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EVENTUALLY REGULAR SEMIGROUPS

P.M. EDWARDS

A semigroup is said to be eventually regular if each of i t s

elements has some power that is regular. Regular and group-bound

semigroups are each eventually regular. Idempotent-surjective

semigroups are semigroups such that a l l idempotent congruence

classes contain idempotents; eventually regular semigroups are

idempotent-surjective. Many results for regular semigroups also

hold for eventually regular semigroups or even for idempotent-

surjective semigroups and so in particular are also valid for

group-bound semigroups. Lallement's lemma is generalized to

eventually regular semigroups and the maximum idempotent-

separating congruence on such a semigroup is found. Other

congruences are considered and the results obtained are applied

to yield results on biordered sets.

1. Introduction

In 1958 Drazin [3] introduced the concept of a pseudo-invertible

element of an associative ring or semigroup. He defines a function

x •* x' , "somewhat analogous to the generalized inverse function, over the

elements of arbitrary finite-dimensional algebras, and even of an extensive

class of associative rings" (see [3], p. 506).

Munn [?J] studied further these pseudo-inverses in semigroups and

found that an element x of a semigroup 5 is pseudo-invertible if and
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24 P.M. Edwards

only i f some power of x l ies in a subgroup of S . This naturally leads

to the study of group-bound semigroups (see Hall and Munn [7]) which are

semigroups in which each element has some power in a subgroup or

equivalently, semigroups in which all elements are pseudo-invertible. - •'

Not all regular semigroups are group-bound. Define a semigroup to be"

eventually regular if each of i t s elements has some power that is regular.

Thus in particular if a semigroup is regular or group-bound i t is an

eventually regular semigroup.

A generalization of the concept of eventually regular will also prove -

convenient. Define a semigroup S to be idempotent-surjective if whenever

p is a congruence on S and ap is an idempotent congruence class in

5/p , then ap contains an idempotent of S . It will be shown that all

eventually regular semigroups are idempotent-surjective semigroups.

In Section 3 similarities between regular, eventually regular and

idempotent-surjective semigroups are explored and i t is shown that many

results for regular semigroups extend to eventually regular semigroups or

even to idempotent-surjective semigroups. Thus in particular these results

are also valid for group-bound semigroups.

Lailement's lemma ([9], Lemma 2.2) is extended to eventually regular

semigroups. In fact a stronger result will be shown namely that if S is

eventually regular and <{> is a morphism from 5 onto a semigroup T such

that , for e and d in S , c§ and <2(J> are mutual inverses in T ,

then there exist a, b in S such that a<J> = c<f> and b$ = d<$> with a

and b mutual inverses in 5 .

We define a relation, denoted throughout this paper by p , on an

arbitrary semigroup 5 and show that i t is an idempotent-separating

congruence. For an eventually regular semigroup S , we show that \i is

the maximum idempotent-separating congruence on S and also show (see

Example 3 in Section 5) that a semigroup may have a maximum idempotent-

separating congruence that is distinct from U .

In Section h, some of the results obtained in Section 3 are applied to

biordered sets and conditions are found on a congruence p on a semigroup

S , such that the biordered set E(S/p) is isomorphic to the biordered

set E(S) . I t is shown that S/u is finite if and only if E{S) is

finite and i t is further shown that if S is an idempotent-surjective
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E v e n t u a l l y r e g u l a r semig roups 25

semigroup then E(S/\i) 3= E(S) .

Section 5 contains some counterexamples to possible extensions of the

results to arbitrary semigroups.

2. Preliminaries

Whenever possible the notations and conventions of Clifford and

Preston [I , 2] or Howie [S] are used. Further for any semigroup S define

a relation V = V(S) (as in Ha I I [6]) by

V = {(a, b) € S x S | aba = a and bob = b) ,

and for each a in 5 , denote {b € S \ (a, b) € V} by- 7(a) .

A semigroup S is called eventually regular if for each element a

in 5 there is a positive integer n (in general depending on a ) such

that a is regular.

