
ON POLYNOMIAL ALGEBRAS AND FREE ALGEBRAS 
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1. I n t r o d u c t i o n . I t is well known t h a t given the polynomial algebra 
<5p(a)(r) (for definitions, see §2), an algebra §1 of type r, and a sequence a of 
elements of 31, one can define a congruence relation 6a of $ ( a ) (r) such t h a t the 
factor algebra ^(a)(r)/da is isomorphic to the subalgebra of 31 generated by a, 
and the isomorphism is given in a very simple way. 

I t will be shown in this note t h a t this result can be extended to the case 
when 31 is a part ial algebra. Theorem 1 gives the description of 6a. This is then 
used to describe the s t ructure of ^3(a)(r)/6a, which turns ou t to be the free alge
bra over K(T) generated by 3Ï in the sense of §6. Some elementary observations 
are made concerning the existence of algebras freely generated by partial 
algebras in §6. 

I t should be emphasized t h a t the main results of the paper are the description 
of 6a and of 93 ( a )(r)/0a . T h e results in §6 are not applications b u t only 
il lustrations of these. 

2. P r e l i m i n a r i e s . A partial algebra 31 = (A ; F) is a non-empty set A and 
a set F of finitary partial operations on A. Well-ordering F = (/0, . . . , 
fyy • • • )T</3 a n d associating with it the sequence r = (n0, . . . , ny, . . . )y<p 
(where fy is an w7-ary partial operation) yields the type r of 31. /3 will be denoted 
by O(T). K(T) is the class of all algebras of type r. T h e set of a-ary polynomial 
symbols P ( a ) ( r ) is defined by the following rules: 

(i) X7 6 P ( a ) 0 ) for 7 < a; 
(ii) if po, . . . , pny-i are in P ( a ) ( r ) , then f7(p0 , . . . , p„7_i) is in P<«>(T) for 

7 < O(T); 

(iii) a-ary polynomial symbols are those and only those which can be 
obtained from (i) and (ii) in a finite number of steps. 

T h e algebra $(o:) (r) = (P ( a ) (r) ; F) is obtained in the na tura l manner , 
using (ii) to define the operations on P ( a ) ( r ) . In the case of a partial algebra 3Ï, 
an a-ary polynomial symbol is no t always associated with a mapping of Aa 

into A. Thus , we have to specify its interpretat ion: 
Le t 31 be a part ial algebra of type r, a0, . . . , a7, . . . Ç i , 7 < a , p G P ( a ) ( r ) . 

Then p(a0l . . . , ay, . . .) is defined and equals a 6 A if and only if i t follows 
from the following rules: 
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(i) if p = x7, 7 < a, then p(aQ, . . . , a7, . . .) = ay. 
(ii) if piiao, . . . , ay, . . .) is denned and equals bt for 0 < i < nyj 

fy(boj . . . , &n7-i) is denned and equals b, 
p = fy(p0, . . . ,Pn7-i), 

then p(do, . . . , ayj . . .) is denned and equals b. 
We adopt the convention that an equation p(a0, . . . , ay, . . .) = 

q(a0, . . . , ayi . . . ) includes the assertion that the terms considered are defined. 

3. The congruence relation 0a. Let 31 be a partial algebra of type r, 
a 6 Aa, a = (a0, . . . , ay, . . .)7<a, and define a binary relation 6a on P ( a )(r) as 
follows: 

p = q(0a) if and only if there exist k > 1, r 6 P w 0 ) , and p*, q* G P ( a )(r) 
(0 < i < k) such that />*(a0, . . . , a7, . . .) and g*(a0, . . . , ay, . . .) exist, 
pt(a0, . . . , ay, . . .) = g<(a0, . . . , a7, . . .), and p = r(p0, . . . , p*-i), q = 
r(q0, . . . ,q*-i) . 

THEOREM 1. 0a w a congruence relation of ^a) (r). 

