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ABSTRACT

This paper derives several formulas for the probability of eventual ruin in a
discrete-time model. In this model, the number of claims process is assumed to
be binomial. The claim amounts, premium rate and initial surplus are assumed
to be integer-valued.
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1. INTRODUCTION AND NOTATION

This paper is motivated by the recent paper GERBER (1988b), which discusses
the probability of eventual ruin in a discrete-time model. We shall derive some
of GERBER'S results by alternative methods. As we shall point out below, our
formulation and notation are not exactly the same as GERBER'S.

We consider a discrete-time model, in which the number of insurance claims
is governed by a binomial process N(t), t = 0,1,2,.... In any time period,
the probability of a claim is q (denoted by p in GERBER'S paper) and
the probability of no claim is 1 - q. The occurrences of a claim in different
time periods are independent events. The individual claim amounts
Xx, X2, X2,... are mutually independent, identically distributed, positive and
integer-valued random variables; they are independent of the binomial process
N(t). Put X = Xx, and let p(x) = Pr(Z = x). The value of the probability
density function p(x) is zero unless x is a positive integer. We also assume that
the premium received in each period is one and is larger than the net premium
qE(X). Put E(X) = fi; then the last assumption is

(1.1) l>q/u.

For k - 1, 2, 3 , . . . , define

(1.2) Sk = Xx + X2 + ... +Xk.
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Put So = 0. Let the initial risk reserve be a nonnegative integral amount u. The
probability of eventual ruin (ultimate ruin probability, infinite-time ruin
probability) i//(u) is the probability that the risk reserve

(1.3) U(t) = u+t-SN(l)

is ever negative. Since GERBER (1988b) defines ruin as the event that the risk
reserve U(t) becomes nonpositive for some /, t > 0, the formulas derived
below will not be exactly the same as his.

2. THE PROBABILITY OF NONRUIN

It is somewhat easier to work with the nonruin function

For u < 0, <p(u) = 0. Consider an initial risk reserve of amount j , j > 0. If
there is no claim in the first period, the risk reserve becomes j+ 1 at the end of
the period; if there is a claim of amount x in the first period, the risk reserve
becomes j+ l — x. Hence, by the law of total probability,

(2.1) <t>(j) = (\-q)(j>(j+\) + qE[4(j+\-X)}, 7 = 0 , 1 , 2 , . . . .

Rearranging (2.1) yields

(2.2) tU+V-iU) = q{<KJ+V-E[HJ+\-X)\}, .7 = 0 ,1 ,2 , . . . .

Summing (2.2) from j = 0 to j = k— 1, we have

k = 1 , 2 , 3 , . . . ,
./=! 7=1

or

(2.3) = 1,2,3,

Let 1 + denote the function defined by

1 + O ) = l , 7 = 0 ,1 ,2 , . . . ,

l + O") = 0, j= - 1 , - 2 , . . . .

For each pair of functions / and g, le t /*g denote their convolution,

(2.4) (f*g)U)=

Note that, i f / 0 ) = g(i) = 0 for all negative integers /, then (2.4) becomes

j

(f*g)U)= Z /(•/•- '•)*(/).
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Since the convolution operation can be regarded as a multiplication operation
between functions, we sometimes write (f*g)(j) as f(j)*g(j)-

The first sum in the right-hand side of (2.3) is (<* * 1 +) (k). As X is a positive
random variable,

(2.5)
7=1 j=0

Hence, (2.3) becomes

(2.6) = 0 [ ( t f * l + ) ( * ) - ( * • l + • />) (*) ] , fr= 1 ,2 ,3 , . . . .

Since p(0) = 0, it is easy to check that (2.6) also holds for k= 0. To solve for <j>
in (2.6), we first extend it as an equation for all integers k, positive and
negative:

(2.7) <t>(k)-(l-q)<l>(O)l+(k) = q[(4*l+)(k)-(<l>*\ + *p)(!c)\-

Let 8 be the function defined by 8(0) = 1 and 8(j) = 0 for j =£ 0. Then the
right-hand side of (2.7) can be expressed as

Rearranging (2.7) and writing

(2.8)

yields

(2.9)

Equation (2.9) is a Volterra equation of the second kind. To solve for </>, we
invert

S(k)-q{l + (k)*[d(k)-p(k)]}

as the Neumann series [BROWN and PAGE (1970, p. 226), RIESZ and SZ.-NAGY

(1955, p. 146)]

(2.10) X q"{U(k)*[d{k)-p(k)]}*n.
M = 0

(We use the notation: f*° = 5 and / * " = / * ( " " 1 ) * / , n = 1, 2, 3, . . . . ) .
Hence,

(2.11)
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" = Z
7 = 0 J

(-\yP*j(k),

(2.12)

k + n

z.
n=j

k + n

n-j

k + n

n

k+j

q"-> =

k + n

1

\-q

k+j+ 1

and

by an interchange of the order of summation (2.11) becomes

{-qy\P*]

f-a
= 0

— q

\-q

(k)*

JE\

k+j

\ J

1 k+j-S,

\ j

1

i-q,

k+j+ 1

(2.13)

As 5,- > j , there are at most k + 1 nonzero terms in the right-hand side of
(2.13). This formula corresponds to (4.6) of SHIU (1988) and (3.14) of
SHIU (1989a).