If T is a semigroup then the set of idempotents of T will be

denoted by E(T) . The set E{T) will be regarded where necessary, as

equipped with an appropriate structure, such as that of a biordered set,

as will be clear from the context.

A congruence on a semigroup is called idempotent-surjective if every

idempotent congruence class contains an idempotent and idempotent-ereative

otherwise. Thus a congruence p on a semigroup S is idempotent-

surjective if and only if the natural map p^ restricted to E(S) is a

surjection of E(S) upon E(S/p) . A semigroup is called idempotent-

surjective i f all of i ts congruences are idempotent-surjective.

The empty set will be denoted by • , the identity relation on a set

X will be denoted by 1^ and the conjunction of L 5 L^ and R 5 R-,

will be denoted by fffl 2 H^ .

3. Eventually regular semigroups

In this section the relationship between regular, group-bound,

eventually regular and idempotent-surjective semigroups is investigated. A

regular or group-bound semigroup is clearly eventually regular. By

extending a version of Lallement's lemma ([9], Lemma 2.2) to eventually

regular semigroups i t is shown that all eventually regular semigroups are
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idempotent-surjective semigroups.

In preparation for the next section, this section concludes with an

investigation of idempotent-separating congruences on eventually regular

semigroups including the determination of the maximum such congruence.

THEOREM 1. Let S be an eventually regular semigroup and let <)> be

a morphism of S onto a semigroup T with (a, d) € V(T) . Then for any

x, y in S such that x<j) = a and y§ = d there exist elements a, b, r,

s in S such that a = xrx , b = ysy , a$ = c , b§ = d and

( a , b) € V{S) .

Proof. As <(> i s onto T there ex is t x, y in S such that x<f> = c

and y<$> = d . As 5 i s eventually regular there exis ts an integer n i l

such tha t [(xy) ) i s regular . Let s € v[(xy) ) and put

a = (xy) zxyx and b = y{xy) " zxy ( i f n = 1 put b = yzxy ) . I t

i s easy t o verify tha t ( a , b) € V{S) .

As 3 € v[(xy) ) , x<J> = c , y<$> = d and ((> is a morphism i t

follows tha t s(() € v[{cd)2n) . As ( e , <2) €1/(2") , (e<2)2M = e<2 . Thus

z(|> € V(cd) and so w i l l be denoted (cd) ' . As <j> is a morphism,

= cd(cd)'cdc , as ( c , d) €

= cdc , as (eii)' € V(cd) ,

= c

and, i f n > 1 ,

= d{cd)'cd , as (e, d) € V(T) ,

= dcd{cd) 'cd , as d = ded ,

= dcd , as (ed)' € 7(ed) ,

= d .

If ?i = 1 then b<j> = d{cd) 'cd = d as above. I t can now be seen that

a and b meet a l l of the requirements of the theorem.

In our terminology Lailement's lemma states that regular semigroups

are idempotent-surjective. As a corollary of Theorem 1, the following

generalization of Lailement's lemma holds.
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COROLLARY 2. Eventually regular semigroups are idempotent-surjective
semigroups. Indeed if S is an eventually regular semigroup, p is a
congruence on S , and up is an idempotent of S/p then an iderrpotent e
can 03 found in up such that H S ! .

o
Proof. Let up = (up) in S/p . Then (up, up) € V(S/p) and so \>y

Theorem 1 (vising x = y = U ) there exist a, b, r, s in 5 such that
a = wrw , b = usu , ap = up = £>p and (a, b) € V(S) . Putting e = ab

o
yields e = e , e = unjusu and ep = (ab)p = apbp = upup = up . Thus e

is an idempotent in up and H S S as required.

When applied to regular semigroups Theorem 1 reduces to Lemma 1 of
Hall [6]. For group-bound semigroups, in particular for finite semigroups,
Theorem 1 appears to be new.