Remark. If 21 is an algebra, 0a is defined simply by the rule: p = q(0a) if 
and only if p(a0, . . . , ayj . . .) = q(a0, . . . , ay} . . .) . 

Proof, (i) 0a is obviously symmetric, and an easy computation shows that 
it is reflexive. 

(ii) To prove the substitution property, let p = f7(po, . . . ,pw<y_i), 
q = f7(q0, . . . , qW7-i), and p* = q<(0a), 0 < i < ny. Then 

Pi = ri(p0\ . . . , pni-i)9 Qt = ri(q0\ . . . , a»,--i), 

and £/(#o, . . . , a7, . . .) = g/(a0 , . . . , a7, . . .). 

If follows easily from the definition of a-ary polynomials that there are n-ary 
polynomial symbols r' t1 n = n0 + ni + . . . + wW(y_i, such that 

^i\boj . . . , bni-\) = r i(co, • • • , cw,0-i> cWo, . . . , cWo+...+wi_1_i, fro, • • • , 

for a l i i = 0, . . . , ny — 1, bj £ A, Cj £ A. Thus we have that 

P i = r'iipo0, . . . , pn0-i, • . • , i>o7~\ . • . , P^Ç-i-i) 

for all 0 < i < ny. Setting r = f7(rr
0, . . . , rVy-i), we get 

r(po , . . . , P°o-i' • • • » Po7_1, • • • , P^7_i-i) = i>, 

r(Qo , . . . , «„0-i, . . . , Qo7 , . . . , «nL-i-i) = ^. 
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Thus, p = q(0a), which was to be proved. In order to establish the transitivity 
of 0a we need a lemma. 

LEMMA 1.* p = /7(p0 , . . . , p„7_i) = /«(q0, . . . , q„8_i) = q(0a) holds if and 
only if (a) p(a) = g(a), or (b) p0 = qo(0a), . . . , p„7-i = qWr-i(0a) and y = Ô. 

Proof. The "if" part is obvious, so we prove the "only if" part: By the 
definition of 0a there is an r £ P{k) (r) such that 

p = r(p0f . . . , p*-i), q = r(q0, . . . , q*-i), and p*(ct) = q*(a), 

i = 0, . . . , ny — 1. 
A A 

Hence, either r = xt for some i, i.e., p = p*, q = q*, and p(a) = g(ct) (i.e. (a)) 
or r = /y(r0 , . . . , rWj,_i). In the latter case, 

A A A A 

P = A ( P 0 , • • , Pny-l) = A(^o(pO, • • • > P * - l ) , • • • , *n„-l(pO, • • • , P * - l ) ) 

and 

q = /*(qo, • • • , q^- i ) = fp(r0(q0, . . . , q*_i), . . . , rn,_i(q0> . . . , q*_i)) ; 

thus y = ô = v and p , = rt(p0, . . . , p*-i), q* = ^(q 0 , • • • , q*-i). Since 
p^ = q*(0„) and the substitution property has already been proved, we 
conclude that p* = q*(0a), 0 < i < ny. This completes the proof of the lemma. 

(iii) We prove the transitivity of 0a by induction on the maximum rank of 
the polynomial symbols involved (the rank of a polynomial symbol p, rk(p), 
is the number of symbols needed in building it up). Assume that q = p(0a) 
and p = r(0a) and max{rk(q), rk(p),rk(r)} = 2, i.e., all polynomial symbols 
are of the form xt. Then q = r(0a) is obvious. Assume that max{rk(q), 
rk(p), rk(r)} = n and that transitivity has been proved for k < n. I t follows 
from the definition of 0a that either all of p(a), q(a), r(a) exist or none. In the 
first case q = r(0a) is clear; in the second case Lemma 1 shows that 

P =Â(P0, • • • ,Prc7-l), 

q =A(qo, • . • , q ^ - i ) , 

r = A ( r 0 i • • • t r w 7 - l ) -

p = q(0a) and Lemma 1 imply that q^ = p*(0tt); P = r(0a) and Lemma 1 
imply that pt = r*(0a). Since max{rk(qi), rk(p*), rk(r*)} < n, we conclude 
that q* = Ti(da)j i = 0, . . . , ny — 1, and hence, by the substitution property, 
that q = r(0Q). This settles the transitivity. Thus, 0a has been shown to be a 
congruence relation of ty^ir), concluding the proof of Theorem 1. 