To derive the value of 0(0), we return to formula (2.6). Let P denote the
probability distribution function of the individual claim amount random
variable X. Then

P= \+*p.

As k tends to positive infinity, the left-hand side of (2.6) tends to

1 ~(l-q)

while the right-hand side tends to

j=-co
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by the Lebesgue dominated convergence theorem. Hence.

183

(2.14) «>(0) =
q/i

\-q

3. GAMBLER'S RUIN

As a verification of formulas (2.13) and (2.14), let us consider the special case
that X=2. This is a classical problem in the theory of random walk. The
probability that, with an initial reserve of u (a nonnegative integer), the
company's risk reserve will ever become - 1 is known to be [q/(\ — q)]u+1.

Since Sj = 2j, formula (2.13) becomes

(3.1)

(l-<?) j=

\-2q

J
U(u-2j)

[u/2]

7 = 0

u-j

j

For a real number r, we let [r] denote the greatest integer less than or equal
to r. The polynomial

(3.2) I fc-n

is related to the Chebyshev polynomials of the second kind and can be
expressed as [KNUTH (1973, problem 1.2.9.15), RIORDAN (1968, p. 76)]

(3.3)

Now,

\k+\

y/l-4q(l-q) = \2q-l

= \-2q

by assumption (1.1). Hence,

a u+i

(3.4) (j)(u) = 1
\-q

as required.
For the case that X = m > 2, formula (2.13) cannot be simplified. It has been

given by BURMAN (1946). Also see GIRSHICK (1946, p. 290), SEAL (1962, p. 23;
1969, p. 101) and GERBER (1988b, (43)).
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4. ANOTHER RUIN PROBABILITY FORMULA

GERBER (1988b) has derived another formula for the probability of eventual
ruin, which is complementary to (2.13). It follows from condition (1.1) that

Pr lim U(t) = +oo = 1 .

If ruin occurs, there is necessarily a last upcrossing of the risk reserve U(t)
from level - 1 to level 0. By considering the number of claims n, prior to this
last upcrossing, and the time / at which it occurs, we have

(4.1)

Since

CO CO ,

P r ( ^ = u+t+\)

CO

I

= E

(l-^)'Pr(5n = u+t+\)

Sn-u-\

we obtain the formula

(4.2) W(u) = (l

-q)s»-«-x\ + {Sn-u-n-X)

q

~\~q

Sn-u-\

n

Continuous-time analogues of (4.2) can be found in PRABHU (1965, (5.55)),

GERBER (1988a, (27)) and SHIU (1989a, (1.6)).

5. GERBER'S FANCY SERIES

Using the identity

we can rewrite (2.13) as

(5.1)
\-q

S-u-.
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Since

and u is an integer, adding (5.1) to (4.2) yields

(5.2)
1

•fi n = 0 \ 1 — q

if we put x = — (M+1). This interesting formula is Theorem la of
GERBER (1988b). In this section we present some alternative proofs for (5.2);
the assumption that x is an integer will not be used.

Assume that all the moments of the random variable X exist. Consider the
linear operator G on the linear space of polynomials defined by

(5.3) y) = E[f(y

[Such operators have been considered by FELLER (1971, section VIII.3)]. A s /
is a polynomial, the random variable/(j + X) in (5.3) can be expressed as

(5.4) I
j \

Consequently, the linear operator G can be represented as a power series in
terms of the differentiation operator D:

(5.5)

Since

G-I = fiD+Y2E(X2)D2+ ...,

we have, for each nonnegative integer n,

(5.6) {G-Ifx11 = n\nn

and, for nonnegative integers n and m, m < n,

(5.7) (G-/)"jcm = 0.