THEOREM 3. Let S be an eventually regular semigroup and p a
congruence on S contained in L . Then for each element a in S , a
is an element of a subgroup of S if and only if ap is an element of a
subgroup of S/p .

Proof. Just use Theorem 1 instead of Ha I I 's Lemma 1 in his proof of
Theorem 15 in [6] .

THEOREM 4. Let S be an idempotent-surjective semigroup with
E(S) t • . Define a relation o on S by

o = {{ef, fe) € S x 5 | e2 = e, f = /} .

Let o* be the congruence generated by a . Then E(S/o*) is a semi-

lattice and so the set of regular elements of S/o* is an inverse semi-

group. Also a* is the finest congruence that has this property and

moreover, if p is a congruence on S with o* c_ p , then the regular

elements of S/p form an inverse semigroup.

Proof. As S is idempotent-surjective each idempotent congruence

class contains an idempotent. This together with the definition of a*

easily leads to a proof of the claims made in the theorem.

A corollary to this theorem is Result 3 of Hal I [5], namely that if S

is regular then a* is the finest inverse congruence on S .

For the definition of categorical at zero and its related concepts see
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C l i f f o r d a n d P r e s t o n ( [ 2 ] , 7 3 - 8 0 ) . The f o l l o w i n g r e s u l t o f H a l l w i l l b e

u s e d .

RESULT A ( [ 4 ] , Theorem l ) . Let S = S be a semigroup which is

categorical at zero. Define

P1 = {(e , / ) <• S x s | e = e2, f = f2, ef = fe = / # 0} .

Let p* fee the congruence generated by p . Define by induction p* -

the congruence generated by

Define p = U p* . 2%e« p i s t?je finest 0-restricted primitive
n=l M

congruence on S . [Note p* is a 0-restricted congruence.)

LEMMA 5. Let S = S be a semigroup with the following properties:

(a) S is categorical at zero;

(b) 3 is idempotent-surjective;

2
(c) each of the (local) subsemigroups eSe , e = e is

idempotent-surjective.

Let p and p be defined as in Result A. Then p = p* .

Proof. I t suffices to show that S/p* is primitive since p* c p

(s/p* primitive implies that p c p* by Result A) . Suppose A = A ,
o

B = B and 0 ± A S B in S/p* . Then since S is idempotent-surjective

there exists b = b2 (. B and because BAB = A = A2 , A i E[B{S/P*)B) .
A

Since bSb is idempotent-surjective, (p*) \Fij}ah) maps E(bSb) onto

E[B[S/P?)B) . Therefore, since A € E{B[S/P*)B) , there exists a € E(bSb)

such that (a) (p*) = A . From a € E(bSb) i t follows that a = a2 and

a < b . Note that a (. A and a * 0 since A + 0 in S/p* . Thus
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0 ^ a 2 b , and so from the definition of p we have ap b , whence

A = B and so S/p* is primitive.

THEOREM 6. If S = S is an eventually regular semigroup which is

categorical at zero and p and p. are defined as in Result A then

P = P* .

2
Proof. If S is an eventually regular semigroup and e = e € S

then the subsemigroup eSe is also eventually regular because if

a € eSe , with a regular in 5 and x € v(a ) , then

exe € v{a ) n eSe . Therefore both 5 and eSe are idempotent-surjective

by Corollary 2 and so the result follows from Lemma 5•

This generalizes the f irst assertion of Theorem 2 of [4] from regular

to eventually regular semigroups.

LEMMA 7. Let o be an idempotent-separating congruence on an

eventually regular semigroup S and let ( e , b) € a with e = e . Then

e b

Proof. Since bo is an idempotent congruence class and S is

eventually regular, by Corollary 2 there exists an idempotent / in bo

such that H „ £ H-, . However since a is idempotent-separating and

(e, / ) € a i t follows that e = f , whence H 5 H, .

DEFINITION. For any semigroup S define a relation y by

p = {(a, b) € S x S | i f x € S is regular then each of xRxa, xRxb implies

xaHxb, and each of xLax, xLbx implies axHbx) .