4. An embedding theorem for partial algebras. Let 21 be a partial 
algebra of type r, a = (a0, . . . , ay, . . .)7<«, and assume that each element of A 

*This lemma and the resulting proof of the transitivity of 0a are due to G. H. Wenzel. 
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occurs once and only once in this sequence. Then the following embedding 
theorem shows that 2t can be considered to be a relative subalgebra of 

THEOREM 2. Let A* denote the set of elements of the form [x7]0a, i.e., the set of 

congruence classes of the x7 in ^(a) (r)/0a. Then 

4>: a7 —> [Xy]da 

is an isomorphism between 21 and 21* = (^4*; F). 

Proof. [Xy]da = [xs]0a can hold only if y = <5, since neither x7 nor x§ have 
non-trivial representations x7 = r (p0, . . . , p*-i) or x8 = r(q0, . . . , q^-i). 
Thus, $ is 1-1. Since <f> is obviously onto, we just have to verify that 
fy(a8oy . . . , <35nr-i) = a8 holds if and only if 

jf7([xao]0a, • • • , [xsnr-M = [x«K. 

Clearly,/7(a5o, . . . , &5n7-i) = a8 implies that 

fy([Xs0]Oa, . . . , [X5„7-i]0a) = [Xs]da. 

Observing that xs admits only trivial representations (an argument which we 
used once already), we conclude the converse statement. This completes the 
proof of the theorem. 

Theorem 2 yields the "least economical" embedding of the partial algebra 21 
into an algebra. More precisely, $ (a )(r)/0 t t is the largest algebra into which 21 
can be embedded such that the image of 21 is a generating system. (This was 
anticipated in (2).) The next section is devoted to a description of the structure 
of the algebra ^(a)(r)/6a as defined above. 

5. The structure of ^a)(T)/da. Let 2Ï be a partial algebra of type r,ct G Aa, 
and assume that each element of A occurs once and only once in a. We define 
certain subsets A{niy) and A\nt7) (0 < w < co, 0 < 7 < O(T)) of P ( a )(r) as 
follows: 

i4'(0.0) = -4* , 

where A* was defined in Theorem 2. Defining (m, y) < (n, 8) by (i) m = n 
and 7 < 8 or (ii) m < n (lexicographic ordering), we define recursively 

V (A (m,y)\ (w, 7) < (n, 8)) ((n,8) 7e- (0,0)) 
and 

^4(rc,Ô) = A\nt8) V {fô(bo, . . . , ^ 5 - l ) J &0, • • • , K&-1 £ ^\n,b)}. 

LEMMA 2. 77£e following equality holds: 

P(a)(r)/0a = V (A(n,8);0 < n < co, 0 < 8 < O(T)). 

Proof. The inclusions 

(i) A if y < S, 
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(ii) A{n,y) Ç A'(m,8) Ç A{m,8) if n < m, 
follow immediately from the definitions. Take p Ç P ( a )(r) . We shall prove by 
induction on the rank of p that [p]0a £ 4̂(̂ ,5) for some n < co, 8 < o{r). 
If p = Xy, then [p]0a 6 A(0,o) by definition. Let p = fT(p0, . . . , Pn7-i) and 
assume that [p*]0a € A(nitSi), 0 < i < ny. Setting n = maxjw0, . . . , ^ 7 - i } , 
Ô = max{50, . . . , ôny-i}, we get A(nii8i) Ç ^4(w>5) Ç A(n+1,0) from (i) and (ii). 
Thus, [p]0a = f7([^o]0a, . • • , [pny-i]0a) G ^4(W+i,o), which was to be proved. 
One more definition is needed to describe the detailed structure of $(aO(r)/0a. 