It follows from (5.6) and (5.7) that

' x
(5.8) (G-iy

Multiplying (5.8) with q" and summing from n = 0 and n = oo yields
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(5.9)

Applying the formulas

«=o

x r
£=0 \ A:

«

( "u -ru
x-k

n-k ,

and

« = *

we obtain

(5.10)

Since

I

ra —A: = a -

(Gkf)(x) = E[f(x + Sk)],

\-qfi

= 0, 1,2,. . . .

formula (5.10) is the same as (5.2).
An operational calculus proof is (5.10) can be found in SHIU (1989b).
If the random variable X in formula (5.2) is degenerate, i.e., X = fi, then we

have

(5.11)
«=o

1

{\-Hq){\-q)x

This result is quite well known; it and its variants can be found in POLYA

(1922, (7)), WHITTAKER and WATSON (1927, p. 133, example 3), RIORDAN

(1968, p. 147), POLYA and SZEGO (1970, p. 126, problem 216), KNUTH (1973,

problem 1.2.6.26), MELZAK (1973, p. 117, example 4), COMTET (1974, p. 153),
HENRICI (1974, p. 121, problem 12), ROTA (1975, p. 56), ROMAN and ROTA

(1978, p. 115) and HOFRI (1987, p. 34). The standard proof of formula (5.11) is
by an application of the Lagrange series formula. The proof can readily be
generalized to one for (5.2), as we shall show below. (Also see section 5 of
SHIU (1989a)).

Let h be an analytic function and let

(5.12) z = wh(z).
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By the implicit function theorem, there is a unique root z — z(w) which
reduces to b at w = 0. If/is an analytic function, then/(z) = f(z(w)) may be
expressed as follows [RIORDAN (1968, p. 146), POLYA and SZEGO (1970,
p. 125), GOULDEN and JACKSON (1983, p. 17)]:

(5.13)
f(z)

\-wh'(z)

Now, consider b = 1 — q,

and

Then

1, d>
[f(y)[h(y)V]

and

(5.14)
1 d>

./! dy>
[f(y)[h(y)V] =

f(y) = yx

= E(yx).

j = E(ys')

j
y J

With w = q, the right-hand side of (5.13) is the same as the right-hand side of
(5.2) and equation (5.12) becomes

Thus z = 1 and the left-hand side of (5.13) is identical to the left-hand side of
(5.2).

6. REMARKS

(i) Consider formula (2.14). Since X > 1 by hypothesis, the number 0(0) is
always bounded above by one as it should be. If 1 < qju, then ruin is
guaranteed; but this is ruled out by condition (1.1). It follows from (2.14)
that

(6.1)
\-q

However, GERBER'S (1988b) result is that

This discrepancy exists because GERBER defines ruin to occur when the risk
reserve U(t) becomes nonpositive, while we consider the insurance company to
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be solvent even if its risk reserve is zero. An anonymous referee has kindly
pointed out that our definition of ruin is equivalent to DUFRESNE'S (1988,
section 3) and (2.14) is DUFRESNE'S formula (37).

(ii) GERBER (1988b) first obtained formula (5.2) and then derived a formula
corresponding to (4.1). With these two formulas, he derived formulas corre-
sponding to (2.14) and (2.13).

(iii) Formula (2.12) is a special case of the combinatorial identity

r-k

k=o \ m

s + k r + s+\

m + n+\

where m, n, r and s are nonnegative integers and n > s [RIORDAN (1968, p. 35,
problem 13), KNUTH (1973, p. 58), HOFRI (1987, p. 39, problem 2b)].

(iv) Formula (2.1) can written as

(6.2) <j>{j+X)-4(j) = [ql(\-q)]{(t>(j)-E[Hj+\-X)}}, j= 0,1,2,...:

Hence, for each positive integer k,

(6.3)

which is reminiscent of a renewal equation in the compound Poisson model
[(FELLER, 1971, (XI.7.2)), (SHIU, 1989a, (2.4))]. Let h denote the function

h(k) = [\ + (k-\)-P(k)]Kfi-i), k = 0,±l,±2,....

It follows from (6.3) and (6.1) that, for all integers k,

<Kk)-<H0)l + (k) = y,(0) [(Hk)*h(k)].

Define H*" = h*n*\ + . Then

(6.4) d>(u) =

Formula (6.4) is analogous to a convolution series formula in the compound
Poisson model; see SHIU (1988, (2.1); 1989a, (2.14)). Since h(i) = 0 for all
/ < 0, there are at most w+1 nonzero terms in the right-hand side of (6.4),
i.e.,

(6.5) <K«) = HO)

As
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we have, for each nonnegative integer u,

(6.6) V(«) = [1

Formula (6.6) has been derived by R. MICHEL and can be found in a
forthcoming risk theory book by C. HIPP and R. MICHEL. Observe that, when
X = 2, h(j) = d(j-\) and formula (3.4) immediately follows from (6.5). I
thank C. HIPP for the information above.
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