THEOREM 8. For any semigroup S the relation y is an idempotent-

separating congruence.

Proof. I t is clear that the relation u is both reflexive and

symmetric. Suppose (a, b) € p and (£>, c) € p . Let a; be regular and

let xRxa . From the definition of p , we then have 'xaHxb . Since

H c R i t follows that xRxb , whence again from the definition of p ,

xbHxc . Hence xaHxc . Similarly, xLax with x regular implies

axHcx . Thus by the symmetry of the conditions on a and c , (a, c) € p

https://doi.org/10.1017/S0004972700026095 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700026095


30 P.M. Edwards

and so y is t ransi t ive .

Take (a, b) € y and y € S . Let xRx(ay) with x regular. In
any semigroup xRany implies xRxa and so i t follows from the definition
of y that xaHxb . As xayKxa there exists u in & such that

xayu = xa . As xaHxb there exists v € £r such that xb = vxa . Thus
(xby)u = (vxa)yu = v{xabu) = uxa = xb and so xbitxby , whence
xbyRxbRxa'RxKxay . Since xaHxb , i t follows that xaLxb ; hence
xayLxby , since L is a right congruence. Thus x(ay)Hx(by) .

Now le t xL(ay)x with x regular. Then xLyx and so yx is
regular. Thus yxLayx with yx regular from which i t follows that
a(yx)Hb(yx) , since (a, b) € y . Hence (a;/)xH(bi/)x . By symmetry of the
conditions on a and b i t follows that {ay, by) € y . Dually,
{ya, yb) € y and so y is compatible.

To see that the congruence y is idempotent-separating consider

(e, f) 6 y with e = e , f~ = / . Then by putting x = e in the
definition for y , eRee implies eHe/ , and similarly fLff implies
efUf . Thus eHf and so e = f .

That U is a congruence may also be seen by checking that y = ker $
where <t> is the following representation of S (verbal communication from
T.E. Hall). Let X be the set of regular /--classes of S and X be the
set of regular R-classes of S . Then define <t> : 5 •*• PTy * VT* by

s<)> = (p , A ) , where p : L -*• L if x is regular and xKxs , and is
S o S X XS

undefined otherwise, and X : R •* B if x is regular and xLsx , and
S X SX

is undefined otherwise. (Note VT* denotes the dual of the semigroup

THEOREM 9. The following are equivalent for a congruence a on a

semigroup S :

(i) a c u j

(ii) for all e € E{S) , for all b in S , (e, b) € a
implies H s H-, ;

(Hi) for all regular elements a in S , for all b in S ,
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{a, b) € a implies H 2 H, ;

and if S is eventually regular then each of the above is equivalent to

(iv) a is idempotent-separating.

Proof. That (i) implies (ii) follows easily from the definition of

V •

We now show that (ii) implies (iii). Assume (ii) and let (a, b) € a

with a regular. Take a' € V(a) . Then since (aa', ba') € 0" and

aa' € E(S) by (ii) , H^, £ #fca, . Therefore R
a = ̂  - R

ba> - % and

a dual argument to the above yields L 5 L-, , whence H 5 H, .

We now show that (iii) implies (i). Assume (iii) and take

(a, b) € a . Let xRxa with x regular. Then as (xa, xb) € o with xa

regular by (iii), H 5 H , . Therefore R = fl 5 R, 5 R , whence

xRxb and x£> is regular. Therefore, by ftii,) again, H , 5 # and so

fl = H^ . A dual argument shows xLax implies axHbx . These

implications together with symmetry show that (a, b) € y , whence a c u .

The equivalence of (i), (ii) and (iii) is now clear and that (i)

implies (iv) is t r i v i a l . If S i s eventually regular then (iv) implies

(ii) by Lemma 7- Thus i f S i s eventually regular then a l l four

conditions are equivalent. (The equivalence of (i) and (H) has also been

noted by D. Easdown in an unpublished note.)