Let 93 be a partial algebra, X ÇZ B and F = X V {/7(x0, . . . , xn7-i); 
x, 6 X) for some/ , G i7. We shall write F = X[fy] if 

(i) /y(x0, . . . , xn#y_i) = jfsOV • • > ff'na-i) £ X implies that y = ô, xt = %'u 

0 < i < ny; 
(ii) x0, . . . , xn5_i Ç F and xt Q X for some 0 < i < n8 implies that 

f8(x0, . . . , xn8-i) does not exist in 33 or is not in F, for any ô < O(T). 
Using this terminology we get the following result concerning the structure 

of$<«>(r)/0«. 

THEOREM 3. 93(a)(r)/0a contains an isomorphic copy 21* of the partial algebra 
21. If we start with A* and we perform two kinds of constructions, 

(i) taking the set union of previously constructed sets, 
(ii) constructing X[fy] from X, 

then we get an increasing transfinite sequence of subsets of P ( a )(r)/0a such that 
the union of all these subsets is the whole set. 

In the light of Lemma 2 and the preceding definitions, it suffices to prove 
the following lemma. 

LEMMA 3. A(n,y) = A\n,y)[fy]. 

Proof. Lemma 1 immediately yields part (i) in the definition of A\n>y)\fy]. 
Moreover, the same lemma yields that a0, . . . , an5_i Ç A(n>y) and, say, 
a{ £ A\nf7), and f8(a0, . . . , an5_i) Ç A(n,y) — A\n>y) is impossible. Thus, we 
assume that aQ, . . . , awg_i G Ain,y), aû g A\n,y) and f8(a0, . . . , aW5_i) £ A\n,y). 
Setting at = \pi]da,fi(a0, . . . , a^-i) = [p]0a, we get/a(p0, . . . , p„a-i) = p(0tt) 
and hence, by Lemma 1, p = /«(p'o, • • . , p'wj-i) and 

Vi =pfi(Ba),0 <i <n8 - 1. 

Since [p]0a G <4'(»,7)t there is a smallest (w, X) < (n, 7) such that [p]0a Ç 
-4(OTix). Since [p]0a g -4'«>fo) by Theorem 2, [p]0a Ç ̂ 4(m,x) — -4'(OTlx) and so there
fore p = /x(qo, • • • , q^x-i) (ft»), for some [Qi]0a 6 A\m,\). Lemma 1 shows that 
X = ô and [qj0a = \pt]0a. Hence, aj = \pj]Oa G -4'<m,«) £ ^'(n,7), a contradic
tion. This completes the proof of Lemma 3 and also of Theorem 3. 

6. Free algebras generated by par t ia l algebras. The congruence relation 
0a for algebras is used, among other things, to describe the free algebra over 
a class of algebras K Ç K(T). In this section we shall show that ^a)(r)/6a can 
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be given a similar interpretation if we find a suitable generalization of the 
concept of free algebras. 

Let $ be a class of algebras of type r and let 2Ï = (A ; F) be a partial algebra 
of type r. The algebra $x(3I) is called the algebra freely generated by the partial 
algebra 2t if the following conditions are satisfied: 

(i) ffe(3t) eK. 
((i) $K(!&) is generated by A' and x- -4' -* A is an isomorphism between 

31 = (A; F) and W = (Af; F) which is a relative subalgebra of $*(«) . 
(iii) If 0 is a homomorphism of 21 into 6 £ K, then there exists a homo-

morphism \p of gK (21) into S such that \j/ is an extension of <t>. 
Using this definition, the following theorem is clear. 

THEOREM 4. (i) If 21 « an algebra in K, then g^(2l) = 21. 
(ii) 3^(21) is unique up to isomorphism. 

(iii) If the domain of each fy Ç F is empty, then %K{^i) = Sx(nt) if 8^(îtt) w 
the free algebra on m generators and m = \A\. 

