an n-phase problem. In

the absence of further independent relations between the moving boundaries,
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however, i t is not possible to exploit (10. 7) or (10.8) to find non-

t r i v i a l bounds for the moving boundaries. The integral (10.8) does lend

i t s e l f to a simple and convenient check on the accuracy of a numerical

-enthalpy scheme. Finally in [5] i t i s shown that we can define a pseudo

steady state solution of (10.1)-(10.2) , and i t i s given by

(10.9) T
l p s s ( r j t ) = K

x(
r>B

1(
t))/K

x(
2>R

1
(t))> Rl(t)

(10.10) T a(rit)=VKx(r1R2(t))/K)(R1(t)1R2(t))i R&(t)< r < R^t),

but only for the slab (\ = 0) is it possible to integrate the

differential equations for the approximate boundary motions R- and

lpss
R2pss'

11. A two phase Stefan problem

As a final example, we consider the genuine two phase Stefan problem

describing the solidification of a slab or the inward solidification of

a cylinder or sphere of liquid, in i t ia l ly above i t s freezing point. In

non-dimensional variables we can write the problem as

3T 32T ST

(11-1) jf = ^lT + r»r> S(t)<r<l3

(11.2) o - A m - A + l - ± t 0<r<R(t),

3T
(11.3) Ts(l,t) = 1, -£r(03t) = 0, Tt(r30) = *M < 0,

(11.4) TJR(t),t) = 0, T.(R(t),t) = 0,
S X.

dR 3 T s 32V
(ii.5) -°^ = -^r(R(t)>tJ - JT~ (*(*)>*)* R(o) = 2>
where subscripts s and i, are used to distinguish between the

properties of solid and liquid respectively. The constant a is the

ratio of latent heat to the sensible heat of the solid, while the constant

c is given in terms of the heat capacities and thermal conductivities of

the two phases by c = V. c /k.c . The no flux condition at r = 0,

(11.3)2t i s essential for the cylinder and sphere, physically because of

symmetry and mathematically in order to obtain finite solutions, while
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for the slab i t simply represents an insulated face at r = 0.

In Dewynne and Hill [4] we obtain an integral formulation for this

problem, which we use to deduce the formal integral for the boundary

motion,

\tT(O?)dT=\ CKUVla + T
h l ' h(t) x s

111.6)
iR(t)

-c
rtHVJ rl

«AK (hVTJ^t)dE, - o\ I
>0 >0

where §(r) denotes the initial temperature of the liquid (see (11. 3) 3) .

Using (11.6) and the integral formulation given in [4] i t is possible

to find bounds for the boundary motion R(t). However the presence of

the time integral on the left hand side of (11.6) makes the analysis

more complicated than i t is for a single phase problem (see Section 6),

and in particular, limits the lower bounds for the two phase problem to

those given in Section 6 for the single phase problem. For a detailed

discussion of this problem, we refer the reader to [4] . As in previous

sections, i t is possible to interpret (11.6) in terms of enthalpy H,

namely

f* I \
(11.7) t- T.(0,x)dx = 5 K.(l,VlH(Z,t)- K(Z,,O)-\d£,,

)o l h x

I1

= 5

h
where, for the problem (11.1)-(11.5), the enthalpy is given by

' (H -a, H > a,

(11.8) T = '0, HelOsalj

H/c, H < 0.

Equation (11.7) can be used as a convenient check on the accuracy of

a numerical enthalpy scheme. Finally we mention that similar integral

formulations and integrals for the boundary motion are possible for

two phase Stefan problems posed in concentric cylindrical and spherical

regions with a variety of boundary conditions on the inner and outer

surfaces, and for two phase problems posed in semi-infinite slabs and

in the infinite regions surrounding cylinders and spheres and we refer

the reader to [4] for these problems.
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FIGURE 1

Numerical temperature profiles at four equally spaced positions of
the moving boundary R(t) for the sphere with a = 0.1 and 3 zero.
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.0 .1 .2 3 .4 .5 .6 .7

Position r
.8 .9 1.0

FIGURE 2

Numerical temperature profiles at four equally spaced positions of
the moving boundary R(t) for the sphere with a = 10.0 and (5 zero.
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FIGURE 3

Comparison of the simple upper and lower bounds (6.1)(•••)# improved
upper bound (6.3) ( ) improved lower bound (3.6)(—) and exact
boundary motion (—) for the slab with a = 1.0 and 6 zero.
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.00 .83 1.65 2.48 3.30 4.13 4.95 5.78 6.60 7.43 8.25

Time t

FIGURE 4

Comparison of the simple upper and lower bounds (6.1)(•••), improved
upper bound C6.3)( ) improved lower bound (6.6)(—) and numerical
boundary motion (—1 for the cylinder with, a = 10.0 and B = 1.0.
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FIGURE 5

Comparison of the approximate boundary motions t (•••), t^

and t. (. ) arising from (7.21 with the numerical bounda

motion (—) for the cylinder with a = 2.0 and 8 zero.

C—)
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FIGURE 6

Comparison of the approximate boundary motions t (• ( —)

and t2 ( ) arising from (7.2) with the numerical boundary

motion (—) for the sphere with a = 5.0 and 6 = 1.0.
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