Page 420, line 27: Omit " $=H \times I$."
Page 420, line 29: Replace " H " by " $M(I, G)$."
Pages 421, 422: The modifications in the proof of Theorem 1, due to the above, will be clear.
Page 425, line 13: Insert between "(" and "see": " $H=(\beta \in M(I, G)$: $(\beta, a) \in W$ for some $a \in I)$."

University of West Virginia,
Morgantown, West Virginia

THE ISOMORPHISM OF CERTAIN CONTINUOUS RINGS*: CORRIGENDUM AND ADDENDUM

BRIAN P. DAWKINS AND ISRAEL HALPERIN

1. Page 1337, line 6: $v_{i, n-2}$ should be $v_{i, 2 n-2}$.
2. Page 1339, line 21: $\psi\left(u_{2 n-1} v_{2 n-1}\right)$ should be $\psi\left(v_{2 n-1} u_{2 n-1}\right)$.
3. Page 1340, line 13: $\cup_{A \in \mathscr{A}} A(\mu)$ should be $\{A(\mu) \mid A \in \mathfrak{X}\}$.
4. Page 1341, line 10 should read: "when all $v_{2 n+1}{ }^{t}$ and all $v_{j}{ }^{n+1}$ are replaced by 1 ."
5. Page 1341. Lemma 5 holds with hypothesis (i) omitted and even if the ring D fails to be a division ring (but U and V are required to be division rings). Moreover, Lemma 5 is an easy corollary of Lemma 1 ; to see this, observe first that (ii) of Lemma 5 implies
(ii)' $\sum_{i=1}^{N} u_{i} v_{i}=0, u_{i} \in U, v_{i} \in V$, and v_{1}, \ldots, v_{N} Z-independent, together imply all $u_{i}=0$.
(To deduce (ii)', write

$$
u_{i}=\sum_{j=1}^{r} w_{j} z_{j i}
$$

with all $z_{j i} \in Z$ and w_{1}, \ldots, w_{r} all in U and Z-independent.) Next, to prove Lemma 5 it suffices to consider the case that v_{1}, \ldots, v_{N} are Z-independent; hence because of (ii)' it can be assumed that all $v_{i}=1$, i.e., that

$$
\sum_{i=1}^{N} u_{i}{ }^{1} x u_{i}{ }^{2}=0
$$

for all $x \in U$. Lemma 1 now applies.

Carleton University and
 University of Toronto

Received June 2, 1967.
*Published in Can. J. Math., 18 (1966), 1333-1344.