COROLLARY 10. Let R denote the set of regular elements of an

arbitrary semigroup S and denote the maximum congruence contained in H

b
on S by H . Then

(a) H^ c y ,

(b) if a, b € R and (a, b) € y then aHb ,

(c) H^ n (R x R) c y n (i? x R) c H n (i? x /?) 3

(d) if S is regular then y = H .

Proof, (a) is clear; (b) follows from the equivalence of (i) and

(iii) in Theorem 9; (c) follows from (a) and (b) ; and fd.> follows easily
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from (a).

THEOREM 11 . If S is an eventually regular semigroup then \i is

the maximum idenpotent-separating congruence on S .

Proof. The proof follows immediately from Theorem 9.

Note that , as Example 3 in Section 5 shows, there exist semigroups

which have a maximum idempotent-separating congruence not equal to u .

4. Biordered sets

Let p be a congruence on a semigroup S . The results of the

previous section can in some cases be used to determine when the

idempotents of S and of S/p form isomorphic biordered sets . We also

show tha t , i f S is an eventually regular semigroup, then i t s biordered

set of idempotents is an M-bidrdered set (for definition, see below).

F i r s t , some background material on biordered sets will be useful.

For a definition of a biordered set, i t s related axioms and concepts see

Nambooripad [72] or Meakin [10]. The notation of [72] and [70] will be

used and is as follows.

Let 5 be a semigroup and E £ • be i t s set of idempotents. Define

</ = {(e, /) € E x E | ef = e) , ojr = {(e, f) € E * E \ fe = e} ,

01 = 0) n wr , K = (D u<n)r, i .=w <">(u)) , R = (jj n (u ) )~ and

!)„ = K u K~ . Also for e € E and y = w or w , put

Y(s) = if £ E | fye) . Then the part ial binary algebra E with domain O_

(that i s , the product ef is defined in E i f and only if (e, / ) € Dg )

i s a biordered set ([1Z], Theorem 1.1). A mapping 8 : E -*• E' is a

marphism (called bimorphism by Nambooripad and Meakin) of the biordered

set E into the biordered s e t E' if (e, f) € D implies

(e6, /6) € £>„, and (ef)Q = (e6)(f9) . The biordered sets E and E'

are isomorphic (denoted by E = E' ) i f there exists a bisection

8 : E -*• E' such that both 6 and 8~ are morphisms.

DEFINITIONS. Let E be a biordered set . For e, / € E , define

M(e, f) = 0) (e) o ( / ( / ) . Define £ to be an M-biordered set if
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M(e, f) + • for all e, f t E and a semigroup S to be an M-semlgroup
if E(S) is an M-biordered set. Define along the lines of Meakin [10],
an arbitrary biordered set E to be rectangular if for a l l e, / € E
there exists an element g in E such that eKg and gLf . Then
Meakin's Proposition 1.3 of [10] can be modified to give

RESULT B. For an arbitrary biordered set E the following are
equivalent:

(a) E is a rectangular biordered set;

(b) E is an M-biordered set and w = 1 ;

hi

(c) E is the biordered set of some rectangular band.

LEMMA 12. Let a be an idempotent-surjective congruence contained
2

in u on a semigroup S . Suppose A, B € S/o with A = A and
B = B . Then

2
(i) if AB = B in S/o 3 there exist a = a € A and

2
b = b € B and, for any such idempotents a and b , the

equation ab = b holds in S ; and

2
(ii) if AB = A in S/o , there exist a = a € A and

2
b - b € B and, for any such idempotents a and b > the
equation ab - a holds in S .

Proof. Since a is an idempotent-surjective congruence there exist
2 2

a = a € A and b = b (. B . Let AB = B . Then (ab)a = ba . Thus

(ab, b) € a , whence since a c u , {ab, b) € u . By taking x = b in
the definition of u , from bibb , we have bbHabb , that i s , bHab , from
which i t follows easily that ab = b . Similarly, if AB = A , then for a
and b as before, ab - a .