We shall conclude this paper by giving sufficient conditions on a class K for 
the existence of 3^(2Q« Theorem 5 is based on an idea of G. Birkhoff (1). 

THEOREM 5. Let K be a class of algebras and let 2Ï be a partial algebra. Assume 
that the following conditions hold: 

(i) 21 is isomorphic to a weak subalgebra of an algebra in K. 
(ii) K is closed under the formation of subalgebras and direct products. 

Then 3^(21) exists. 

Proof. By obvious changes in a proof of (1 ). 
Theorem 6 constructs 3^(21) from $K(m)-

THEOREM 6. Let K be a class of algebras and let tytbe a partial algebra. 3^(31) 
exists if the following conditions are satisfied: 

(i) 21 is isomorphic to a relative subalgebra of an algebra in K. 
(ii) %K(w) exists for some m > \A\. 

(iii) K is closed under the formation of homomorphic images. 

Remark. This is analogous to a result of Sikorski (3) on free products of 
algebras. 

Proof, (ii) and (iii) imply that 3^(m) exists for m = \A\. Let a be an ordinal 
with a = m and let A = {a7; y <a}. We define a subset T of (FK(a))2 = (FK(m))2 

as follows: 

(x, y) e Til and only if x = p(xi0, . . . , j f , ^ ) , y = q(xj01 . . . , xjn^x) 

and p(ai0, . . . , at^x) = q(aj0, . . . , ainb-x). We set 6 = [j (fixy; (x, y) 6 T) 
which, by definition, is the smallest congruence relation under which 
(Xj y) G T implies that x = y (6). (ii) and (iii) imply that $KM/0 G i£, and 
we claim that %K{a)/B ^ g*(3t). Let a'7 = [xy]6 and 4 ' = {a'T; y < a}. 
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Take any homomorphism <j> of SI into S3 G K with a7<£ = cy, y < a, and define 
T' in terms of the cy as J" was defined in terms of the a,j. If $ is the corresponding 
congruence relation of ^KM, then 6 < $ since 0 is a homomorphism. Thus, by 
the second isomorphism theorem, \j/: [xy]0 —> cy induces a homomorphism \(/ of 
ISKM/O into (S with a'7^ = cy since ^(aO/fl = (£. Now we embed 2Ï into the 
algebra S3 G K (which can be done by (i)) and let i: ay —> ay be a mapping of 
SI into S3. Applying the above remark, we get a homomorphism x: ^ ( P O / ^ "^ S3 
with a'7x = ay Thus, XA'- 31' —> 21 is an onto homomorphism while it is trivial 
by the construction of 6 that XA~1 is a homomorphism of 21 onto W. Thus, x is an 
isomorphism and x^ = 0- This completes the proof. 

We conclude this section with two corollaries: 

COROLLARY 1. If K is an equational class, then (i) is necessary and sufficient 
for the existence of 3^(21). 

COROLLARY 2. Let K = K(T). Then 3^(81) always exists and 

where A = {ay\ y < a} and a = (a0, . . . , ay, . . .)7<« contains each element of 
A exactly once. 

The last corollary, the proof of which is obvious (%K(T)M = ^3(a)(V) and 
6 as constructed in Theorem 6 equals 0a), yields the desired representation of 
&V(r)(2l) as the factor algebra ^a)(r)/da. 

Remark (added May 15, 1967). In a forthcoming paper, P. Burmeister and 
J. Schmidt give a result related to Theorem 3 of the present paper. Namely, 
they prove the existence of an algebra satisfying a set of axioms which can 
be easily shown to be equivalent to the conditions of Theorem 3. I t should be 
pointed out, however, that the mere existence of an algebra answering the 
description of Theorem 3 has already been proved; see for instance (2). The 
purpose of this paper is the construction of the "kernel" 6a. 

Also, it should be mentioned that whenever the free algebra generated by 
a partial algebra exists, its existence can be proved using the adjoint functor 
theorem. 
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