LEMMA 13. Let a be an idempotent-surjective congruence contained

in \i on a semigroup S . Then E(S) ^ E(S/a) ; furthermore j ' | , . is

such an isomorphism.

Proof. If E(S) = O there is nothing to prove. Otherwise, since a

is an idempotent-surjective congruence which is idempotent-separating
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(since o c_ \i ), a \giS) ~ a ' S a y ' i s a b i J e c t i o n f r o m £(5) uPon

E(S/a) . By Lemma 12, a preserves the biordered set relations of

E(S/o) ; that, conversely a preserves the biordered set relations of

E(S) is clear. Therefore both a and a are morphisms and so

E(S) ^E{Sla) .

COROLLARY 14. Let o be an idempotent-separating congruence on an

eventually regular semigroup S . Then E(S/a) = E(S) and so in

particular E(S/\i) S E{S) .

Proof. By Theorem 11, a c y , and by Corollary 2, a is idempotent-

surjective. Thus, by Lemma 13, E{S/o) S E(S) .

THEOREM 15. Let S be any semigroup. Then S/\x is finite if and

only if E{S) is finite. Furthermore, if y is an idempotent-surjective

congruence, then E(S/\i) ^ E(S) .

Proof. If E(S) is finite then there are only finitely many distinct

regular L or R-classes. Thus the sets X and Y mentioned in Theorem

8 are finite and the morphism <{> of Theorem 8 has a finite image. Since

p = ker 4> , i t follows that S/u is finite. The converse follows from

Theorem 8 and the la t ter assertion is immediate from Lemma 13-

COROLLARY 16. Let S be an eventually regular semigroup. Then

E(S) s E(T) j for some finite semigroup T , if and only if E(S) is

finite.

Proof. If E(S) is finite the result follows from Corollary lU and

Theorem 15 by taking T = S/\i . The converse is immediate.

Another observation obtainable from Theorem 15 is that the class of

biordered sets arising from finite semigroups coincides with the class of

biordered sets arising from semigroups with only finitely many idempotents

and for which U is an idempotent-surjective congruence. Example h of

Section 5 is of a finite biordered set that comes from no finite semigroup

and Example 3 is of a semigroup for which u is not an idempotent-

surjective congruence and E(S/\i) ^ E(S) .

The sufficient conditions mentioned in the previous few results are in

some cases necessary as shown by the next theorem.
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THEOREM 17. Let S be an eventually regular semigroup with E(S)

finite. Then for any congruence p on S , E(S/p) s E(S) if and only if

P E u •

Proof. If p is not contained in u then by Theorem 11, p is not

idempotent-separating. This in conjunction with Corollary 2 yields

\E(S/p)\ < \E(S)\ . Therefore E(S/p) £ E(S) . The converse follows from

Corollary lit.

The requirement that E(S) be finite is clearly needed since, for

example, any infinite chain C has u = 1 _ and has non-trivial

congruences p such that C s; C/p . Theorem 17 also has the following

immediate corollary.

COROLLARY 18. If p is a congruence on a finite semigroup S then
E(S/p) ^ E(S) if and only if p c y .

PROPOSITION 19. Any eventually regular semigroup is an M-semigroup.

Proof. Let S be an eventually regular semigroup (so E(S) t • ] .

Let e , f be elements of E(S) ; then there exists n > 1 such that

{(fe)2)n is regular. Take x € v[(fe)2n) and put k = {fefxifef .

Then k2 = k , ke = k and fk = k so k € M(e, f) .

Example h, below, shows that there is an Af-semigroup whose biordered

set is not the biordered set of any eventually regular semigroup. Thus

the class of Af-biordered sets is more extensive than the class of bi-

ordered sets arising from eventually regular semigroups. From Proposition

19, a necessary condition for a finite biordered set E to come from a

finite semigroup is that E be an Af-biordered set; but again Example h

shows that this is not sufficient.

5. Examples

Hot all eventually regular semigroups are regular or group-bound as

shown by Example 1.

EXAMPLE 1. Let T and R be eventually regular semigroups and

5 = T x R be the direct product of T and R . I t is.easy to verify that

if T is regular or group-bound then 5 is eventually regular. Thus if

T is a group-bound semigroup that is not regular (for example let T be
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the two element null semigroup) and if if is a regular semigroup that is

not group-bound (for example, let R be the bicyclic semigroup) then 5

is an eventually regular semigroup that is neither regular nor group-bound.

Many of the results obtained in the two previous sections are not true

for arbitrary semigroups as shown by the following three examples.

EXAMPLE 2. As a nontrivial example of the ideas developed in the

previous sections let S be the semigroup given by Table 1. S is not

regular but S is eventually regular since S is finite [e, f, 0, a

are regular) . The y-classes are {e}, {/} , and {0, a} . Note that each

idempotent y-class contains an idempotent, that i s , y is an idempotent-

surjective congruence (of. Corollary 2).

E(S) = {e, f, 0} , E(S/\x) = {e\i, fy, 0u} and E(S) ^ E(S/\i)

{of. Theorem 15) .

Note tha t S eventually regular , (x, y) d y with x regular does

not imply tha t y i s also regular as can be seen from (0 , a) € y above.

TABLE 1

e

f
a

0

e

e

0

0

0

/

a

f
a

0

a

a

0

0

0

0

0

0

0

0

EXAMPLE 3. Let F be a free semigroup on a set X . Let S be the

semigroup constructed from F by adjoining two idempotent elements e , 1

such tha t ew = we = lw = wi = w for a l l w in F and e l = le = e .

Then 5 is not eventually regular . For t h i s semigroup S , y has as i t s

congruence classes F, {e} and ( l l . Note that F i s an idempotent

element of 5/y but contains no idempotent of S {of. Corollary 2 ) .

S has another idempotent-separating congruence p with congruence

classes F <J e and {l} . Thus y i s s t r i c t l y contained in p which i s

in fact the maximum idempotent-separating congruence on S (of. Theorem

11) .

Moreover E(S) = {e, l } with eul . E{S/\i) = {F, {e} , {l}} with
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Fdi{e}oi{l) so certainly E{S) ^ E{S/v) . Thus the second assertion of

Corollary ik is not true for arbitrary semigroups. The congruence p is

idempotent-surjective and shows that both the la t ter assertion in Corollary

2 and Lemma 7 are false for idempotent-surjective congruence classes of

arbitrary semigroups.

Finally the congruence a on 5 whose congruence classes are ( l , e}o

and F is not idempotent-separating but E{S/a) = {F, {e, l}} with flo{l}

and so E(S/a) ?* E{S) . In this case there was both a collapse and a

creation of idempotents which in effect mutually cancelled each other.

EXAMPLE 4 (Hall). Let R be the free semigroup on the idempotent

generators e, f . Extend R to a semigroup P by* adjoining idempotents

g, h satisfying gr = rg = g , hr = rh = h for al l r € R and with

gKh . Let E be the biordered set of P . Then E = {e, f, g, h] , for

which the relations guie, guf, hdie, huf and gVh hold, is an W-bi-

ordered set and so P is an W-semigroup. However E is not the bi-

ordered set of an eventually regular semigroup.

Proof. If E = E(S) with 5 eventually regular then, as in the

proof of Proposition 19, there exists k = (fe) x(fe) € M(e, f) with

x (. V[(fe)2n) . M{e, f) = {g, h) so without loss of generality k = g

(by symmetry). As g = {fe) x(fe) and gtoe and gmf i t follows that

g = {fefifefxifefifef = {fe)2"1 . From g = (/e)2" and hue and to/

i t follows that h = h{fe) = hg , whereas, from hRg we have hg = g , a

contradiction.
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